Сплав на основе титана (варианты) и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к титановым сплавам, используемым для изготовления силовых конструкций, длительно работающих при температурах до 350 °С. Сплав содержит, мас. %: алюминий - 1,8-3,5, молибден - 1,0-3,0, ванадий - 8,0-12,0, хром - 2,5-4,6, железо - 0,3-1,6, цирконий - 0,4-2,0, олово - 0,4-2,0, рутений - 0,01-0,16, титан - остальное. Сплав может дополнительно содержать иттрий и/или гадолиний - 0,01-0,16. Сплав характеризуется высокими характеристиками предела прочности при 20°С в закаленном и термически упрочненном состояниях при сохранении предела технологической пластичности сплава на удовлетворительном уровне и коррозионной стойкости против щелевой и питтинговой коррозии. 3 н. и 3 з.п. ф-лы, 3 табл., 8 пр.

 

Изобретение относится к области цветной металлургии, а именно к созданию универсальных конструкционных высокопрочных высокотехнологичных титановых сплавов, используемых для изготовления широкой номенклатуры деформированных полуфабрикатов, в том числе тонколистовых, которые могут быть использованы в силовых конструкциях авиационной и ракетно-космической техники, в энергетических установках, изделиях судостроительной, химической и пищевой промышленности, длительно работающих при температурах до 350°С.

Известен сплав на основе титана, раскрытый в /RU 2086694 С1, 10.08.1997/, имеющий следующий химический состав, мас. %:

алюминий 0,4-6,0
марганец 0,5-2,0
железо 0,03-0,3
цирконий 0,03-0,3
медь 0,03-0,3
никель 0,03-0,3
кремний 0,03-0,3
кислород 0,03-0,3
углерод 0,02-0,2
азот 0,004-0,04
водород 0,002-0,008
титан остальное

Данный сплав обладает высоким уровнем технологической пластичности, позволяющим изготавливать из него листовые полуфабрикаты путем холодной прокатки, а также проводить холодную или теплую штамповку деталей из них.

Недостатками известного сплава, предназначенного для изготовления деталей и узлов авиакосмической техники, в частности сварных и сложнопрофильных листовых конструкций, являются: его неспособность к эффективному упрочнению путем термической обработки, низкий уровень прочностных свойств и высокая склонность к испарению марганца при выплавке слитков.

Известен сплав на основе титана, раскрытый в /RU 2269584 С1, 10.02.2006/, имеющий следующий химический состав, мас. %:

алюминий 3,5-4,4
ванадий 2,0-4,0
молибден 0,1-0,8
железо макс.0,4
кислород макс.0,25
титан остальное

Недостатком данного сплава является низкий уровень прочностных свойств и неспособность к самозакаливанию.

Наиболее близким аналогом является бета-титановый сплав, раскрытый в /RU 2418087 С2, 3-ий независимый и 4-ый зависимый пункты формулы изобретения, 10.05.2011/, имеющий следующий химический состав, мас. %:

алюминий 2,0-5,0
молибден и ванадий 4,0-10,0
хром 5,5-11,0
железо 2,0-4,0
цирконий 1,0-4,0
титан остальное

причем содержание молибдена в сплаве составляет не менее 0,5 мас. % и содержание ванадия также составляет не менее 0,5 мас. %.

Недостатками сплава-прототипа являются склонность к ликвации из-за высокого содержания железа и хрома, что может привести к снижению уровня механических свойств материала, а также высокий уровень прочности в состоянии после закалки/отжига, приводящий к более интенсивному износу штампового инструмента и технологической оснастки при изготовлении деформированных полуфабрикатов.

Технической задачей предложенной группы изобретений является создание универсального высокопрочного титанового сплава, легированного редкоземельными металлами (РЗМ) и рутением, обладающего повышенными механическими характеристиками, из которого возможно изготовление полуфабрикатов широкого сортимента (листы, плиты, прутки, поковки, штамповки) и сложнопрофильных конструкций, в частности из листовых полуфабрикатов путем штамповки вхолодную.

Техническим результатом предложенной группы изобретений является повышение предела прочности сплавов на основе титана σB при 20°С в закаленном и термически упрочненном состояниях при сохранении предела технологической пластичности сплава на удовлетворительном уровне, а также повышение коррозионной стойкости против щелевой и питтинговой коррозии.

Для достижения технического результата предложен сплав на основе титана, содержащий алюминий, молибден, ванадий, хром, железо и цирконий, при этом он дополнительно содержит олово и рутений при следующем соотношении компонентов, мас. %:

алюминий 1,8-3,5
молибден 1,0-3,0
ванадий 8,0-12,0
хром 2,5-4,6
железо 0,3-1,6
цирконий 0,4-2,0
олово 0,4-2,0
рутений 0,01-0,16
титан остальное

Вышеуказанный сплав может содержать кислород в количестве от 0,04 до 0,15 мас. %.

Для достижения технического результата также предложен сплав на основе титана, содержащий алюминий, молибден, ванадий, хром, железо и цирконий, при этом он дополнительно содержит рутений, олово и иттрий и/или гадолиний при следующем соотношении компонентов, мас. %:

алюминий 1,8-3,7
молибден 1,0-3,1
ванадий 8,0-12,0
хром 2,5-4,6
железо 0,1-1,6
цирконий 0,4-2,0
рутений 0,01-0,16
олово 0,4-2,2
иттрий и/или гадолиний 0,01-0,16
титан остальное

Указанный сплав на основе титана может содержать кислород в количестве от 0,04 до 0,15 мас. %.

Предпочтительно, чтобы суммарное содержание иттрия, гадолиния и рутения составляло 0,05-0,3 мас. %.

Технический результат также достигается в изделии, которое может быть выполнено из любого предложенного сплава на основе титана.

Экспериментально было установлено, что для реализации высокой прочности конечных изделий, сохранения удовлетворительной технологической пластичности полуфабрикатов на стадии их изготовления, повышения коррозионной стойкости против щелевой и питтинговой коррозии необходимо одновременное соблюдение ряда условий по легированию сплава.

Установлено, что снижение общей степени легирования псевдо-β титановых сплавов β-стабилизирующими элементами (в частности Mo, V, Cr, Fe) сопровождается снижением эффекта самозакаливания, приводит к снижению технологичности сплава из-за выделения частиц α-фазы в процессе охлаждения при проведении межоперационных отжигов в промышленных вакуумных печах большого объема и, как следствие, усложнению технологии и повышению стоимости изготовления листовых полуфабрикатов. Чрезмерное легирование сплава β-стабилизаторами приводит к повышению его плотности, стабильности β-твердого раствора и, как результат, увеличению времени проведения упрочняющей термической обработки.

Исследование влияния алюминия на свойства титановых сплавов показали, что его содержание четко коррелирует с прочностными и пластическими свойствами. На основе анализа выявленных корреляций авторы установили минимальное содержание алюминия с целью повышения уровня прочностных свойств сплава и подавления образования крайне нежелательной атермической ω-фазы, резко снижающей его пластичность. Максимальное содержание алюминия обусловлено необходимостью сохранения удовлетворительного уровня технологической пластичности полуфабрикатов.

Установленное авторами количество нейтральных упрочнителей (олова и циркония) в сплаве также позволяет предотвратить образование охрупчивающей атермической ω-фазы и повысить прочностные характеристики. Комплексное легирование данными элементами эффективно упрочняет α-фазу и позволяет добиться большего эффекта от проведения упрочняющей термической обработки.

Указанное содержание молибдена и ванадия обеспечивает высокую технологичность сплава и возможность получения путем упрочняющей термической обработки умеренно высоких прочностных характеристик.

Уменьшенное по сравнению с прототипом содержание хрома и железа обусловлено рядом факторов. Несмотря на то, что эти элементы хорошо упрочняют сплавы и являются сильными β-стабилизаторами, в сплавах с их высоким содержанием существует возможность образования охрупчивающих сплав интерметаллидов в результате эвтектоидного превращения, происходящего при длительных изотермических выдержках при повышенных температурах в процессе эксплуатации, а при выплавке слитков велика вероятность образования химических неоднородностей. Также известно, что высокое содержание данных элементов снижает коррозионную стойкость, в частности повышается склонность к коррозионному растрескиванию под напряжением, что обусловлено усилением структурной коррозии за счет выделения интерметаллидов в процессе эксплуатации при повышенных температурах.

Авторами установлено, что введение в сплав рутения в указанном количестве применено в качестве катодного легирования, которое повышает коррозионную стойкость - уменьшает питтинговую коррозию, повышает сопротивление щелевой коррозии до 200°С, снижает склонность к коррозионному растрескиванию. Микродобавки рутения также позволяют повысить прочность в термически упрочненном состоянии при сохранении удовлетворительной технологической пластичности сплава.

Легирование сплава кислородом позволяет реализовать более высокий уровень прочности в термически упрочненном состоянии, повысить эффективность и сократить время термической обработки. При обеспечении содержания кислорода в указанном количестве вероятность, что показатели технологической пластичности сохранятся на удовлетворительном уровне, повышается. Кислород, являясь α-стабилизатором, в указанных количествах оказывает наиболее эффективное твердорастворное упрочнение титановых сплавов, образуя с титаном твердые растворы внедрения.

Введение редкоземельных металлов - иттрия и гадолиния в указанном количестве позволяет реализовать эффект рафинирования микрообъемов сплава, что повышает технологическую пластичность сплава при сохранении прочностных характеристик на высоком уровне. Редкоземельные металлы уменьшают критический размер зародыша частиц α-фазы, что приводит к более равномерному и дисперсному распаду β-фазы при старении. Это обеспечивает более высокий уровень прочностных свойств в состоянии после упрочняющей термической обработки.

Известно, что высоколегированные титановые сплавы, преимущественно легированные эвтектоидными β-стабилизаторами (Cr, Fe), обладают более низкой коррозионной стойкостью (например, повышенной склонностью к коррозионному растрескиванию в морской воде, склонностью к питтинговой и щелевой коррозии) по сравнению с техническим титаном и малолегированными сплавами псевдо-α класса. Однако они обладают высокой прочностью в термически упрочненном состоянии, сравнимой с прочностью (α+β)-сплавов мартенситного класса, и высокой технологичностью в закаленном (отожженном) состоянии, позволяющей изготавливать сложнопрофильные конструкции из листовых полуфабрикатов путем штамповки вхолодную.

Суммарное содержание иттрия, гадолиния и рутения 0,05-0,3 мас. % предпочтительно из-за ряда факторов. Минимальная граница суммарного содержания вышеуказанных легирующих элементов обусловлена тем, что меньшее их количество обеспечивает лишь слабое проявление положительных эффектов от микролегирования (повышения прочности, рафинирования микрообъемов сплава, повышения коррозионной стойкости). При повышении суммарного содержания микролегирующих добавок до определенной концентрации технический эффект от их введения увеличивается. Но по причине низких пределов растворимости иттрия, гадолиния и рутения при увеличении их суммарной концентрации более 0,3 мас. % в структуре сплава выделяется большое количество дисперсных частиц, что обуславливает снижение технологичности и повышение склонности к зарождению усталостных трещин на них в процессе эксплуатации.

Примеры осуществления

Было осуществлено 9 плавок высокопрочного сплава на основе титана в виде слитков методом тройного вакуумно-дугового переплава. Затем слитки подвергали деформационной обработке путем всесторонней ковки в квазиизотермических условиях на сутунки размером (40-45)×180-220×L мм, где L - фактически полученная длина сутунки. Полученные сутунки были подготовлены под прокатку путем строгания по всем поверхностям «как чисто». Прокатка полученных сутунок проводилась в 4 этапа: горячая прокатка на лист толщиной 7 мм, теплая прокатка на 4 мм, холодная прокатка в 2 этапа до толщины готового листа 2 мм. Промежуточные листовые полуфабрикаты между операциями прокатки подвергались закалке на β-фазу, пескоструйной обработке и травлению. Готовые листы подвергались термической обработке (старению) по целевым режимам: часть листов с каждой плавки подвергалась закалке на β-фазу, а часть - упрочняющей термической обработке (закалка с последующим старением).

Состав предлагаемого сплава и сплава-прототипа приведен в таблице 1.

Далее определяли следующие характеристики полученных полуфабрикатов (слитки, промежуточные полуфабрикаты, листы):

- предел прочности определяли в закаленном и состаренном (термически упрочненном) состоянии путем проведения испытаний на растяжение образцов при комнатной температуре по ГОСТ 1497,

- относительное удлинение определяли в состаренном (термически упрочненном) состоянии путем проведения испытаний на растяжение образцов при комнатной температуре по ГОСТ 1497,

- предел технологической пластичности определяли в закаленном состоянии путем деформации цилиндрических образцов осадкой по ГОСТ 8817,

- была проведена оценка ликвации легирующих элементов в полученных слитках, оцененная на предварительно деформационных и термически обработанных темплетах посредством анализа равномерности распределения выделений вторичной α-фазы (по 10 бальной шкале, 1 - образование значительного количества химических неоднородностей, 10 - полное отсутствие признаков химических неоднородностей).

Механические и технологические свойства предлагаемого сплава и сплава-прототипа приведены в таблице 2.

Были проведены коррозионные испытания на щелевую и питтинговую коррозию в автоклаве в среде 20%-ного раствора NaCl при температуре 220°С в течение 2000 часов.

Оценка склонности к щелевой коррозии и питтингу выполнена визуально при осмотре поверхности образцов с использованием оптического микроскопа при увеличении 12. Выявляли питтинги диаметром не менее 0,1 мм.

Результаты испытаний на коррозионную стойкость приведены в таблице 3.

Как видно из таблицы 2, в предлагаемом сплаве предел прочности в закаленном состоянии понизился на 12-25%, предел прочности в состоянии после упрочняющей термической обработки повысился на 7-15% при сохранении хорошего уровня технологической пластичности. Стойкость против щелевой и питтинговой коррозии превосходит аналогичные характеристики сплава-прототипа.

Использование предлагаемого сплава на основе титана позволит изготавливать различные конструктивные элементы, в частности высокопрочные сложнопрофильные листовые изделия, что позволить снизить их вес за счет более высокого уровня удельной прочности и повысить надежность по сравнению с традиционно применяемыми листовыми титановыми сплавами.

1. Сплав на основе титана, содержащий алюминий, молибден, ванадий, хром, железо и цирконий, отличающийся тем, что он дополнительно содержит олово и рутений при следующем соотношении компонентов, мас. %:

алюминий 1,8-3,5
молибден 1,0-3,0
ванадий 8,0-12,0
хром 2,5-4,6
железо 0,3-1,6
цирконий 0,4-2,0
олово 0,4-2,0
рутений 0,01-0,16
титан остальное

2. Сплав по п. 1, отличающийся тем, что он дополнительно содержит кислород в количестве от 0,04 до 0,15 мас. %.

3. Сплав на основе титана, содержащий алюминий, молибден, ванадий, хром, железо и цирконий, отличающийся тем, что он дополнительно содержит рутений, олово и иттрий и/или гадолиний при следующем соотношении компонентов, мас. %:

алюминий 1,8-3,7
молибден 1,0-3,1
ванадий 8,0-12,0
хром 2,5-4,6
железо 0,1-1,6
цирконий 0,4-2,0
рутений 0,01-0,16
олово 0,4-2,2
иттрий и/или гадолиний 0,01-0,16
титан остальное

4. Сплав по п. 3, отличающийся тем, что он дополнительно содержит кислород в количестве от 0,04 до 0,15 мас. %.

5. Сплав по п. 3, отличающийся тем, что суммарное содержание иттрия, гадолиния и рутения составляет 0,05-0,3 мас. %.

6. Изделие, выполненное из сплава на основе титана, отличающееся тем, что оно выполнено из сплава по любому из пп. 3-5.



 

Похожие патенты:

Изобретение относится к способу получения сплава, содержащего титан, железо, хром и кремний, из водной суспензии частиц руд, содержащих соединения этих элементов, и устройству для его осуществления.

Изобретение относится к способу получения сплавов, состоящих из титана, железа, хрома и циркония, из водной суспензии частиц руд, содержащих соединения этих элементов, и устройству для его осуществления.

Изобретение относится к области металлургии, а именно к сплавам на основе интерметаллидов титана и алюминия с рабочими температурами не выше 825°C, изделия из которых могут быть использованы в конструкции авиационных газотурбинных двигателей и наземных энергетических установок.

Изобретение относится к титановым лопаткам большого размера последних ступеней паротурбинных двигателей. Лопатка содержит сплав на основе титана и имеет переднюю кромку, включающую оксид титана, содержащий поры и верхний герметизирующий слой, заполняющий поры, выбранный из группы, состоящей из хрома, кобальта, никеля, полиимида, политетрафторэтилена и сложного полиэфира.

Изобретение относится к области металлургии, а именно к высокотемпературным припоям на основе титана, которое может найти применение при изготовлении паяных деталей горячего тракта газотурбинных двигателей.
Изобретение относится к термоводородной обработке полуфабрикатов и изделий из пористого материала на основе титана и его сплавов для медицинских имплантатов. Способ включает термодиффузионное насыщение водородом и вакуумный отжиг.

Изобретение относится к изготовлению сплавов на основе никелида титана, применяемых для медицинских имплантатов. Способ изготовления литых изделий включает переплав металлического полуфабриката индукционной центробежной плавкой в карборундовом тигле.

Изобретение относится к области металлургии, а именно к созданию жаропрочных сплавов на основе титана, используемых для изготовления широкой номенклатуры деформированных полуфабрикатов и деталей.

Изобретение относится к области металлургии, а именно к интерметаллидным сплавам на основе титана, предназначенным для изготовления деталей газотурбинного двигателя таких, как лопатки, диски, корпуса и проставки, работающие при повышенных температурах.

Изобретение относится к области металлургии, а именно к сплавам на основе титана, и предназначено для использования в паротурбинных установках и высоконагруженных сварных конструкциях, эксплуатируемых при повышенной температуре.

Изобретение относится к мелкодисперсному получению порошка титана. Способ включает активирование исходного материала, гидрирование, измельчение полученного гидрида титана, термическое разложение гидрида титана в вакууме и измельчение образовавшегося титанового спека. В качестве исходного материала используют слиток, который получают вакуумным переплавом титанового сырья в медном водоохлаждаемом кристаллизаторе и кристаллизацией слитка при удельном тепловом потоке через поверхность кристаллизатора (3,3-3,9)⋅106 Вт/м2. Активирование ведут в две стадии: сначала обработкой в растворе, содержащем воду, азотную и фтористоводородную кислоты при соотношении компонентов H2O:HNO3:HF, равном (0,9÷1,1):(0,9÷1,1):(0,17÷0,23), а затем в камере гидрирования, содержащей хлористый водород в объеме 0,01-0,015% объема камеры. Гидрирование ведут при избыточном давлении водорода в камере гидрирования 1,1-2,0 атм до содержания водорода в титане 350-410 л/кг. Обеспечивается повышение выхода годного порошка с гранулами округлой формы размером 20-50 мкм. 1 табл.

Изобретение относится к области металлургии, а именно к созданию конструкционных титановых сплавов, предназначенных для изготовления средненагруженных деталей, в том числе для набора планера воздушного судна, работающих длительно при температурах от -70 до +400°С. Сплав на основе титана содержит, мас. %: алюминий 4,5-6,5, ванадий 1,0-3,0, железо 0,5-2,5, гадолиний 0,2-0,6, кремний 0,003-0,15, кислород 0,003-0,15, титан - остальное. Сплав имеет высокие характеристики предела прочности и текучести при температуре 20°С, а также характеризуется стабильностью структуры и сниженной склонностью к охрупчиванию в процессе эксплуатации при температурах от -70 до +400 °С. 2 н. и 1 з.п. ф-лы, 2 табл., 5 пр.

Изобретение относится к области металлургии, а именно к титановым сплавам, предназначенным для использования в качестве высокопрочного конструкционного термически упрочняемого материала для изготовления деталей силовых конструкций авиационной и космической техники, энергетических установок, ракет, длительно работающих при температурах до 350°C. Сплав на основе титана содержит, мас. %: алюминий 1,0-6,0; молибден 5,0-10,0; ванадий 5,0-10,0; железо 0,3-3,5; хром 0,3-3,5; олово 0,1-2,0; цирконий 0,1-2,0; сера 0,0001-0,30; кислород 0,01-0,20; азот 0,005-0,050; водород 0,003-0,020; углерод 0,005-0,100; кремний 0,01-0,10; титан – остальное. Сплав характеризуется высокими характеристикам трещиностойкости и технологической пластичности. 2 н. и 3 з.п. ф-лы, 2 табл., 4 пр.
Изобретение относится к изготовлению композитных заготовок на основе титана. Способ включает приготовление шихты, содержащей отходы титановых сплавов, и компактирование шихты в заготовки путем прессования. Шихту готовят путем добавления порошка титана в очищенные в щелочном растворе отходы титановых сплавов при массовом соотношении отходов и порошка титана, равном 70/30, полученную шихту подвергают травлению в кислом растворе с обеспечением деоксидации и наводораживания до 0,1-1 мас. % водорода в титане, затем шихту измельчают, совмещая со смешиванием, и нагревают до температуры прессования, после прессования проводят удаление загрязнений с поверхности полученной заготовки, покрывают ее смазкой, подвергают прокатке и проводят термическое обезводораживание. Обеспечивается повышение механических свойств заготовок, а также прочности и пластичности. 2 з.п. ф-лы, 1 пр.
1. Способ относится к получению низкомодульного сплава на основе системы титан-ниобий селективным лазерным сплавлением и может найти применение в области аддитивных технологий в медицине в качестве материалов для имплантатов. Предварительно производят механическую активацию порошков титана и ниобия, взятых в массовом соотношении 6:4. Затем механоактивированную смесь титан-ниобиевого порошка помещают в вакуумной камере в зоне лазерной обработки слоем 0.05-0.1 мм. В вакуумной камере создают предварительный вакуум не хуже 10-2 Па и вводят аргон. Осуществляют нагрев интенсивным лазерным излучением до температуры 2800-3000°С с последующей выдержкой при этой температуре в течение 1-3 мсек. Обеспечивается получение низкомодульного титан-ниобиевого сплава заданного состава с определенными свойствами, с однородным распределением структурных составляющих по всему объему сплава, являющегося экологически чистым за счет отсутствия в продуктах синтеза посторонних веществ, сокращение длительности процесса и снижение стоимости готовой продукции вследствие отсутствия предварительной выплавки сплава TiNb (40 мас.%) и последующего изготовления из этого сплава порошка для селективного лазерного сплавления. 2 з.п. ф-лы, 3 пр.

Изобретение относится к изготовлению расходуемого электрода для выплавки слитков титан-алюминиевых сплавов, содержащих 15-63 мас. % алюминия. Способ включает приготовление шихты путем смешивания титановой губки и алюминиевого полуфабриката, подачу порций шихты в коническую матрицу и последующее проходное прессование. Титановую губку используют в виде сферических тел диаметром 10-25 мм, а алюминиевый полуфабрикат - в виде прутков с соотношением диаметр : длина = 1:1. Отношение линейных размеров алюминиевого полуфабриката к линейным размерам титановой губки составляет 2,5-3,5. Обеспечивается повышение механических свойств электродов. 1 з.п. ф-лы, 6 табл.

Изобретение относится к области металлургии, преимущественно к композиционным материалам на основе нитинола, и предназначено для изготовления деталей микромашин и механизмов, медицинских инструментов. Композиционный материал на основе нитинола содержит, ат. %: Cu - 5-10, Zr - 5-10, Ti - 36-44, Ni - 36-44 и по меньшей мере легирующий один элемент, выбранный из кобальта не меньше 5, иттрия не меньше 2, ниобия не меньше 5 и бора не меньше 1, остальное. Материал имеет двухфазную структуру, состоящую из кристаллической матричной фазы нитинола и аморфной фазы, расположенной по границам зерен матричной фазы. Получают материал диаметром до 5 мм с высокой прочностью и пластичностью, проявляющий эффект суперэластичности. 12 ил., 4 пр.

Изобретение относится к области металлургии, в частности к свариваемым литейным сплавам на основе титана и предназначенным для изготовления фасонных отливок литых и сварных гребных винтов, рабочих колес водометных движителей, насосов. Литейный сплав на основе титана содержит, мас.%: алюминий 3,5-5,0, углерод 0,02-0,14, кислород 0,05-0,14, водород 0,002-0,008, железо 0,02-0,20, кремний 0,02-0,10, ванадий 1,5-2,5, бор 0,001-0,003, титан и примеси - остальное, при выполнении следующего соотношения Fe+Si≤0,25 мас.%. Сплав характеризуется высокой жидкотекучестью и комплексом механических свойств, обеспечивающих качество и надежность как литых, так и сварных соединений. 2 табл.

Изобретение относится к металлургии, а именно к сплавам на основе титана для изготовления труб, используемым для теплопередающих элементов водяных парогенерирующих аппаратов атомных энергетических установок, нефтеперерабатывающей и нефтехимических предприятий. Сплав на основе титана содержит, мас %: алюминий 1,8-2,5, углерод 0,05-0,10, цирконий 2,0-3,0, железо 0,05-0,25, кремний 0,02-0,05, азот 0,01-0,04, кислород 0,03-0,10, водород 0,002-0,004, палладий 0,05-0,15, титан – остальное. Сплав характеризуется высокой стойкостью против общей, щелевой и питтинговой коррозии в солесодержащих средах с pH 2,5-4,0 и температурой до 250°C. 2 табл., 1 пр.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе интерметаллидов титана и алюминия, и может быть использовано для изготовления методами литья или обработки давлением изделий, предназначенных для применения в конструкции авиационных газотурбинных двигателей и наземных энергетических установок. Сплав на основе гамма-алюминида титана содержит, мас. %: алюминий 29,0-33,0, ниобий 5,0-9,0, вольфрам 1,0-2,0, молибден 2,0-4,0, ванадий 1,0-3,0, бор 0,003-0,1, титан - остальное. Массовое соотношение молибдена и вольфрама в сплаве составляет 2:1. Сплав может дополнительно содержать железо в количестве от 0,003 до 0,3 мас. % и/или кислород в количестве от 0,003 до 0,15 мас. %. Техническим результатом изобретения является повышение абсолютных и удельных значений пределов прочности и текучести при температурах 20 и 750°С, а также повышение рабочей температуры сплава до 800°С за счет обеспечения термической стабильности структуры и высокого предела длительной прочности. 2 з.п. ф-лы, 2 табл., 7 пр.

Изобретение относится к области металлургии, а именно к титановым сплавам, используемым для изготовления силовых конструкций, длительно работающих при температурах до 350 °С. Сплав содержит, мас. : алюминий - 1,8-3,5, молибден - 1,0-3,0, ванадий - 8,0-12,0, хром - 2,5-4,6, железо - 0,3-1,6, цирконий - 0,4-2,0, олово - 0,4-2,0, рутений - 0,01-0,16, титан - остальное. Сплав может дополнительно содержать иттрий иили гадолиний - 0,01-0,16. Сплав характеризуется высокими характеристиками предела прочности при 20°С в закаленном и термически упрочненном состояниях при сохранении предела технологической пластичности сплава на удовлетворительном уровне и коррозионной стойкости против щелевой и питтинговой коррозии. 3 н. и 3 з.п. ф-лы, 3 табл., 8 пр.

Наверх