Двухроторный газотурбинный двигатель

Изобретение относится к газотурбинным двигателям, а именно к маслосистемам, их агрегатам наддува полостей и устройствам суфлирования масла. Двухроторный газотурбинный двигатель снабжен системой последовательно сообщенных друг с другом посредством дополнительных воздуховодов предмасляных полостей компрессора низкого давления и предмасляной полости компрессора высокого давления, одновременно сообщенных с предмасляной полостью турбины, эжектором, содержащим эжектируемую полость, эжектирующую полость и камеру смешения, предмасляная полость турбины сообщена, с одной стороны, через воздуховод с клапаном суфлирования, а с другой стороны, с входом эжектируемой полости эжектора, выход которой сообщен с входом камеры смешения, при этом эжектирующая полость своим входом сообщена с источником питания, а выходом с входом камеры смешения, выход камеры смешения сообщен с входной полостью форсажной камеры. Кроме того, источником питания может являться вторичная зона камеры сгорания или промежуточная ступень компрессора высокого давления. Технический результат изобретения – исключение выбросов в атмосферу на продолжительных крейсерских режимах и поддержание оптимального перепада на подвижных уплотнениях маслосистемы двигателя на максимальных и форсажных режимах работы двигателя. 2 з.п. ф-лы,1 ил.

 

Изобретение относятся к газотурбинным двигателям, а именно к маслосистемам их агрегатам наддува полостей и устройствам суфлирования масла.

Известен двухроторный газотурбинный двигатель, содержащий полости наддува опоры компрессора низкого давления, полость наддува опоры компрессора высокого давления и полость наддува опор турбины, сообщенные через подвижные уплотнения с газовоздушным трактом двигателя и с полостями маслосистемы, дополнительно оснащенными предмасляными полостями, клапаном суфлирования с воздуховодом, при этом предмасляные полости сообщены с одноименными полостями наддува и полостями маслосистемы через подвижные уплотнения.

/RU РФ №2153590, МПК F02C 7/06, опубл. 27.07.2000 г/.

Основным недостатком здесь является то, что на всех режимах работы двигателя через клапан суфлирования выбрасывается в атмосферу горячий воздух с парами масла из предмасляных полостей двигателя, что, во-первых, является неэффективным с точки зрения термодинамики двигателя, поскольку этот воздух не участвует в рабочем цикле двигателя, а во-вторых, является источником загрязнения окружающей среды, особенно на крейсерских режимах и режимах с малым перепадом давления на подвижных уплотнениях маслосистемы двигателя, которые являются самыми продолжительными по времени из всего ресурса эксплуатации двигателя.

Задачей изобретения является повышение экономичности двигателя, уменьшение негативного влияния на окружающую среду, повышение ресурса и надежности подвижных уплотнений маслосистемы двигателя.

Ожидаемый технический результат - исключение выбросов в атмосферу на продолжительных по времени крейсерских режимах и поддержание оптимального перепада на подвижных уплотнениях маслосистемы двигателя на максимальных и форсажных режимах работы двигателя.

Ожидаемый технический результат достигается тем, что двухроторный газотурбинный двигатель, содержащий полости наддува опоры компрессора низкого давления, полость наддува опоры компрессора высокого давления и полость наддува опор турбины, сообщенные через подвижные уплотнения с газовоздушным трактом двигателя и с полостями маслосистемы, дополнительно оснащенными предмасляными полостями, клапаном суфлирования с воздуховодом, при этом предмасляные полости сообщены с одноименными полостями наддува и полостями маслосистемы через подвижные уплотнения, по предложению снабжен системой последовательно сообщенных друг с другом посредством дополнительных воздуховодов предмасляных полостей компрессора низкого давления и предмасляной полости компрессора высокого давления, одновременно сообщенных с предмасляной полостью турбины, эжектором, содержащим эжектируемую полость, эжектирующую полость и камеру смешения, предмасляная полость турбины сообщена, с одной стороны, через воздуховод с клапаном суфлирования, а с другой стороны, с входом эжектируемой полости эжектора, выход которой сообщен с входом камеры смешения, при этом эжектирующая полость своим входом сообщена с источником питания, а выходом с входом камеры смешения, выход камеры смешения сообщен с входной полостью форсажной камеры.

Кроме того, источником питания может являться вторичная зона камеры сгорания или промежуточная ступень компрессора высокого давления.

Наличие системы последовательно сообщенных друг с другом посредством дополнительных воздуховодов предмасляных полостей компрессора низкого давления и предмасляной полости компрессора высокого давления, одновременно сообщенных с предмасляной полостью турбины позволяет выполнить единую систему суфлирования предмасляных полостей двигателя, что делает ее более управляемой.

Наличие эжектора, содержащего эжектируемую полость, эжектирующую полость и камеру смешения позволяет использовать его основные свойства, а именно, увеличение полного давления потока с низким давлением (эжектируемого) под действием струи другого потока с более высоким давлением (эжектирующего), для того, чтобы суфлировать воздух с низким давлением из предмасляных полостей двигателя в область с более высоким давлением внутри двигателя, исключая тем самым выброс этого воздуха в атмосферу.

Сообщение предмасляной полости турбины, с одной стороны, через воздуховод с клапаном суфлирования, а с другой стороны, с входом эжектируемой полости эжектора, позволяет, во-первых, на продолжительных по времени крейсерских режимах и режимах с малым перепадом давления на подвижных уплотнениях маслосистемы двигателя, при закрытии клапана суфлирования, рассчитанного на закрытие или открытие в зависимости от перепада давления между входом в клапан суфлирования и атмосферой, по основному свойству эжекции, при сохранении низкого давления в предмасляных полостях двигателя на всем протяжении системы последовательно сообщенных друг с другом предмасляных полостей компрессоров низкого и высокого давлений и турбины, суфлировать этот воздух в область с более высоким давлением, одновременно обеспечивая ресурс и надежную работу подвижных уплотнений маслосистемы двигателя, минимальные утечки воздуха в маслосистему двигателя, повышение экономичности двигателя, а именно снижение удельного расхода топлива на данных режимах и уменьшение негативного влияния на окружающую среду. Во-вторых, на максимальных и форсажных режимах работы двигателя при открытии клапана суфлирования воздух выбрасывается из предмасляных полостей двигателя одновременно и в атмосферу, и, с помощью эжектора, в область внутри двигателя, тем самым обеспечивая оптимальный перепад на подвижных уплотнениях маслосистемы двигателя и использование эжектора с меньшей мощностью, тем самым также обеспечивая повышение экономичности двигателя, поскольку требуется меньшее количество «дорогого» с точки зрения термодинамики эжектирующего воздуха.

Сообщение входа эжектирующей полости с источником питания обеспечивает требуемый уровень давления для осуществления эжекции эжектируемого потока.

Сообщение выхода эжектируемой и эжектирующей полостей с входом камеры смешения позволяет эжектирующему потоку истекать в камеру смешения, создавая на входе камеры смешения статическое давление, которое ниже полного давления эжектируемого потока. Под действием разности давлений эжектируемый поток устремляется в камеру смешения и в конечном итоге эжектируемый и эжектирующий потоки смешиваются с выравниванием параметров по сечению камеры смешения.

Сообщение выхода камеры смешения с входной полостью форсажной камеры обеспечивает, с одной стороны, отсутствие выбросов воздуха из предмасляных полостей двигателя в атмосферу, тем самым не загрязняя окружающую среду, а с другой стороны, воздух из предмасляных полостей двигателя участвует в работе цикла двухконтурного газотурбинного двигателя в форсажной камере сгорания.

На чертеже показан продольный разрез двигателя.

Двухконтурный газотурбинный двигатель содержит компрессор низкого давления 1 с передней 2 и задней 3 опорами, компрессор высокого давления 4 с передней опорой 5, турбину 6 с опорами 7, полости наддува 8 и 9 опор 2 и 3 компрессора низкого давления 1, полость наддува 10 передней опоры 5 компрессора высокого давления 4 и полости наддува 11 опор 7 турбины 6. Полости наддува 8, 9, 10, 11 сообщены через подвижные уплотнения 12, 13, 14, 15 с газовоздушным трактом двигателя 16 и через подвижные уплотнения 17, 18, 19, 20 - с полостями 21, 22, 23 маслосистемы 24, которая дополнительно оснащена предмасляными полостями 25, 26, 27, 28 и клапаном суфлирования 29 с воздуховодом 30. Предмасляные полости 25, 26, 27, 28 сообщены с одноименными полостями наддува 8, 9, 10, 11 и полостями 21, 22, 23 маслосистемы 24 через подвижные уплотнения 17, 18, 19, 20, 31, 32, 33, 34. Предмасляные полости 25 и 26 компрессора низкого давления 1 сообщены посредством системы дополнительных воздуховодов 35 и 36 с предмасляной полостью 27 компрессора высокого давления 4 и одновременно сообщены с предмасляной полостью 28 турбины 6. Эжектор 37 содержит эжектируемую полость 38, эжектирующую полость 39 и камеру смешения 40. Предмасляная полость 28 турбины 6 сообщена, с одной стороны через воздуховод 30 с клапаном суфлирования 29, а с другой стороны, с входом 41 эжектируемой полости 38, выход 42 которой сообщен с входом 43 камеры смешения 40, при этом эжектирующая полость 39 своим входом 44 сообщена с источником питания 45, а выходом 46 с входом 43 камеры смешения 40, выход 47 камеры смешения 40 сообщен с входной полостью форсажной камеры 48.

Двигатель работает следующим образом.

При работе двигателя на рабочих режимах в полости наддува 8 и 9 опор 2 и 3 компрессора низкого давления 1 и в полость наддува 10 передней опоры 5 компрессора высокого давления 4 поступает воздух с давлением, обеспечивающим наддув полостей 8, 9, 10, обеспечивая при этом непопадание масла из маслосистемы 24 в газовоздушный тракт двигателя 16. Далее воздух, с одной стороны, через подвижные уплотнения 12, 13, 14 поступает в газовоздушный тракт двигателя 16, а, с другой стороны, через подвижные уплотнения 31, 32, 33 поступает в предмасляные полости 25 и 26 компрессора низкого давления 1 и предмасляную полость 27 компрессора высокого давления 4, обеспечивая оптимальный перепад давления на подвижных уплотнениях 17, 18, 19. В свою очередь, воздух из предмасляных полостей 25 и 26 компрессора низкого давления 1 посредством дополнительных воздуховодов 35 и 36 поступает в предмасляную полость 27 компрессора высокого давления 4 и далее в полость наддува 11 турбины 6, которая через подвижное уплотнение 34 соединена с предмасляной полостью 28 турбины 6. Воздух, направляясь таким образом в предмасляную полость 28, также обеспечивает оптимальный перепад давления на подвижных уплотнениях 20 и непопадание масла из маслосистемы 24 в газовоздушный тракт двигателя 16.

На крейсерских режимах или режимах с малыми перепадами давления на подвижных уплотнениях маслосистемы двигателя, перепад давления между входом в клапан суфлирования и атмосферой становится минимальным так, что клапан суфлирования 29 закрывается, и весь воздух, поступающий из предмасляной полости 28 турбины 6 направляется на вход 41 эжектируемой полости 38 эжектора 37. Одновременно от источника питания 45 воздух с высоким давлением поступает на вход 44 эжектирующей полости 39, где при его истечении из выхода 46 эжектирующей полости 39 на входе 43 камеры смешения 40 устанавливается статическое давление, которое всегда ниже полного давления воздуха, поступающего на вход 41 эжектируемой полости 38 из предмасляной полости 28 турбины 6. Поскольку выход 42 эжектируемой полости 38 и выход 46 эжектирующей полости 39 одновременно соединены со входом 43 камеры смешения 40, то под действием разности давлений между воздухом, истекающим из выхода 46 эжектирующей полости 39 и воздухом, истекающим из выхода 42 эжектируемой полости 38, воздух с низким давлением из предмасляной полости 28 устремляется на вход 43 камеры смешения 40, где происходит смешение потоков с выравниванием параметров воздуха по длине камеры смешения 40. Далее воздух суфлируется во входную полость форсажной камеры 48, где он участвует в рабочем цикле двухконтурного газотурбинного двигателя.

На максимальных и форсажных режимах работы двигателя перепад давления между входом в клапан суфлирования и атмосферой становится максимальным так, что клапан суфлирования 29 открывается и воздух из предмасляной полости 28 турбины 6, с одной стороны, через воздуховод 30 и открытый клапан суфлирования 29 выбрасывается в атмосферу, а с другой стороны, суфлируется во входную полость форсажной камеры 48 посредством использования свойств эжектора 37.

Реализация изобретения позволяет, с одной стороны, суфлировать воздух из предмасляных полостей двигателя в область внутри двигателя, где он участвует в рабочем цикле двигателя, на продолжительных по времени крейсерских режимах и режимах с малыми перепадами давления на подвижных уплотнениях маслосистемы двигателя, обеспечивая при этом повышение экономичности двигателя, а именно снижение удельного расхода топлива, а с другой стороны, сохранить оптимальный перепад давления на подвижных уплотнениях маслосистемы двигателя на непродолжительных по времени максимальных и форсажных режимах, обеспечивая надежность и ресурс данных уплотнений, а также использовать эжектор с меньшей мощностью и меньшим расходом эжектирующего воздуха за счет одновременного использования двух элементов: клапана суфлирования и эжектора, поскольку часть функций по обеспечению суфлирования воздуха из предмасляных полостей двигателя берет на себя клапан суфлирования, снижая при этом удельный расход топлива и повышая экономичность двигателя в целом.

1. Двухроторный газотурбинный двигатель, содержащий полости наддува опоры компрессора низкого давления, полость наддува опоры компрессора высокого давления и полость наддува опор турбины, сообщенные через подвижные уплотнения с газовоздушным трактом двигателя и с полостями маслосистемы, дополнительно оснащенными предмасляными полостями, клапаном суфлирования с воздуховодом, при этом предмасляные полости сообщены с одноименными полостями наддува и полостями маслосистемы через подвижные уплотнения, отличающийся тем, что он снабжен системой последовательно сообщенных друг с другом посредством дополнительных воздуховодов предмасляных полостей компрессора низкого давления и предмасляной полости компрессора высокого давления, одновременно сообщенных с предмасляной полостью турбины, эжектором, содержащим эжектируемую полость, эжектирующую полость и камеру смешения, предмасляная полость турбины сообщена, с одной стороны, через воздуховод с клапаном суфлирования, а с другой стороны, с входом эжектируемой полости эжектора, выход которой сообщен с входом камеры смешения, при этом эжектирующая полость своим входом сообщена с источником питания, а выходом с входом камеры смешения, выход камеры смешения сообщен с входной полостью форсажной камеры.

2. Двухроторный газотурбинный двигатель по п. 1, отличающийся тем, что источником питания является вторичная зона камеры сгорания.

3. Двухроторный газотурбинный двигатель по п. 1, отличающийся тем, что источником питания является промежуточная ступень компрессора высокого давления.



 

Похожие патенты:

Изобретение относится к авиационным двухконтурным турбореактивным двигателям (ТРДД). Предложена передняя опора ротора вентилятора двухконтурного турбореактивного двигателя, содержащая ступицу, корпус подшипника, два упругих элемента, соединенных параллельно так, что их жесткости суммируются, роликовый подшипник, смазываемый барботажем, цапфу, фигурную втулку, закрепленную на цапфе и фиксирующую фланцем внутреннее кольцо подшипника и вращающиеся детали сегментного контактного уплотнения, сегментное контактное уплотнение, состоящее из втулки с резьбой, закрепленной на цапфе, кольца, по резьбе соединенного с этой втулкой, трех графитовых уплотнительных колец, составленных из отдельных сегментов, прижатых к контактирующему с ними кольцу двумя пружинами так, что между торцами сегментов этих колец остается зазор 0,05÷0,1 мм, два из которых без зазора вставлены друг в друга, а третье кольцо установлено встык к этим двум кольцам, причем стыки сегментов этих колец в окружном направлении разнесены друг от друга, лабиринтное уплотнение предмасляной полости опоры, состоящее из лабиринтного кольца и статорного элемента, трубу, расположенную внутри цапфы и образующую воздушную полость в ней, и в фигурной втулке и цапфе выполнены отверстия, через которые подводится масло для охлаждения кольца, контактирующего с графитовыми уплотнительными кольцами, и в трубе, цапфе и лабиринтном кольце выполнены отверстия, через которые подается воздух для наддува предмасляной полости опоры, отличающаяся тем, что корпус подшипника выполнен за одно целое с обоими упругими элементами, выполненными в виде упругих колец с равномерно чередующимися наружными и внутренними выступами, натяг между наружным кольцом подшипника и внутренними выступами упругих колец равен 0÷h/2 мм, где h - высота выступов упругих колец, равная h=0,15÷0,3 мм, в расточки, выполненные в наружном кольце подшипника с обеих его сторон, запрессованы две втулки с полированными торцами, выполненные из стали или бронзы БрС30, и торцы зазора между ступицей и наружным кольцом подшипника, в котором размещены упругие кольца, уплотнены металлическими уплотнительными кольцами, которые прижаты ответными полированными торцами к полированным торцам этих втулок резиновыми уплотнительными кольцами, расположенными в кольцевых канавках в бурте корпуса подшипника и корпусе сегментного контактного уплотнения, и на каждом металлическом уплотнительном кольце выполнен выступ, который входит соответственно в ответный паз, выполненный в бурте корпуса подшипника или корпуса сегментного контактного уплотнения с зазором по периметру паза, меньшим смещения металлического уплотнительного кольца, при котором возникают взаимные проскальзывания металлического и резинового уплотнительных колец, и равным 0÷0,05 мм, а на торцах наружного кольца подшипника выполнены выступы, входящие в ответные пазы в металлических уплотнительных кольцах с зазором по периметру паза, равным или немного большим допустимого смещения цапфы в ступице, с зазором 0,15÷0,3 мм, и радиальный зазор между металлическими уплотнительными кольцами и корпусом подшипника меньше смещения металлического уплотнительного кольца, при котором возникают взаимные проскальзывания металлического и резинового уплотнительных колец, меньше 0,1 мм, и радиальное расстояние от наружной окружности, ограничивающей зону контакта резинового уплотнительного кольца с металлическим уплотнительным кольцом, до наружной цилиндрической поверхности металлического уплотнительного кольца таково, что гидравлическое давление, действующее на каждое металлическое уплотнительное кольцо со стороны уплотнительного резинового кольца, уравновешивает в случае раскрытия стыка между металлическим уплотнительным кольцом и наружным кольцом подшипника гидравлическое давление, действующее на металлическое уплотнительное кольцо со стороны наружного кольца подшипника, а внутренний диаметр резьбы втулки, закрепленной на цапфе, равен или больше наружного диаметра внутреннего кольца подшипника, а само резьбовое соединение уплотнено резиновым уплотнительным кольцом, размещенным в кольцевых расточках втулки и кольца, и между кольцом и лабиринтным кольцом установлено разрезное упругое кольцо, в свободном состоянии сцентрированное по пояску лабиринтного кольца, цилиндрические поверхности двух графитовых колец, вставленных друг в друга, по которым они контактируют, выполнены с эксцентриситетом по отношению к цилиндрической поверхности внутреннего кольца этой пары, по которой оно контактирует с кольцом, навернутым на втулку, и в качестве пружин, прижимающих сегменты графитовых уплотнительных колец к контактирующему с ними кольцу, применены два кольцевых многослойных гофрированных пакета, набранных «гофр в гофр» из шлифованных стальных нагартованных лент или лент, изготовленных из закаленной нержавеющей стали, причем стыки концов лент равномерно распределены по вершинам гофров, каждый пакет гофрированных лент с радиальным натягом по вершинам гофров, созданным одинаковым одновременным сжатием всех гофров пакета в радиальных направлениях, вставлен в кольцевой зазор между корпусом сегментного контактного уплотнения и тем графитовым уплотнительным кольцом, на которое он опирается, до упора друг в друга и в стенку этого корпуса так, что его вершины располагаются в ответных полукруглых сегментных выемках, выполненных в контактирующих с пакетами деталях, и сегментное контактное уплотнение со стороны предмасляной полости опоры закрыто крышкой и уплотнено резиновыми уплотнительными кольцами, расположенными в кольцевых канавках крышки, и крышка и корпус сегментного уплотнения изготовлены из стали одинаковой марки или бронзы БрС30, причем кольцевой зазор между корпусом сегментного уплотнения и крышкой также меньше 0,1 мм, и в крышке выполнен несквозной паз, в который с суммарным зазором по боковым сторонам паза, меньшим 0,1 мм, входит упор, герметично частью с конической трубной резьбой закрепленный в корпусе сегментного уплотнения и законтренный упругим кольцом, и крышка упругими силами, созданными упругим разрезным кольцом, размещенным в кольцевой канавке корпуса сегментного уплотнения, и давлением воздуха, поступающего в предмасляную полость опоры через отверстия в трубе, цапфе и лабиринтном кольце, прижата полированным торцом к ответным полированным торцам графитных уплотнительных колец, а в бурте корпуса подшипника выполнено дроссельное отверстие, сообщающееся с зазором по периметру паза, выполненного в металлическом уплотнительном кольце.

Изобретение относится к гидравлическому подшипнику для стационарной газовой турбины, содержащему масляную ванну, в которой предусмотрен сток для гидравлического масла, при этом сток содержит расположенное в масляной ванне сточное отверстие и примыкающий к сточному отверстию сточный трубопровод, при этом предусмотрены средства, которые в стекающем гидравлическом масле вызывают в сточном трубопроводе кольцевой поток с центральным воздушным столбом.

Изобретение относится к области авиационного двигателестроения и, в частности, к малоразмерным газотурбинным двигателям с системой смазки и охлаждения подшипников.

Изобретение относится к области машиностроения и касается элементов систем газотурбинных двигателей и может быть использовано в качестве суфлера-сепаратора, воздухоотделителя в маслосистемах авиационных газотурбинных двигателей (ГТД), а также в других устройствах для отделения жидкости от газожидкостной смеси.

Изобретение относится к энергетике. Предложена опора турбины высокого давления, содержащая корпус подшипника с силовыми спицами, закрепленными на корпусе турбины, наружное кольцо подшипника, установленное в корпусе между упорным буртом и гайкой, и роликоподшипник, взаимодействующий с ротором турбины.

Изобретение относится к системе охлаждения газотурбинного двигателя с помощью охлаждающего воздуха. Двухроторный газотурбинный двигатель, содержащий полость наддува опоры компрессора низкого давления, полость наддува опоры компрессора высокого давления и полость наддува опоры турбины, сообщенные через' подвижные уплотнения с газовоздушным трактом двигателя и с полостями маслосистемы, предмасляные полости, сообщенные с одноименными полостями наддува и полостями маслосистемы через подвижные уплотнения и форсажную камеру, согласно изобретению содержит систему последовательно сообщенных друг с другом посредством воздуховодов предмасляную полость компрессора низкого давления и предмасляную полость компрессора высокого давления, одновременно сообщенных с предмасляной полостью турбины, эжектор, содержащий эжектируемую и эжектирующую полости и камеру смешения, при этом эжектируемая полость своим входом сообщена с предмасляной полостью турбины, а выходом - с входом камеры смешения, эжектирующая полость своим входом сообщена с источником питания, а выходом - с входом камеры смешения, причем выход камеры смешения сообщен с входной полостью форсажной камеры.

Изобретение относится к области авиадвигателестроения и касается предохранительного клапана двойного действия, используемого в системе суфлирования масляных полостей подшипниковых опор ротора авиационного газотурбинного двигателя для поддержания заданных режимов давления воздуха в масляных полостях.

Изобретение относится к области пленок демпфирующих жидкостей направляющего подшипника вала турбомашины и, более конкретно, относится к регулированию толщины такой пленки демпфирующей жидкости.

Упругодемпферная опора ротора тяжелой турбомашины относится к ГТД авиационного и наземного применения, а именно к конструкции упругодемпферной опоры компрессора мощной турбомашины наземного применения или мощного ГТД тяжелого самолета, не летающего в перевернутом полете.

Масляная система авиационного газотурбинного двигателя (ГТД) относится к области авиационного двигателестроения. Магистрали откачки масла насосов, подключенных к масляным полостям подшипниковых опор ротора, сообщены с магистралью откачки масла насоса масляной полости коробки привода агрегатов через обратный клапан, подпружиненный в сторону магистралей откачки насосов масляных полостей подшипниковых опор ротора, сопротивление которого близко к разности напоров давления, создаваемых насосами откачки масла масляных полостей подшипниковых опор ротора и коробки привода агрегатов.

Изобретение относится к энергетике. Опора двухвального газотурбинного двигателя, содержащая роликоподшипник, установленный между валами роторов низкого и высокого давлений, масляную подводящую полость под внутренним кольцом, маслоподводящие отверстия, выполненные во внутреннем кольце подшипника, сепаратор, центрированный по наружному кольцу, причём на беговых дорожках внутреннего и наружного колец выполнены одна или несколько радиальных маслоотводящих канавок произвольного профиля. Изобретение позволяет существенно ослабить влияние масляного клина на ролики и кольца роликоподшипников, позволяет уменьшить рабочую температуру с уменьшением потребного количества охлаждающего масла, а также позволяет увеличить ресурс подшипника. 2 ил.

Изобретение может быть использовано при изготовлении опор с расположением подшипника между двумя вращающимися роторами, в частности в газотурбинных двигателях авиационного и наземного применения. Подшипник опоры установлен между валами роторов низкого и высокого давлений и состоит из наружного кольца, внутреннего кольца, тел качения и сепаратора, центрированного по наружному кольцу. Внутреннее кольцо выполнено с отверстиями для подачи масла в область качения роликов. Ролики выполнены со спиральными канавками, угол подъема которых относительно оси вращения составляет 15-25°. Направление угла подъема выбрано с учетом распределения осевого градиента температур колец подшипника и обеспечивает наиболее оптимальное условие качения роликов путем уменьшения воздействия на них масляных клиньев. Использованная схема смазки и охлаждения подшипника улучшает его температурное состояние и снижает величину гидродинамических нагрузок на его детали. 2 з.п. ф-лы, 2 ил.

Устройство для смазки опорного подшипника ротора двухроторной турбомашины относится к области авиационного двигателестроения. Масляная полость сообщена магистралью слива с компенсационной емкостью, подсоединенной к всасывающей магистрали откачивающего насоса и сообщенной через сливную магистраль с масляной полостью в зоне стыковки качающего узла насоса с приводной рессорой. Целесообразно компенсационную емкость снабдить магистралью суфлирования, в которую установить нормально открытый запорный клапан, полость управления которым подключена к магистрали подачи масла. Изобретение позволит повысить надежность устройства для смазки опорного подшипника ротора двухроторной турбомашины и турбомашины в целом. 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к роторным газотурбинным машинам и может быть использована для подачи масла в межроторные подшипники для смазывания и охлаждения их, а также для уменьшения контактных напряжений на телах качения подшипников. Способ подачи масла в межроторный подшипник опоры ротора газотурбинного двигателя включает установку средств (7) направленной подачи масла на внутренний полый вал (5) ротора и подачу масла через вал (5) и сопла (8) средств подачи масла в межроторный подшипник. Средство (7) при подаче через его сопла (8) масла приводится во вращение вместе с валом (5), потоки масла через его выходные отверстия подают перпендикулярно оси подшипника на отражающую поверхность закрепленного на внешнем валу (6) двигателя маслоулавливающего кольца, от которой отраженный поток масла поступает на подшипник в направлении, параллельном оси подшипника. Сопла (8) развернуты в направлении вращения колец (1, 2) подшипника, а окружная скорость (V) подачи масла на маслоулавливающее кольцо находится в интервале от минимального и до максимального значений, выбранных из определенных соотношений. Также заявлено устройство для подачи масла, которое содержит установленные на валу (5) средства (7) направленной подачи масла с выходными соплами (8), имеющими возможность связи с масляной системой двигателя, а также маслоулавливающий козырек (9), предназначенный для задания направления потоку масла. Козырек (9) закреплен на внешнем валу (6), смонтированном на внешнем кольце (1) подшипника, выполнен в виде кольцевой втулки, отверстие которой имеет коническую форму, и размещен у торца подшипника таким образом, что раструб конуса отверстия направлен в сторону подшипника, причем сопла (8) направлены на коническую поверхность маслоулавливающего кольца и имеют регулируемое проходное сечение. Технический результат: повышение срока эксплуатации подшипников опор роторов газотурбинного двигателя за счет оптимальной организации подачи к ним масла, обеспечивающей эффективные смазку и охлаждение подшипника, а также уменьшение контактных напряжений между телами качения подшипника и его внешней обоймой. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения, касается элементов систем газотурбинных двигателей и может быть использовано в качестве суфлера-сепаратора в маслосистемах авиационных газотурбинных двигателей (ГТД) для отделения жидкости от газожидкостной смеси. Подшипник размещен внутри крыльчатки, внутренняя обойма его установлена на выполненном в корпусе соосно крыльчатке цилиндрическом пальце. Наружная обойма подшипника закреплена относительно крыльчатки. По обе стороны подшипника внутри крыльчатки образованы изолированные от ее проточной части камеры, одна из которых со стороны входа в крыльчатку сообщена через выполненные в лопатках радиальные каналы с каналом отвода отсепарированного масла, а другая камера, обращенная к тыльной стороне крыльчатки, через осевой и радиальный каналы, выполненные внутри пальца, сообщена с каналом подвода масла к опорному подшипнику. Изобретение позволяет повысить надежность работы суфлера и сократить расход масла на двигателе. 1 ил.

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов турбомашин. Устройство для смазки опорного подшипника ротора турбомашины содержит откачивающий насос, всасывающая магистраль которого подключена к сливной магистрали масляной полости. Снаружи масляной полости установлена компенсационная емкость, верхняя полость которой сообщена со сливной магистралью, последняя выполнена из двух автономных трубопроводов, подсоединенных параллельно к масляной полости таким образом, что заборник масла одного из трубопроводов размещен в нижней части полости, а заборник масла другого - выше первого, причем нижняя полость компенсационной емкости сообщена со всасывающей магистралью откачивающего насоса. Осуществление изобретения позволит увеличить КПД турбомашины за счет снижения гидравлических потерь в проточной части корпуса и повысить надежность работы маслосистемы при останове турбомашины. 1ил.

Изобретение относится к области авиационного двигателестроения, а именно к системам разгрузки опор роторов компрессоров низкого давления газотурбинного двигателя, в том числе и в составе летательного аппарата. Компрессор низкого давления газотурбинного двигателя содержит ротор, передняя и задняя цапфы которого установлены в передней и задней опорах статора соответственно, шарикоподшипник, вспомогательную втулку, шарнирные V-образные механизмы и упорное кольцо. Наружное кольцо шарикоподшипника установлено в его корпусе, соединенном с корпусом передней опоры посредством разъемного соединения, а внутреннее кольцо шарикоподшипника установлено на наружном диаметре вспомогательной втулки. На торце передней цапфы ротора установлено упорное кольцо, соединенное с вспомогательной втулкой посредством расположенных по окружности относительно продольной оси компрессора шарнирных V-образных механизмов. Каждый V-образный механизм образован двумя качалками, соединенными друг с другом посредством шарнирного соединения, при этом в месте их соединения установлен груз, расположенный на диаметре меньшем, чем диаметр внутреннего кольца вспомогательной втулки. Свободные концы качалок соединены со вспомогательной втулкой и упорным кольцом соответственно посредством шарнирных соединений. Изобретение позволяет повысить надежности работы компрессора низкого давления газотурбинного двигателя. 1 ил.

Изобретение относится к области техники турбовальных двигателей, более конкретно к опоре (14) для, по меньшей мере, одного подшипника для горячей части турбовального двигателя. Опора содержит, по меньшей мере, одну центральную ступицу (15), объединяющую в себе наружное гнездо подшипника для непосредственного вставления подшипника (13), кольцевой сегмент (16) кожуха вокруг центральной ступицы (15) и множество радиальных плеч (17), соединяющих упомянутую центральную ступицу (15) с упомянутым кольцевым сегментом (16) кожуха. Радиальные плечи (17) наклонены в осевом направлении и в тангенциальном направлении и объединены как единое целое с центральной ступицей (15) и с кольцевым сегментом (16) кожуха. Позволяет получить высокую степень радиальной жесткости и жесткости на изгиб, даже под воздействием высоких температур, в это же время, тем не менее, обеспечивая хороший срок службы и достигая этого с большой простотой. 2 н. и 12 з.п. ф-лы, 6 ил.

Изобретение относится к области авиационного двигателестроения, а именно к масляной системе авиационного газотурбинного двигателя (ГТД). Маслосистема ГТД содержит маслобак с центробежным воздухоотделителем, суфлер-сепаратор с магистралью суфлирования и установленный в магистрали подачи масла сифонный затвор с жиклером стравливания в петле затвора. Внутри маслобака установлен дополнительный центробежный воздухоотделитель, вход в который сообщен с магистралью суфлирования суфлера-сепаратора, а выход - со свободным объемом маслобака, причем жиклер стравливания в петле сифонного затвора подключен к магистрали суфлирования. Осуществление изобретения приведет к повышению надежности срабатывания сифонного затвора после останова двигателя и, следовательно, работы всей маслосистемы и двигателя в целом. 1 ил.

Изобретение относится к системе смазки подшипников опор роторов газотурбинного двигателя и обеспечивает отказоустойчивость насосов с регулируемыми электроприводами системы смазки с числом откачивающих насосов более двух при отказе одного из насосов или их электроприводов как в тракте нагнетания масла, так и в тракте откачки масловоздушной смеси для ГТД. Система снабжена трехпроходными и отсечными клапанами, по меньшей мере, двумя группами насосов откачки масловоздушной смеси из полостей опор с отсечными клапанами на входе в насосы откачки и промежуточным масловоздушным коллектором с дополнительными отсечными клапанами. Трехпроходные и отсечные клапаны выполнены с электрическим управлением и подключены каналами связи к регулятору системы смазки. Система содержит также воздухоотделитель с регулируемым электроприводом. Все электроприводы системы смазки работают на заданных из регулятора режимах. 1 з.п. ф-лы, 1 ил.
Наверх