Интегрированная система резервных приборов

Изобретение относится к области приборостроения и может найти применение в системах резервирования пилотажно-навигационных устройств. Технический результат - повышение точности измерения высотно-скоростных параметров. Для достижения данного результата в систему, содержащую датчик полного давления, датчик статического давления, устройство обработки и преобразования сигналов, вычислитель, модуль пространственной ориентации, ЖК индикатор, магнитный зонд, дополнительно вводят блок приема режимов полета, запоминающее устройство с записанными аэродинамическими поправками к показаниям приемников воздушных давлений для конкретного летательного аппарата. 1 ил.

 

Изобретение относится к области приборостроения и может использоваться в системах резервирования пилотажно-навигационных устройств.

Известна интегрированная система резервных приборов [1], выполненная в виде отдельного блока, содержащая датчики полного и статического давлений, соединенные с входом устройства обработки и преобразования сигналов, выход с вычислителем, модуль пространственной ориентации, магнитный зонд, ЖК экран с органом управления им, устройство управления режимами работы, устройство ввода-вывода, соединенные с вычислителем.

Недостатком данной системы является недостаточная точность измерения высотно-скоростных параметров.

Наиболее близкой к заявленному изобретению является интегрированная система резервных приборов [2] для самолетов и вертолетов, выполненная в виде отдельного блока, содержащая ЖК индикатор, датчики полного и статического давлений, соединенные трубопроводами с бортовыми зондами полного и статического давлений, электронные средства для вычисления полного и статического давлений, модуль пространственной ориентации с автономными датчиками инерциальных измерений, электронные средства для вычисления данных о приборной скорости, барометрической высоте, вертикальной скорости и числа Маха, средства для приема информации от спутниковой навигационной системы, бортовой навигационной системы, информации от бортового магнитного зонда, радиосредств и приемника температуры торможения, средства для приема данных от системы управления двигателем, средства для вычисления пространственного положения и курса с учетом коррекции по данным спутниковой навигационной системы и бортовой навигационной системы, средства для вычисления курса с коррекцией по информации магнитного зонда и данных от радиосредств, а также электронные средства преобразования скорректированных сигналов в нужную форму и вывода их на экран индикатора и в бортовые системы.

Недостатком данной системы является недостаточная точность измерения высотно-скоростных параметров из-за отсутствия учета аэродинамических поправок к показаниям приемников воздушных давлений.

Задачей, на решение которой направлено данное изобретение, является повышение точности измерения высотно-скоростных параметров за счет использования данных об аэродинамических поправках.

Поставленная задача решается за счет того, что в интегрированную систему резервных приборов, выполненную в виде отдельного блока, содержащую датчики полного и статического давления, соединенные через устройство обработки и преобразования сигналов с вычислителем, модуль пространственной ориентации, устройство управления режимами работы, магнитный зонд, жидкокристаллический индикатор, соединенные с вычислителем, согласно изобретению дополнительно введен блок приема режимов полета летательного аппарата и запоминающее устройство, предназначенное для хранения аэродинамических поправок к показаниям приемников воздушных давлений для конкретного летательного аппарата, соединенных с датчиками статического и полного давлений.

Отличительной особенностью заявленной системы является введение в нее блока приема режима полета ЛА, что позволяет в зависимости от режима полета использовать соответствующие массивы аэродинамических поправок, хранящихся в запоминающем устройстве, для расчета высотно-скоростных параметров, таких как высота, приборная скорость, вертикальная скорость, число Маха.

На фиг. 1 представлена схема системы, содержащей датчик 1 полного давления, датчик 2 статического давления, устройство 3 обработки и преобразования сигналов, вычислитель 4, модуль 5 пространственной ориентации, ЖК индикатор 6, магнитный зонд 7, блок 8 приема режимов полета, запоминающее устройство 9.

Заявляемая резервная система работает следующим образом. В процессе полета сигналы от встроенных в систему датчиков 1 и 2 полного и статического давлений поступают в устройство 3 обработки и преобразования сигналов, которое обрабатывает эти сигналы, вычисляет полное и статическое давления, а также корректирует сигналы с датчиков 1 и 2 давлений в зависимости от температуры окружающей среды. Скорректированные сигналы полного и статического давлений и сигнал температуры окружающей среды из устройства 3 обработки и преобразования сигналов поступают в вычислитель 4. С помощью датчиков угловых скоростей, датчиков линейных ускорений и электронных вычислительных средств, размещенных в модуле 5 пространственной ориентации (МПО), вычисляются основные параметры положения летательного аппарата (ЛА): угол крена, угол тангажа, гироскопический курс. Данные о статическом и полном давлении поступают в вычислитель 4, который по известным зависимостям вычисляет основные высотно-скоростные параметры: приборную скорость, истинную скорость, абсолютную высоту, относительную высоту, вертикальную скорость, температуру наружного воздуха, число Маха. Вычислитель 4 получает из блока 8 информацию о текущем режиме полета и выбирает из памяти запоминающего устройства соответствующий массив с аэродинамическими поправками к показаниям приемников воздушных давлений для данного режима и повторно проводит вычисления пилотажных параметров с учетом вышеуказанных поправок и выдает эту информацию на индикатор 6.

Таким образом, предложенная система повышает точность определения высотно-скоростных параметров, необходимых для безопасного пилотирования, за счет учета аэродинамических поправок к показаниям приемников воздушных давлений.

Источники информации

1. Патент РФ №2386927, G01C 21/00.

2. Патент РФ №2337315, G01C 21/00 (прототип).

Интегрированная система резервных приборов, выполненная в виде отдельного блока, содержащая датчики полного и статического давления, соединенные через устройство обработки и преобразования сигналов с вычислителем, модуль пространственной ориентации, магнитный зонд, жидкокристаллический индикатор, соединенные с вычислителем, отличающаяся тем, что в нее дополнительно введены блок приема режимов полета и запоминающее устройство с записанными аэродинамическими поправками к показаниям приемников воздушных давлений для конкретного летательного аппарата, на котором установлена интегрированная система резервных приборов.



 

Похожие патенты:

Изобретение относится к области навигации летательных аппаратов (ЛА) и предназначено для обеспечения безопасности полета группы ЛА. Определение относительного положения соседних ЛА по отношению к данному ЛА может быть определено несколькими способами с последующей комплексной обработкой навигационной информации.

Изобретение относится к области навигационного приборостроения, а именно к навигационным системам, используемым для определения основных навигационных параметров позиционирования наземных объектов.

Изобретение относится к навигации и может использоваться в системах навигации ближнего поля. Технический результат состоит в повышении точности определения координат.

Группа изобретений относится к космической технике. В способе определения положения объекта преимущественно относительно КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, осуществляют формирование управляющих воздействий на излучатели, осуществляют измерение параметров, генерируемых позиционно-чувствительными детекторами инфракрасного излучения.

Изобретение относится к области фотограмметрии и может быть использовано в задачах фотограмметрической обработки космических сканерных снимков для оперативного определения их угловых элементов внешнего ориентирования.

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в системах управления угловым положением космических аппаратов (КА), в которых применяются системы ориентирования с использованием бесплатформенных орбитальных гирокомпасов (БОГК).

Изобретение относится к области авиационно-космического приборостроения и может найти применение в системах определения координат подвижных объектов (ПО) с использованием комплексного способа навигации, функционально объединяющего инерциальный способ и спутниковый, и может быть использовано при высокоточном позиционировании ПО, а также при осуществлении полета летательного аппарата (ЛА) в сложных навигационных условиях.

Изобретение относится к области приборостроения инерциальных навигационных систем и может использоваться для определения угловой ориентации летательных аппаратов любого типа.

Изобретение относится к системам измерения и индикации и может найти применение в системах, обеспечивающих пилотирование летательных аппаратов (ЛА) в случае отказа основных пилотажно-навигационных систем.

Изобретение относится к геодезии, в частности к способам топогеодезической подготовки опорных геодезических сетей, используемых при испытании навигационной аппаратуры наземных транспортных средств.

Изобретение относится к области навигационного оборудования и авиационного приборостроения арктического назначения и может быть использовано в системах маршрутного пилотирования летательных аппаратов (ЛА), в частности вертолетов. Технический результат – расширение функциональных возможностей. Для этого навигационная система состоит из проложенного по дну акватории токоведущего кабеля, соединяющего взлетно-посадочные пункты, а также аппаратуры ЛА, включающей забортное приемное устройство, состоящее из ортогонально расположенных магнитоприемников, и бортовой пилотажный прибор, определяющий положение ЛА относительно кабеля и кабельный курс. Навигационная система обеспечивает расхождение ЛА на трассе маршрута при двухстороннем или интенсивном движении в сложных метеоусловиях, а также азимутальную обсервацию, и других ЛА в зоне действия подводного кабеля. При этом обеспечивается маршрутное пилотирование ЛА, в частности вертолетов, на малых высотах акватории прибрежного арктического сектора. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области навигации летательных аппаратов с использованием пассивного радиолокационного способа определения местоположения объекта, являющегося источником электромагнитных излучений, и предназначено для построения автономных и комплексных систем навигации летательных аппаратов. Достигаемый технический результат - повышение точности оценки местоположения летательного аппарата за счет применения высокоточного одноэтапного пеленгатора, повышение быстродействия навигационного обеспечения за счет использования адресно-ответной пакетной цифровой радиолинии и снижение требований к бортовым вычислительным комплексам за счет выполнения основных вычислений в наземной аппаратуре. Высокоточный одноэтапный пеленгатор представляет собой программно-аппаратный комплекс, оснащенный активной фазированной антенной решеткой, который осуществляет прием радиосигналов, их синхронную демодуляцию многоканальным квадратурным приемником, преобразование в цифровую форму с использованием многоканального аналого-цифрового преобразователя и последующую цифровую обработку сигналов, направленную на формирование угла пеленга с использованием оптимального одноэтапного метода оценивания параметров. Одноэтапный метод оценивания состоит в формировании решающей функции на основе условной плотности по методу максимального правдоподобия и ее последующей оптимизации; данный метод исключает выполнение промежуточных этапов, на которых производится последовательное оценивание временных и фазовых задержек. 5 ил.

Изобретение относится к области приборостроения, в частности к инерциальным информационно-измерительным приборам, и может найти применение в системах ориентации и навигации подвижных объектов. Сущность изобретения заключается в том, что в состав инерциального измерительного прибора летательного аппарата (ЛА) дополнительно введены устройство синхронизации выходной информации инерциальных датчиков, устройство определения нулевого сигнала микромеханических гироскопов от ускорения, и амортизирующая платформа, на которой устанавливается модуль чувствительных элементов, конструктивно выполненная в виде жесткого монолитного кронштейна, в основании которого установлены амортизаторы, причем полоса пропускания амортизаторов много меньше полосы пропускания микромеханических гироскопов и акселерометров, установленных на амортизирующей платформе, и много меньше частоты собственных колебаний чувствительных элементов микромеханических гироскопов и акселерометров, установленных на амортизирующей платформе. Технический результат – повышение точности инерциального измерительного прибора летательного аппарата (ЛА) и расширение его функциональных возможностей. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к бесплатформенным инерциальным курсовертикалям и может найти применение в беспилотных летательных аппаратах различных классов для определения угловой ориентации в нормальной земной системе координат при выполнении сложных маневров, в том числе и фигур высшего пилотажа. Технический результат – расширение функциональных возможностей. Для этого обеспечивается построение всережимной бесплатформенной инерциальной курсовертикали на чувствительных элементах высокой точности (погрешности датчиков угловых скоростей не более 0,6°/час; погрешности датчиков линейных ускорений не более 0,006 м/с2) без использования внешней информации. При этом обеспечивается автоматическая начальная выставка курсовертикали, списание погрешности датчиков угловых скоростей непосредственно перед полетом и периодическая коррекция датчиков угловых скоростей в полете, а также использование кватернионных вычислений. 3 ил.

Изобретение относится к средствам навигации подвижных объектов, в частности летательных аппаратов (ЛА), а именно к способам и устройствам для оценки ошибок и коррекции абсолютных координат местоположения, высоты и вертикальной скорости инерциальной навигационной системы (ИНС). Существенным отличием данного способа является преобразование поступающих с высокой частотой измерений к такой частоте, с которой ЛА пересекает границы дискретного эталонного массива высот. Другим существенным отличием данного способа является накапливание преобразованных измерений и формирование блоков измерений длиной Nb. Еще одним существенным отличием данного способа является реализация скользящего окна по массивам невязок, группирование массивов по Ng элементов. Существенным отличием устройства является введение блока преобразования, блока накопления, блока суммирования массивов квадратов невязок, блока очереди массивов квадратов невязок и блока накопления групп массивов квадратов невязок, что позволяет повысить эффективность вычислений и снизить требования к характеристикам вычислителя за счет введения новых действий и операций. Технический результат - снижение вычислительной сложности и требований к характеристикам вычислителя. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области навигационного приборостроения, в частности к способам определения местоположения на основе комплексирования информации от различных источников. Технический результат – расширение функциональных возможностей обеспечен на основе определения пространственных координат мобильного объекта с помощью сигналов одной опорной радиостанции и счислений пути. Способ позволяет определять пространственное местоположение мобильного объекта на базе сигналов одной опорной радиостанции и счислении пути, что требует меньшую инфраструктуру, чем в классических сетевых (многопозиционных) системах радиопозиционирования, не требует сложных антенных решеток как в угломерных системах, и отсутствует возрастание ошибок со временем как в инерциальной навигации. При этом способ основан на определении дальностей или разностей дальностей до опорной радиостанции в различных выбранных точках траектории движения мобильного объекта и вычислении длины, азимута и угла места отрезков, соединяющих данные выбранные точки траектории движения. Форма траектории движения не имеет значения, так как учитываются только отрезки, соединяющие выбранные смежные точки траектории движения, а определение относительных пространственных координат текущей точки относительно предыдущей для формирования отрезка основано на счислении пути. 6 ил.

Изобретение относится к области навигации летательных аппаратов (ЛА) и предназначено для обеспечения безопасности полета группы ЛА, выполняющих совместные действия в сложных навигационных условиях. Технический результат - повышение точности и надежности операций формирования сигналов синхронизации при определении относительного положения ЛА. Для этого при определении относительного положения соседних ЛА по отношению к данному ЛА по созвездию спутников и радиолокационным способом с последующей комплексной обработкой навигационной информации - формируют общие сигналы синхронизации для указанных способов на основе комплексной обработки временных параметров сигналов синхронизации. При этом в первом случае предусматривается определение навигационной информации каждым ЛА, передачу и прием ее через каналы информационного обмена ЛА путем формирования сигналов синхронизации для временного разделения передачи и приема навигационной информации, а второй - предусматривается определение локационной информации с помощью передачи и приема зондирующих сигналов каждым ЛА и определение относительных дальностей соседних ЛА. Варианты способа оценивают точность формирования общих сигналов синхронизации. 5 з.п. ф-лы, 3 ил., 2 прил.

Изобретение относится к области навигационного приборостроения и может найти применение в системах радионавигации в условиях плотной городской застройки и в гористой местности. Технический результат - повышение точности. Для этого суть способа заключается в повышении точности местоопредления с использованием сигналов глобальных спутниковых навигационных систем с помощью учета сигналов с прямой и непрямой линии видимости. Он базируется на методе сопоставления с картой. При этом способ основан на конфигурации видимых и невидимых спутников для возможных кандидат-решений с учетом ландшафта местности, за счет чего происходит увеличение точности определения местоположения. Для реализации способа предложен алгоритм, который состоит из автономного и активного этапа. В автономной фазе формируются границы зданий на сетки местоположений. Граница зданий строится с перспективы положения ГНСС пользователя, край здания определяется для каждого азимута (от 0 до 360°) в виде серии углов. Результат этого этапа показывает, где расположены края зданий в пределах небесной координатной сетки. Как только определена граница относительно небесной координатной сетки, она может быть сохранена и легко повторно использована в онлайн фазе для предсказания видимости спутника простым сравнением высоты спутника с высотой здания в том же азимуте. На втором шаге активной фазы поиска решения определяется область, в которой находятся вероятные решения местоположения в затененной области. Область поиска определяется на основе первоначального положения, генерируемого на первом шаге определения координат на ЛПВ (линии прямой видимости) спутниках. Простейшей реализацией является фиксированная окружность с центром в известной координате, однако здесь могут применятся и более совершенные алгоритмы позиционирования. На третьем шаге осуществляется сравнение высоты спутника вероятной позиции с высотой границы зданий в том же азимуте. На четвертом шаге оценивается сходство между прогнозируемой видимостью и фактически наблюдаемой. Кандидат позиции с лучшим совпадением будет взвешиваться выше в решении при затененной задаче. Существуют два этапа вычисления оценки для кандидата позиции. Во-первых, определение по оценочным схемам о наблюдаемом угле. Во-вторых, функция оценки выдает положение между наблюдаемым сигналом и его оценкой, которая описывается формулой: ,где - оценка позиции для точки сетки оценка положения спутника i в сетке j с помощью оценочной матрицы SS. К концу этого этапа каждый кандидат положения должен иметь оценку, которая представляет угол, который указывает на видимость спутника, и, следовательно, насколько высока вероятность того, что данный кандидат позиции близок решению навигационной задачи. После определения конфигурации и оценки видимых спутников производится оценка невидимых спутников для каждого узла кандидата в решение навигационной задачи. Последний шаг - определение положения с помощью полученных балльных оценок путем сопоставления кандидатов с образцом. 1 ил.

Изобретение относится к радиоканалам передачи цифровой информации, конкретно к космическим высокоскоростным радиолиниям (ВРЛ) передачи данных наблюдения с космических аппаратов (КА) дистанционного зондирования Земли (ДЗЗ). Радиопередающий комплекс космического аппарата содержит квадратурный модулятор и кодер, размещенные в корпусах, поляризатор, конструктивно соединенный с рупорной антенной, радиочастотный блок, в корпусе которого установлен высокостабильный задающий генератор несущей чистоты, повышающий конвертер-сумматор, полосовой фильтр, твердотельный усилитель мощности. Корпусы квадратурного модулятора и кодера закреплены на краях боковой поверхности корпуса радиочастотного блока. Поляризатор, конструктивно объединенный с рупорной антенной и с согласованной нагрузкой. Поляризатор установлен на корпусе радиочастотного блока между квадратурным модулятором и кодером. Поляризатор соединен с выходом повышающе-усиливающей схемы радиочастотного блока посредством волновода. Рупорная антенна выполнена с линзовым корректором. Поляризатор выполнен с двумя входами для формирования левосторонней и правосторонней круговой поляризации, при этом на одном из входов установлена согласованная нагрузка, представляющая собой участок волновода. Технический результат заключается в снижении габаритов и массы изделия при сохранении высоких скоростных и энергетических показателей передачи информации. 7 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к устройству управления транспортным средством. Устройство содержит модуль обнаружения состояния, модуль обнаружения объектов, модуль вычисления положения, модуль задания области и контроллер движения. Модуль обнаружения объектов выполнен с возможностью обнаружения положения и скорости транспортного средства-носителя. Модуль обнаружения объектов выполнен с возможностью обнаружения положения и скорости каждого из неподвижного объекта и движущегося объекта, которые находятся впереди. Модуль вычисления положения выполнен с возможностью вычисления положения проезда, в котором транспортное средство-носитель проезжает движущийся объект. Модуль задания области выполнен с возможностью задания области вокруг неподвижного объекта. Контроллер движения выполнен с возможностью управления движением транспортного средства, когда положение проезда находится в упомянутой области. Достигается повышение комфорта управления транспортным средством. 4 н. и 7 з.п. ф-лы, 25 ил.

Изобретение относится к области приборостроения и может найти применение в системах резервирования пилотажно-навигационных устройств. Технический результат - повышение точности измерения высотно-скоростных параметров. Для достижения данного результата в систему, содержащую датчик полного давления, датчик статического давления, устройство обработки и преобразования сигналов, вычислитель, модуль пространственной ориентации, ЖК индикатор, магнитный зонд, дополнительно вводят блок приема режимов полета, запоминающее устройство с записанными аэродинамическими поправками к показаниям приемников воздушных давлений для конкретного летательного аппарата. 1 ил.

Наверх