Флюс для электрошлакового переплава

Изобретение относится к металлургии, в частности к флюсам для электрошлаковых технологий, для сталелитейного производства и для рафинирования и модифицирования сталей. Флюс АНФ-6-1 дополнительно содержит фторид церия при следующем соотношении компонентов, мас. %: флюс АНФ-6-1 75-80, фторид церия 20-25. Изобретение позволяет повысить модифицирующую способность флюса и ударную вязкость стали при низких температурах, а также снизить содержание неметаллических включений в стали. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к металлургии, в частности к флюсам для электрошлаковых технологий, и может быть использовано в сталелитейном производстве для электрошлакового переплава, а также для рафинирования и модифицирования сталей.

Изобретение наиболее эффективно может быть использовано при изготовлении стальных деталей, работающих при температурах до минус 60°С.

Известен флюс для электрошлакового переплава стали, содержащий фторид кальция, кремнезем и оксиды редкоземельного металла (РЗМ) при следующем соотношении, мас. %:

Фторид кальция 40-60
Кремнезем 10-40
Оксиды РЗМ 10-40

(SU 1290709, С21С 5/54, опубликовано 30.07.1994).

Недостаток известного флюса состоит в том, что флюс имеет пониженную жидкотекучесть, причем восстановление РЗМ происходит медленно, что снижает модифицирующую способность флюса, так как количество перешедшего в металл РЗМ не достаточно для повышения физико-механических свойств металла.

Известен флюс для электрошлакового переплава стали, содержащий фторид кальция, оксид кремния и соединения РЗМ в виде оксифторидов РЗМ при следующем соотношении компонентов, мас. %:

Фторид кальция 40-60
Оксид кремния 10-40
Оксифториды РЗМ 10-40

(SU 1621521, С21С 5/54, опубликовано 15.08.1994).

Недостатком такого флюса является то, что флюс также имеет пониженную жидкотекучесть, причем восстановление РЗМ происходит медленно, что снижает модифицирующую способность флюса и приводит к затруднению проведения процесса электрошлакового переплава.

Наиболее близким по технической сущности и достигаемому результату является флюс для электрошлаковых технологий АНФ-6-1, содержащий оксид алюминия, оксид кальция, оксид кремния, углерод, оксид железа, серу, фосфор, оксид титана и фторид кальция при следующем соотношении компонентов, мас. %:

Оксид алюминия 25-31
Оксид кальция ≤8,0
Оксид кремния (IV) ≤2,5
Углерод ≤0,05
Оксид железа (III) ≤0,5
Сера ≤0,05
Фосфор ≤0,02.
Оксид титана (IV) ≤0,05
Фторид кальция остальное

(ГОСТ 30756-2001 «Флюсы для электрошлаковых технологий». Общие технические условия, дата введения 2005.07.01, таблица 1).

Недостатком известного флюса является его низкая модифицирующая способность и достаточно большое содержание неметаллических включений.

Целью изобретения является повышение модифицирующей способности флюса, повышение ударной вязкости стали при низких температурах и снижение содержания неметаллических включений.

Технический результат достигается тем, что флюс для электрошлакового переплава содержит флюс АНФ-6-1 и фторид церия при следующем соотношении компонентов, мас. %:

Флюс АНФ-6-1 75-80
Фторид церия 20-25

Технический результат также достигается тем, что флюс АНФ-6-1 содержит оксид алюминия, оксид кальция, оксид кремния, углерод, оксид железа, серу, фосфор, оксид титана и фторид кальция при следующем соотношении компонентов, мас. %:

Оксид алюминия 25-31
Оксид кальция 4,0-8,0
Оксид кремния (IV) 1,0-2,5
Углерод 0,01-0,05
Оксид железа (III) 0,03-0,5
Оксид титана (IV) 0,01-0,05
Сера 0,01-0,05
Фосфор 0,007-0,02
Фторид кальция остальное

Сочетание известного флюса АНФ-6-1 в количестве 75-80 мас. % с добавкой 20-25 мас. % фторида церия приводит к очищению междендритных участков металла, полученного электрошлаковым переплавом, от неметаллических включений. Благодаря своей высокой поверхностной активности церий модифицирует металлическую основу стали, вызывает более значительное снижение загрязненности стали сульфидами, что обеспечивает значительное повышение ее ударной вязкости при температуре до минус 60°С и очищение границ зерен. Церий оказывает большое влияние на хладостойскость стали, значительно сдвигая порог хладостойкости в сторону низких температур.

В таблице представлены данные сравнения известного флюса и флюса по изобретению.

Флюс АНФ-6-1 имел следующий состав, мас. %: оксид алюминия 27,5; оксид кальция 6,3; оксид кремния (IV) 1,8; углерод 0,04; оксид железа (III) 0,3; оксид титана (IV) 0,03; сера 0,04; фосфор 0,01; фторид кальция остальное.

Для определения эффективности предлагаемого и известного флюсов проводили электрошлаковый переплав стали 06Г2АФ на лабораторной установке ЭШП с кристаллизатором диаметром 110 мм. Переплав проводили при токе 1,5-2,0 кА и напряжении 38-40 В. После ЭШП слитки подвергали термической обработке, отбирали пробы и исследовали в них степень загрязненности стали неметаллическими включениями в соответствии с ГОСТ 1778-70 с использованием линейного метода "Л" на металлографическом микроскопе "НЕОФОТ" при увеличении в 500 раз, а механические свойства определяли по стандартным методикам (таблица).

Общее содержание неметаллических включений снизилось с 650 шт./см2 до 350-400 шт./см2, причем доля мелких неметаллических включений размером менее 5 мкм значительно увеличилась до 80-90%.

Приведенные в таблице результаты металлографического анализа свидетельствуют о том, что электрошлаковый переплав стали под флюсом по изобретению, содержащим фториды церия, обеспечивает снижение количества неметаллических включений и их размеров в сравнении с переплавом под промышленным флюсом АНФ-6-1, а показатели механических свойств выше, чем при обработке известным флюсом.

Кроме того, флюс по изобретению обеспечивает более высокие механические свойства стали, особенно по ударной вязкости. Ударная вязкость KCV при - 60°С увеличивается до 120-150 Дж/см2.

1. Флюс для электрошлакового переплава, содержащий флюс АНФ-6-1, отличающийся тем, что он дополнительно содержит фторид церия при следующем соотношении компонентов, мас. %:

Флюс АНФ-6-1 75-80
Фторид церия 20-25

2. Флюс по п. 1, отличающийся тем, что флюс АНФ-6-1 содержит компоненты при следующем соотношении, мас. %:

Оксид алюминия 25-31
Оксид кальция 4,0-8,0
Оксид кремния (IV) 1,0-2,5
Углерод 0,01-0,05
Оксид железа (III) 0,03-0,5
Оксид титана (IV) 0,01-0,05
Сера 0,01-0,05
Фосфор 0,007-0,02
Фторид кальция остальное



 

Похожие патенты:

Изобретение относится к специальной металлургии и может быть использовано при электрошлаковом переплаве отработанных изделий из различных металлов и сплавов в слитки.

Изобретение относится к области спецэлектрометаллургии, в частности к печам электрошлакового переплава, и может быть использовано при переплаве отходов металлообрабатывающих производств в виде стружки легированных сталей.
Изобретение относится к электрометаллургии, в частности к изготовлению электрошлаковым переплавом заготовки корпуса запорной арматуры для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара.
Изобретение относится к металлургии и может быть использовано при электрошлаковой выплавке сплошных и полых слитков из конструкционных борсодержащих сталей. Флюс содержит, мас.%: оксид алюминия 7-10, оксид магния 3-8, фторид кальция 48-57, фторид магния 28-35.

Изобретение относится к области металлургии и может быть использовано для производства титансодержащих коррозионно-стойких марок стали методом электрошлакового переплава.
Изобретение относится к специальной электрометаллургии, а именно к производству слитков бор- и титансодержащей коррозионно-стойкой стали электрошлаковым переплавом для изготовления деталей атомного оборудования с высокой нейтронной поглощаемостью.

Изобретение относится к электрометаллургии, в частности к способам получения многослойных стальных слитков импульсно-электрошлаковым переплавом. Осуществляют импульсно-электрошлаковый переплав с изменением частоты импульсов комбинированного расходуемого электрода, выполненного с участками, имеющими различный химический состав в зависимости от требуемого химического состава стали на заданном участке слитка, при этом импульсно-электрошлаковую выплавку нижнего и верхнего слоев слитка осуществляют с модуляцией теплового потока шлаковой и металлической ванн, направленного из шлаковой ванны через фронт кристаллизации в тело слитка, с периодом времени, равным постоянной времени теплового процесса шлаковой ванны, и скважностью, равной двум, при этом осуществляют выплавку среднего слоя слитка на частоте резонансных колебаний поверхности жидкой металлической ванны.

Изобретение относится к области металлургии и может быть использовано при производстве нержавеющей мартенситной стали. Перед этапом электрошлакового переплава слиток подвергают дегазации в вакууме в состоянии жидкого металла в течение времени, достаточного для получения содержания водорода в упомянутом слитке после упомянутого этапа электрошлакового переплава менее чем 3 ppm.

Изобретение относится к области металлургии и предназначено для получения методом электрошлакового переплава (ЭШП) слитков из трещиночувствительной стали. Расходуемый электрод содержит инвентарную головку и сплавляемую часть, состоящую из верхней и нижней стальных частей разного состава.
Изобретение относится к электрометаллургии и может быть использовано при электрошлаковом переплаве сталей с низким содержанием кислорода. Способ включает расплавление расходуемого электрода, замер активности кислорода и последующее раскисление шлаковой ванны смесью для раскисления, содержащей, мас.%: алюминий 8-12, кальций 19-23 и железо 74-69, которую принудительно подают на границу раздела шлаковой и металлической ванн в потоке нейтрального газа, причем количество оксида железа в расплавленном шлаке поддерживают не более 0,55 мас.%, а скорость подачи упомянутой смеси для раскисления составляет 0,9-1,1 скорости заполнения объема металлической ванны жидким металлом расходуемого электрода.

Изобретение относится к металлургической промышленности и может быть использовано для рафинирования стали в агрегатах «ковш-печь» и вакууматорах. Шлакообразующая смесь содержит в качестве флюса отходы производства вторичного алюминия и шлаковую составляющую и дополнительно двууглекислый натрий при следующем соотношении компонентов, мас.%: двууглекислый натрий 1,0-2,0, отходы производства вторичного алюминия 10,0-30,0, шлаковая составляющая остальное.

Изобретение относится к специальной металлургии и может быть использовано при электрошлаковом переплаве отработанных изделий из различных металлов и сплавов в слитки.

Изобретение относится к технологии производства технического кремния в рудно-термических печах и его дальнейшего рафинирования. Способ рафинирования технического кремния осуществляют методом направленной кристаллизации, при этом расплав кремния охлаждают до 1420°С, погружают в него на 3-30 с металлические кристаллизаторы с начальной температурой примерно 150-200°С, выделяют на их поверхностях примеси металлов в виде интерметаллических соединений и твердых растворов с кремнием, после чего кристаллизаторы вместе с примесями удаляют из расплава и перемещают в перегретый флюс для стекания с них кремния, обогащенного примесями.

Изобретение относится к области металлургии цветных металлов и может быть использовано для производства лигатуры алюминий-скандий-иттрий, применяемой для модифицирования алюминиевых сплавов.
Изобретение относится к области металлургии и может быть использовано при получении из вторичного алюминиевого сырья глиноземсодержащих гранул для рафинирования и формирования шлакообразующего материала при выплавке стали, а также при производстве упомянутых гранул.
Изобретение относится к металлургии и может быть использовано при электрошлаковой выплавке сплошных и полых слитков из конструкционных борсодержащих сталей. Флюс содержит, мас.%: оксид алюминия 7-10, оксид магния 3-8, фторид кальция 48-57, фторид магния 28-35.

Изобретение относится к литейному производству, в частности к карбонатным смесям, используемым при рафинировании и модифицировании алюминиевых сплавов. Карбонатная смесь содержит, мас.%: 50-95 карбоната кальция и 5-50 карбоната стронция, при этом смесь состоит из частиц фракции 40-60 мкм.

Изобретение относится к литейному производству и может быть использовано для порционного рафинирования алюминиевых сплавов. В качестве флюса используют отход производства - шлам соляных закалочных ванн.

Предложен способ пирометаллургической переработки никельсодержащего сульфидного материала с использованием флюсовой композиции, содержащей соединение кальция.
Изобретение относится к области металлургии, в частности к составам и способам получения флюсов для высокотемпературных агрегатов. Металлургический флюс выполнен в виде гранул бикерамического состава, содержит, мас.%: оксид магния основа, оксид кальция 12-30, двуокись кремния 2-10, оксиды железа 3-10, оксид алюминия 2-7.

Изобретение может быть использовано при сварке плавящимся электродом плит толщиной до 60 мм и более из медных сплавов, в частности из хромистой бронзы с использованием стекловидных кислых флюсов.
Наверх