Способ определения сферической аберрации объективов и линз

Предложен способ, в котором исследуемую оптическую систему освещают широким плоскопараллельным пучком лазерного излучения с известной длиной волны λ, сфокусированное излучение пропускают через плоскопараллельную пластинку одноосного нелинейного кристалла, установленную в плоскости изображения, преобразуя его в излучение с длиной волны λ/2, после чего это излучение передают на оптико-электронный датчик, который устанавливают в двух или более заданных значениях расстояния от выходной грани плоскопараллельной пластинки, измеряют радиусы полученных кружков рассеяния при различных значениях расстояний и определяют сферическую аберрацию оптической системы. Технический результат - повышение точности, снижение сложности определения сферической аберрации объективов и линз, в том числе в инфракрасной области спектра, при этом сохраняя скорость определения сферической аберрации. 1 ил., 1 табл.

 

Изобретение относится к области приборостроения и может быть использовано для определения сферической аберрации объективов и линз, в том числе при разработке и исследовании систем, фокусирующих инфракрасное излучение.

Известен способ измерения аберраций оптических систем (патент РФ №2077809, МПК G01M 11/02, опубликованный 20.04.1997), заключающийся в том, что путем диафрагмирования выделяют из пучков лучей, проходящих через контролируемую оптическую систему, узкие пучки, регистрируют изображение, сформированное узкими пучками лучей, измеряют смещения элементов этого изображения и преобразуют смещения элементов изображения в характеристики аберраций, на контролируемую оптическую систему направляют излучение от протяженного неоднородного объекта, регистрируют также сформированное недиафрагмированными пучками лучей изображение, диафрагмирование пучков лучей производят с помощью экрана с отверстием, устанавливаемого в плоскость, в которой диаметр сечения каждого из пучков лучей, формирующих изображения точек объекта, не превышает ширины зоны изопланатизма, а смещения элементов изображения, сформированного узкими пучками лучей, оценивают относительно этих же элементов в изображении, сформированном недиафрагмированными пучками лучей.

Недостатками этого способа являются низкая точность определения характеристик аберрации, обусловленная необходимостью формирования пучков лучей заданного диаметра, не превышающего ширины зоны изопланатизма, а также техническая сложность использования данного способа для определения характеристик аберраций для объективов и линз, работающих в инфракрасной области спектра.

Известен способ исследования аберраций объективов и линз (заявка РФ №99116918, МПК G03H 1/00, опубликованная 07.10.2001), заключающийся в том, что исследуемый объектив или линзу освещают квазимонохроматическим источником, обладающим малыми угловыми размерами, диафрагмируют объектив или линзу непрозрачным экраном с двумя отверстиями, диаметры которых существенно меньше диаметра объектива или линзы, и анализируют интерферограммы, которые получают в плоскости изображения источника при различных положениях отверстий в экране, анализируемые интерферограммы получают на изображениях, восстановленных двукратно экспонированными голограммами, зарегистрированными в плоскости изображения источника при двух различных положениях отверстий в непрозрачном экране.

Недостатками данного способа являются высокая сложность, обусловленная необходимостью анализа интерферограмм, и невозможность применения данного способа для определения аберраций объективов и линз, работающих в инфракрасной области спектра.

Наиболее близким к предлагаемому является способ определения коэффициентов сферической аберрации (патент РФ №992295712, МПК G01M 11/02, 20.03.2007), заключающийся в том, что исследуемую оптическую систему, содержащую одну или несколько линз и диафрагму, освещают квазимонохроматическим источником, обладающим малыми угловыми размерами и размещенным на заданном расстоянии от оптико-электронного датчика, ориентируют оптико-электронный датчик таким образом, чтобы квазимонохроматический источник занимал центральное положение в кадре, устанавливают радиус диафрагмы в два или более заданных значения, измеряют радиусы кружков рассеяния при различных значениях радиусов диафрагмы и определяют коэффициенты сферической аберрации оптической системы оптико-электронного датчика.

Недостатками данного способа являются невозможность определения сферической аберрации объективов и линз, работающих в инфракрасной области спектра, в связи с ограниченной спектральной чувствительностью оптико-электронного датчика, а также на точность определения коэффициентов сферической аберрации оказывают влияние дифракционные эффекты от диафрагм.

Техническая задача - повышение точности и снижение сложности определения сферической аберрации объективов и линз, в том числе при разработке и исследовании систем, фокусирующих инфракрасное излучение, при этом сохраняя скорость определения сферической аберрации.

Сущность предлагаемого изобретения заключается в том, что исследуемую оптическую систему освещают широким плоскопараллельным пучком лазерного излучения с известной длиной волны λ, затем сфокусированное излучение пропускают через плоскопараллельную пластинку одноосного нелинейного кристалла, например ниобата лития, установленную в плоскости изображения, при этом излучение в плоскопараллельной пластинке одноосного нелинейного кристалла преобразуется по частоте в более коротковолновое излучение с длиной волны λ/2, после чего это излучение передают на оптико-электронный датчик, который устанавливают в двух или более заданных значениях расстояния от выходной грани плоскопараллельной пластинки одноосного нелинейного кристалла, измеряют радиусы полученных кружков рассеяния при различных значениях расстояний между оптико-электронным датчиком и выходной гранью плоскопараллельной пластинки одноосного нелинейного кристалла и определяют сферическую аберрацию оптической системы.

Сферическая аберрация является одним из видов монохроматических аберраций и вызывает нарушение гомоцентричности пучков лучей, прошедших через оптическую систему при сохранении их симметрии относительно оптической оси.

Наличие сферической аберрации в системе приводит к тому, что вместо резкого изображения точки в плоскости изображения получается кружок рассеяния.

Сущность изобретения поясняется чертежом (фиг. 1), где приведена схема, поясняющая процесс определения сферической аберрации объективов и линз. Исследуемая оптическая система (фиг. 1, 1) состоит из одной или нескольких линз.

Сферическая аберрация подразделяется на поперечную у, равную радиусу кружка рассеяния, и продольную g, которые связаны между собой уравнением:

где σ - угол, образованный лучом MS, идущим от края выходного зрачка исследуемой оптической системы, и оптической осью ОО/.

Определение сферической аберрации оптических систем в инфракрасной области спектра световых волн затруднено тем, что в плоскости изображения кружок рассеяния невидим для человеческого глаза и накладывает дополнительные условия к использованию оптико-электронного датчика по его спектральной чувствительности. Поэтому в плоскости изображения лазерного пучка размещают плоскопараллельную пластинку одноосного нелинейного кристалла, например из ниобата лития (фиг. 1, 3), в котором излучение (фиг. 1, 2) преобразуется по частоте в более коротковолновое излучение с длиной волны λ/2. При этом на заданном расстоянии от выходной грани плоскопараллельной пластинки одноосного нелинейного кристалла (фиг. 1, 3) размещают оптико-электронный датчик (фиг. 1, 4), измеряют радиус ri (i=1, 2) кружка рассеяния преобразованного по частоте излучения при заданных значениях расстояния Li (i=1, 2) от выходной грани плоскопараллельной пластинки одноосного нелинейного кристалла (фиг. 1, 3) до оптико-электронного датчика.

Для определения сферической аберрации составляют систему уравнений:

(из подобия треугольников ABC и АВ/С/),

(из треугольника ABC),

(закон преломления на границе раздела сред воздух - плоскопараллельная пластинка), (2)

(закон преломления на границе раздела сред плоскопараллельная пластинка - воздух),

(из треугольника DAE),

,

где у* - радиус кружка рассеяния на выходе излучения с длиной волны λ/2 из плоскопараллельной пластинки одноосного нелинейного кристалла, n1 - показатель преломления одноосного нелинейного кристалла, из которого изготовлена плоскопараллельная пластинка, для лазерного излучения обыкновенной поляризации с длиной волны λ, n2 - показатель преломления одноосного нелинейного кристалла, из которого изготовлена плоскопараллельная пластинка, для лазерного излучения обыкновенной поляризации с длиной волны λ/2, а - толщина плоскопараллельной пластинки одноосного нелинейного кристалла.

Из системы уравнений (2) получаем:

Для определения величины продольной g и поперечной у сферических аберраций исследуемую оптическую систему освещают широким плоскопараллельным пучком лазерного излучения с известной длиной волны λ, в плоскости изображения устанавливают плоскопараллельную пластинку одноосного нелинейного кристалла толщиной а с известными значениями показателей преломления n1 и n2, устанавливают оптико-электронный датчик на заданном расстоянии L1 от выходной грани плоскопараллельной пластинки одноосного нелинейного кристалла, измеряют радиус r1 кружка рассеяния преобразованного по частоте излучения в плоскости оптико-электронного датчика, устанавливают оптико-электронный датчик от выходной грани плоскопараллельной пластинки одноосного нелинейного кристалла на заданном расстоянии L2 и измеряют радиус r2 кружка рассеяния преобразованного по частоте излучения в плоскости оптико-электронного датчика, подставляют полученные значения r1, r2, L1, L2 в (3), (4) и определяют g и у, после чего делают вывод о соответствии параметров объектива или линзы техническим требованиям и возможности его использования в той или иной оптической системе.

Изобретение может быть использовано для контроля качества изображения широкого класса оптических систем как при их изготовлении, так и при их эксплуатации и соответствует критерию «промышленная применимость».

Преимуществом изобретения является то, что в отличие от традиционных подходов, требующих для определения сферической аберрации подбора спектральной чувствительности оптико-электронного датчика, знания геометрических (уравнений поверхностей линз или в простейшем случае радиусов кривизны) и оптических (показателей преломления материала линз и др.) параметров объективов и линз, которые в ряде случаев могут быть неизвестны, изобретение позволяет определять величину сферической аберрации объективов и линз, зная только геометрические и оптические параметры (толщина плоскопараллельной пластинки одноосного нелинейного кристалла, показатели преломления одноосного нелинейного кристалла, из которого изготовлена плоскопараллельная пластинка) плоскопараллельной пластики одноосного нелинейного кристалла, радиус ri кружка рассеяния преобразованного по частоте излучения и расстояние Li от выходной грани плоскопараллельной пластинки одноосного нелинейного кристалла до оптико-электронного датчика.

Плоскопараллельная пластинка одноосного нелинейного кристалла может изготавливаться не только из кристалла ниобата лития, но и из других одноосных кристаллов, часть из которых приведена в таблице 1. Выбор материала плоскопараллельной пластинки зависит от длины волны лазерного излучения λ, которым освещается исследуемая оптическая система. В плоскопараллельной пластинке одноосного нелинейного кристалла излучение преобразуется по частоте в более коротковолновое излучение с длиной волны λ/2, которое регистрируют оптико-электронным датчиком.

Точность определения продольной g и поперечной у сферических аберраций повышается путем определения значений gi, yi и их усреднения при различных значениях расстояния L1i, L2i (i - количество пар измерений) от выходной грани плоскопараллельной пластинки одноосного нелинейного кристалла до оптико-электронного датчика.

Таким образом, изобретение позволяет повысить точность, снизить сложность определения сферической аберрации объективов и линз, в том числе в инфракрасной области спектра, при этом сохраняя скорость определения сферической аберрации.

Способ определения сферической аберрации объективов и линз, в котором освещают исследуемую оптическую систему и определяют сферическую аберрацию, отличающийся тем, что исследуемую оптическую систему освещают широким плоскопараллельным пучком лазерного излучения с известной длиной волны λ, затем сфокусированное излучение пропускают через плоскопараллельную пластинку одноосного нелинейного кристалла, например ниобата лития, установленную в плоскости изображения, при этом излучение в плоскопараллельной пластинке одноосного нелинейного кристалла преобразуется по частоте в более коротковолновое излучение с длиной волны λ/2, после чего это излучение передают на оптико-электронный датчик, который устанавливают в двух или более заданных значениях расстояния от выходной грани плоскопараллельной пластинки одноосного нелинейного кристалла, измеряют радиусы полученных кружков рассеяния при различных значениях расстояний между оптико-электронным датчиком и выходной гранью плоскопараллельной пластинки одноосного нелинейного кристалла и определяют сферическую аберрацию оптической системы.



 

Похожие патенты:

Устройство для измерения осевой толщины офтальмологической линзы содержит крепежное устройство для крепления оправки формирующей оптики, измерительное устройство, содержащее датчик перемещения, процессор, связанный с измерительным устройством; устройство хранения данных цифровой среды, связанное с процессором и хранящее программный код, который выполняется по требованию и служит для запоминания цифровых данных, описывающих перечень метрологических данных, получения входных цифровых данных из измерительного устройства, содержащих справочное измерение M1 оправки формирующей оптики без линзы и измерение М2 линзы на той же формирующей оптике, и вычисления величины осевой толщины линзы посредством вычитания метрологических данных, полученных при измерениях M1 и М2.

Изобретение относится к области оптического приборостроения и может быть использовано для центрировки линз в оправах при их сборке в случаях, когда линзы базируется в оправах по плоской фаске.

Изобретение относится к области оптического приборостроения и касается способа центровки объектива штабельной конструкции. Способ включает в себя центрировку линз относительно базовой оси объектива, которой является ось вращения стола станции для автоматизированной центрировки.

Изобретение относится к области оптического приборостроения и может быть использовано для центрировки линз в оправах при их сборке для случаев, когда линзы базируются в оправах по плоским фаскам.

Способ содержит измерение пропускания излучения нескольких различных длин волн через линзы различных предварительно известных толщин; расчет коэффициента k, который является константой в выражении для закона Бера %T=10(2-kt), где %Т - величина пропускания излучения, t - толщина офтальмологической линзы для каждой длины волны, получение первых значений контрастности при вычитании величины пропускания при указанной глубине дефекта, не проходящего через всю толщину линзы, из величины пропускания при отсутствии линзы для указанных нескольких длин волн; получение вторых значений контрастности при вычитании величины пропускания при максимальной толщине, являющейся толщиной готовой линзы, из величины пропускания при указанной глубине дефекта для указанных нескольких длин волн; сравнение первых и вторых значений контрастности и выбор их минимальных значений при каждой длине волны, и построение графика зависимости минимальных значений контрастности от длины волны; выбор длины волны для проверки на графике при самом максимальном пике.

Способ центрирования подвижных оптических элементов панкратической оптической системы методом проточки диаметра и подрезки посадочной плоскости каретки для оптических элементов проводят в два этапа.

Изобретение относится к оптическим устройствам, имитирующим вещество, обладающее круговым дихроизмом (КД), с возможностью регулирования величины задаваемого эффекта в широком диапазоне значений на выбранной длине волны, служащее для калибровки дихрографов кругового дихроизма.

Способ основан на формировании действительного изображения калиброванных источников излучения с помощью мир. Миру каждого из каналов комбинированной оптико-электронной системы (КОЭС) выполняют в виде последовательности штрихов, создающих высокую пространственную частоту (ВПЧ) в направлении строки МФПУ и вытянутых в направлении кадровой развертки.

Изобретение относится к области проверки офтальмологических линз с использованием излучения различной длины волны. Согласно способу офтальмологические линзы, находящиеся в контейнере с упаковочным раствором, при проходе по производственной линии последовательно облучают излучением с различной длиной волны.
Изобретение относится к способу калибровки элементов внутреннего ориентирования съемочной аппаратуры космического базирования, которая включает в себя мультиспектральный и монохроматический каналы.

Способ юстировки контрольного элемента линии визирования объектива, установленного в зоне экранирования светового пучка объектива, осуществляют с помощью зеркального коллиматора, содержащего вогнутое зеркало, плоское поворотное зеркало, установленное на его оптической оси под углом 45 градусов, и точечную диафрагму, установленную в фокусе коллиматора. На первом этапе диафрагму освещают при помощи автоколлимационной трубы с перефокусировкой, установленной на оптической оси коллиматора и сфокусированной на эту диафрагму, посылают лучи через коллиматор в объектив и фиксируют положение линии визирования объектива. На втором этапе убирают диафрагму, перефокусируют автоколлимационную трубу на бесконечность, разворачивают плоское зеркало коллиматора на 90 градусов и юстируют контрольный элемент до совпадения автоколлимационного блика от его зеркальной плоской поверхности с линией визирования объектива. Технический результат - уменьшение габаритов установки, предназначенной для юстировки. 2 ил.

Заявленное устройство относится к области оптико-электронного приборостроения, предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора без демонтажа защитной крышки на всех этапах испытаний оптического прибора и может быть использовано в оптических приборах для космических аппаратов. Заявленное устройство содержит защитную крышку с двумя отверстиями, к одному из которых крепится осветитель, а ко второму - средство контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора. При этом средство контроля сфокусировано на оптической поверхности в фокальной плоскости объектива оптического прибора, а устройство снабжено защитными колпачками, которые устанавливаются вместо осветителя и средства контроля и крепятся с помощью фиксаторов при хранении оптического прибора. Технический результат - обеспечение надежности контроля состояния оптических поверхностей в фокальной плоскости объектива оптических приборов при наземных испытаниях оптических приборов, установленных на космический аппарат, без демонтажа защитной крышки. 4 ил.

Заявленное устройство относится к области оптико-электронного приборостроения и предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей объектива оптических приборов без демонтажа защитной крышки на всех этапах испытаний оптических приборов и может быть использовано в оптических приборах для космических аппаратов. Заявленное устройство защиты и контроля состояния оптических поверхностей объектива оптического прибора содержит защитную крышку с отверстием, на которое установлено средство контроля состояния оптических поверхностей, осветитель и фиксатор. Причем средство контроля оптических поверхностей снабжено поворотным узлом, узлом фокусировки, а также фоторегистратором результатов контроля. При этом осветитель установлен на поворотном узле, а защитная крышка снабжена элементом скольжения. Технический результат - обеспечение надежности контроля состояния всех оптических поверхностей зеркального объектива с большим диаметром входного зрачка при наземных испытаниях оптических приборов в составе космического аппарата без демонтажа защитной крышки. 3 ил.

Изобретение относится к способам измерения геометрической и оптической структуры оптического компонента. Способ включает этапы (S1) измерения первого сигнала (MS1), возникающего из первого преобразования указанной первой поверхностью (10) первого сигнала (PS1) от датчика; (S2) измерения второго сигнала (MS2), возникающего из второго преобразования по меньшей мере указанной второй поверхностью (20) второго сигнала (PS2) от датчика; (S3) определения третьего преобразования, обеспечивающего возможность преобразования от первого набора координат (R1), связанных с измерением первого сигнала (MS1), ко второму набору координат (R2), связанных с измерением второго сигнала (MS2); (S10) оценки указанной первой поверхности (10), осуществляемой на основании первого сигнала (MS1), указанного первого моделирования и первого показателя (VI) качества, определяющего расхождение между первой оценкой (ES1) и первым сигналом (MS1); и (S20) оценки указанной второй поверхности (20), осуществляемой на основании второго сигнала (MS2), указанного второго моделирования, указанного третьего преобразования и второго показателя (V2) качества, определяющего расхождение между оценкой (ES2) и вторым сигналом (MS2). Технический результат - упрощение и ускорение измерений. 2 н. и 16 з.п. ф-лы, 5 ил.

Устройство для юстировки прицела-прибора наведения содержит опорную плиту, две пары стоек, скрепленных попарно направляющими планками с продольными уступами, в которые установлена плита-имитатор объекта с посадочными местами и отверстиями под фиксирующие и крепежные элементы прицела-прибора наведения. Сверху на плите-имитаторе объекта установлен и закреплен крепежными элементами кронштейн с отверстием, ось которого параллельна оси прицельного канала прицела-прибора наведения, в отверстии кронштейна закреплен оптический прибор с сеткой, перекрестие которой наведено и совмещено с перекрестием шаблона-мишени. В частном случае оптическим прибором является трубка холодной пристрелки. Технический результат заключается в повышении точности юстировки параллельности оптических осей. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области для измерения физических свойств контактных линз. В заявленном устройстве для измерения волнового фронта офтальмологического устройства и способе, реализующем заявленное устройство, производят выравнивание системы волнового фронта офтальмологической линзы, содержащей устройство для измерения физической характеристики офтальмологического устройства, выполняют оптическое измерение оптической оправки и хранение этого измерения интенсивности оптической оправки в качестве справочного файла интенсивности. Далее выполняют оптическое измерение оптической оправки с линзой, которая сформирована на ней, и сохранение файла этой интенсивности, используя программное обеспечение в процессоре, способном вычитать один файл интенсивности из, по меньшей мере, одного другого файла интенсивности для получения значения оптического волнового фронта линзы в режиме реального времени. Технический результат – повышение скорости получения точных измерений сухих контактных линз разовыми оптическими измерениями в режиме реального времени. 2 н. и 21 з.п. ф-лы, 8 ил.

Способ обнаружения локальных дополнительных потерь в оптическом волокне методом обратного рассеяния заключается в формировании коротких зондирующих импульсов и преобразовании их в оптические импульсы, вводе их в оптическое волокно, приеме с волокна обратно-рассеянного и отраженных сигналов, которые преобразуют в электрический сигнал, после чего усиливают, преобразуют его в цифровую форму и вычисляют его среднее значение, из которого формируют рефлектограмму. На основании анализа рефлектограммы определяют величину дополнительных потерь. Местоположение дефекта определяют с учётом периода следования зондирующих импульсов, выбранного на основании отношения заданного времени обнаружения нарушения и требуемого количества вычислений среднего значения принятых сигналов для обеспечения заданного отношения сигнал/шум. Технический результат заключается в уменьшении периода следования зондирующих импульсов для обеспечения заданной инерционности. 3 ил.

Способ может использоваться при сборке объективов для тепловизионных приборов. Способ включает установку в центрирующий патрон токарного станка оправы с линзой и закрепление в оправе насадки с линзой-свидетелем и центрирование поверхностей линз с контролем автоколлимационным микроскопом. Линза-свидетель выполнена прозрачной в видимой области спектра и имеет сквозное центральное отверстие. Радиус поверхности линзы-свидетеля, ближайшей к автоколлимационному микроскопу, равен радиусу невидимой поверхности линзы. Смещением сдвиговой части патрона центрируют ближайшую к микроскопу поверхность линзы-свидетеля, выставляя автоколлимационное изображение центра кривизны этой поверхности на ось вращения шпинделя станка, при этом происходит самоцентрирование невидимой поверхности линзы. Затем перемещением поворотной сферической части патрона центрируют видимую поверхность линзы через отверстие в линзе-свидетеле. После этого извлекают насадку с линзой-свидетелем из оправы линзы и обрабатывают торцевые и цилиндрические поверхности оправы. Технический результат - повышение точности центрирования линз и снижение трудоемкости процесса центрирования. 1 ил.

Способ калибровки оптико-электронного аппарата, который реализуется соответствующим устройством, заключается в том, что ориентируют оптико-электронный аппарат (ОЭА) до совмещения изображения марки коллиматора с центром кадра ОЭА, последовательно проецируют марку коллиматора в заданные точки кадра ОЭА путем поворота и линейного перемещения коллиматора. Для каждого положения коллиматора измеряют угол его поворота, определяют координаты изображения марки в кадре и систематические погрешности положения визирной оси коллиматора относительно осей X, Y, Z. Рассчитывают фокусное расстояние объектива, координаты главной точки кадра и дисторсию объектива в заданных точках кадра. Переворачивают калибруемый ОЭА и действия повторяют. Усредняют значения фокусного расстояния объектива, координат главной точки кадра и дисторсии объектива, полученные в двух положениях ОЭА. Технический результат заключается в повышении точности калибровки оптико-электронного аппарата. 2 н.п. ф-лы, 2 ил.

Способ включает установку линзы на плоский опорный буртик цилиндрического отверстия промежуточной части оправы, размещаемой фланцем на опорном буртике цилиндрического отверстия основной оправы. Вращают оправу вокруг ее базовой оси, измеряют биение центра кривизны первой поверхности линзы относительно центра кривизны второй поверхности линзы, радиально сдвигают линзу по плоскому опорному буртику промежуточной части оправы для совмещения центров кривизны первой и второй рабочих поверхностей линзы и фиксируют линзу в промежуточной части оправы. Измеряют биение центров кривизны первой и второй рабочих поверхностей с осью вращения, сдвигают промежуточную часть оправы по опорному буртику основной оправы для совмещения центров кривизны первой и второй рабочих поверхностей с осью вращения и фиксируют положение промежуточной части оправы в основной оправе. Оправа имеет наружную базовую цилиндрическую поверхность и плоский наружный базовый фланец, образующие базовую ось оправы, цилиндрическое отверстие с плоским опорным буртиком, на который плоским фланцем установлена с увеличенным зазором посадки промежуточная цилиндрическая часть оправы с опорным буртиком для установки линзы. Технический результат - повышение точности центрирования линзы при сохранении центрирования по обеим рабочим поверхностям линзы и упрощение изготовления основной оправы. 2 н. и 4 з.п. ф-лы, 5 ил.

Предложен способ, в котором исследуемую оптическую систему освещают широким плоскопараллельным пучком лазерного излучения с известной длиной волны λ, сфокусированное излучение пропускают через плоскопараллельную пластинку одноосного нелинейного кристалла, установленную в плоскости изображения, преобразуя его в излучение с длиной волны λ2, после чего это излучение передают на оптико-электронный датчик, который устанавливают в двух или более заданных значениях расстояния от выходной грани плоскопараллельной пластинки, измеряют радиусы полученных кружков рассеяния при различных значениях расстояний и определяют сферическую аберрацию оптической системы. Технический результат - повышение точности, снижение сложности определения сферической аберрации объективов и линз, в том числе в инфракрасной области спектра, при этом сохраняя скорость определения сферической аберрации. 1 ил., 1 табл.

Наверх