Способ гашения выталкивающей силы сердечного пульса биатлониста при стрельбе лежа



Способ гашения выталкивающей силы сердечного пульса биатлониста при стрельбе лежа
Способ гашения выталкивающей силы сердечного пульса биатлониста при стрельбе лежа
Способ гашения выталкивающей силы сердечного пульса биатлониста при стрельбе лежа
Способ гашения выталкивающей силы сердечного пульса биатлониста при стрельбе лежа
Способ гашения выталкивающей силы сердечного пульса биатлониста при стрельбе лежа

 


Владельцы патента RU 2606872:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный университет физической культуры, спорта, молодежи и туризма (ГЦОЛИФК)" (РГУФКСМиТ) (RU)

Изобретение относится к спорту высших достижений, а именно к биатлону. Задача изобретения - определить при повышенном сердечном пульсе (160-190 уд./мин) частоту гармонической составляющей W0 лыжника, подлежащей гашению. Поставленная задача решается путем проведения спектрального анализа выталкивающей силы сердечного пульса с использованием добавочной массы, в результате которого по максимальному значению выталкивающей силы Fn сердечного пульса определяют частоту гармонической составляющей W0. Гашение этой гармонической составляющей обеспечивается установкой под сгибы локтевых суставов упругих подлокотников, каждый с собственной частотой колебаний Wподлок. Заявляемый способ позволяет существенно снизить влияние частоты сердечных сокращений на стрельбу лежа в условиях соревнований. За счет установки упругих подлокотников под сгибы локтевых суставов, рассчитанных индивидуально, под каждого спортсмена, выталкивающая сила сердечного пульса биатлониста гасится таким образом, что она становится минимальной и не влияет на итоговый результат стрельбы. 2 табл., 2 ил.

 

Изобретение относится к спорту высших достижений, а именно к биатлону.

Увеличивающаяся сложность рельефа биатлонных трасс, а также скорость передвижения лыжников требуют от них больших энергетических затрат, влекущих за собой повышенный сердечный пульс, доходящий до 180-190 ударов в минуту.

Однако с повышением частоты сердечных сокращений существенно увеличивается и выталкивающая сила пульса. Колебания рук биатлониста в данной ситуации от учащенного дыхания уже почти не зависят, так как они порождаются в большей степени от систолической амплитуды сердечных сокращений [1].

При исследованиях на лыжном тренажере выяснилось, что при повышенном сердечном пульсе основной вклад в его выталкивающую силу, а следовательно, и в увеличение колебаний тела спортсмена, вносит образующаяся при этом низкочастотная гармоническая составляющая большой мощности - W0.

Задача изобретения - определить при повышенном сердечном пульсе (160-190 уд./мин) частоту гармонической составляющей W0 лыжника, подлежащей гашению.

Поставленная задача решается путем проведения спектрального анализа выталкивающей силы сердечного пульса с использованием добавочной массы [2], в результате которого по максимальному значению выталкивающей силы Fn сердечного пульса определяют частоту гармонической составляющей W0.

Гашение этой гармонической составляющей обеспечивается установкой под сгибы локтевых суставов упругих подлокотников, каждый с собственной частотой колебаний Wподлок. Выбор данных подлокотников определяется необходимым условием зарезонансного гашения гармонической составляющей W0:

где Wподлок - собственная частота колебаний упругого подлокотника;

W0 - гармоническая составляющая выталкивающей силы сердечного пульса.

Соответственно материал подлокотника, рассчитанный по формуле 1, должен иметь рабочий ход λ:

где g=9,8 м/с2.

В качестве достаточного условия гашения колебаний выступает измеренная методом отскока величина удельной массы mk, воздействующая на подлокотник, при которой его выталкивающая сила на гармонической составляющей W0, вычисляемая по формуле:

где Fk - удельная выталкивающая сила упругого подлокотника при k-й удельной массе стержня;

mk – k-я удельная масса стержня;

a k - ускорение стержня k-й удельной массы при его отскоке,

минимальна, которая определяет площадь поверхности подлокотников S2 применительно к массе винтовки и тела спортсмена:

где S2 - площадь поверхности подлокотника;

S1 - площадь основания стержня;

Mk – k-я масса спортсмена и винтовки.

На фигуре 1 приведена схема измерения выталкивающей силы сердечного пульса. На запястье на лучевую артерию 1 установлен датчик ускорения 2, сигнал с которого через экранированный кабель поступает на вход спектранализатора 3 со сменными RC-цепочками 4, позволяющими менять частоту полосовых фильтров. К выходу спектранализатора подключен вольтметр 5 в качестве индикатора ускорения на гармонических составляющих сердечного пульса. К датчику ускорения приложены дополнительные грузы 6. Измерения проводят в два этапа. Результаты замеров сводятся в табл. 1.

Примеры конкретного выполнения. Первый этап. На запястье одной из рук надевают закольцованный резиновый ободок, полностью облегающий руку. Нащупывают пульс и в этом месте под резиновый ободок подсовывают датчик.

Вольтметр при включенном спектранализаторе будет показывать систолическое и диастолическое давления в ритме пульса. До включения спектранализатора в нем с помощью RC-цепочек устанавливают один из предусмотренных полосовых фильтров.

В квадрат таблицы, стоящий на пересечении строки a1n и столбца W1, записывают показание вольтметра, обозначаемое как а11. Это означает, что при установленном полосовом фильтре W1 ускорение систолической волны равно a1. Последовательно меняя полосовые фильтры, заполняют остальные квадраты таблицы в строке a1n.

Второй этап. Между датчиком и резиновым ободком размещают резиновую пластинку массой mдоб (10 г). Затем повторяют аналогичные замеры с записью данных в строку a2n. Две оставшиеся строки таблицы заполняют данными, рассчитанными по формулам [2]:

где Mn - инерционная масса кровотока на n-й гармонической составляющей;

a 1n - ускорение сердечного пульса без добавленной массы на n-й гармонической составляющей;

a 2n - ускорение сердечного пульса с добавленной массой на n-й гармонической составляющей.

где Fn - выталкивающая сила сердечного пульса на n-й гармонической составляющей.

По максимальному значению Fn определяют искомую частоту гармонической составляющей w0.

На фиг. 2 приведена схема установки, реализующая одну из схем метода отскока. Подлокотник 2 через тонкий слой мастики кладется на асфальт или деревянный пол. Металлический стержень 6, на верхнем торце которого с помощью пластилина установлен датчик ускорения 7, имеющий по отношению к трубке 3 скользящую посадку. К основанию трубки для ее вертикальной устойчивости приварен фланец 4.

Для контроля постоянства высоты падения стержня на поверхность подлокотника на его поверхность в двадцати сантиметрах от основания нанесена риска 5. Датчик через экранированный кабель 8 соединяют со входом спектранализатора 9, который, помимо усиления сигнала, еще и фильтрует его, пропуская сигнал через полосовые фильтры. Изменение полосы пропускаемых частот осуществляют при помощи сменных RC-цепочек 10. К выходу спектранализатора подключен вольтметр 11 в качестве индикатора ускорения стержня при его отскоке от упругого подлокотника.

Порядок измерения включает в себя: установку фильтра с полосой пропускания w0 и последовательным подниманием и опусканием стержня с наращиваемой массой.

Полосовой фильтр в спектранализаторе устанавливают на частоту W0. Заполняя табл. 2 с проходом через максимальное значение Fk, добиваются минимального значения выталкивающей силы, отметив при этом значение mk, подставляя которое в формулу (3), рассчитывают площадь подлокотника S2.

Заявляемый способ позволяет существенно снизить влияние частоты сердечных сокращений на стрельбу лежа в условиях соревнований. За счет установки упругих подлокотников под сгибы локтевых суставов, рассчитанных индивидуально, под каждого спортсмена, выталкивающая сила сердечного пульса биатлониста гасится таким образом, что она становится минимальной и не влияет на итоговый результат стрельбы.

Способ гашения выталкивающей силы сердечного пульса биатлониста при стрельбе лежа на ее гармонической составляющей W0, определенной спектральным анализом с использованием добавочной массы путем установки упругих подлокотников под сгибы локтевых суставов, отличающийся тем, что с целью выполнения необходимого условия зарезонансного гашения гармонической составляющей W0 собственную частоту колебаний упругого подлокотника выбирают исходя из неравенства:

,

где Wподлок - собственная частота колебаний упругого подлокотника;

W0 - гармоническая составляющая выталкивающей силы сердечного пульса, а в качестве достаточного условия выступает замеренная методом отскока величина удельной массы , воздействующей на подлокотник, при которой выталкивающая сила подлокотника на гармонической составляющей W0, вычисляемая по формуле:

,

где - удельная выталкивающая сила упругого подлокотника при k-й удельной массе стержня;

- k-я удельная масса стержня;

- ускорение стержня k-й удельной массы при его отскоке,

минимальна, которая определяет площадь поверхности подлокотников S2 применительно к массе винтовки и тела спортсмена:

,

где S2 - площадь поверхности подлокотника;

S1 - площадь основания стержня;

- k-я масса спортсмена и винтовки.



 

Похожие патенты:

Группа изобретений относится к медицинской технике, а именно к средствам обнаружения лихорадки. Устройство содержит блок для обеспечения значения частоты сердечных сокращений, блок для обеспечения физиологического значения, блок для определения характеристик частоты сердечных сокращений по значению частоты сердечных сокращений, блок для определения физиологических характеристик по физиологическому значению, блок для обнаружения лихорадки в зависимости от характеристик частоты сердечных сокращений и физиологических характеристик.

Группа изобретений относится к медицинской технике, а именно к средствам обнаружения лихорадки. Устройство содержит блок для обеспечения значения частоты сердечных сокращений, блок для обеспечения физиологического значения, блок для определения характеристик частоты сердечных сокращений по значению частоты сердечных сокращений, блок для определения физиологических характеристик по физиологическому значению, блок для обнаружения лихорадки в зависимости от характеристик частоты сердечных сокращений и физиологических характеристик.

Изобретения относятся к медицине. Устройство измерения величины артериального давления человека включает блок измерения величины артериального давления, содержащий датчик давления, блок регистрации отклонений величины артериального давления, снабженный оптическим датчиком, контроллер и дисплей.

Изобретения относятся к медицине. Устройство измерения величины артериального давления человека включает блок измерения величины артериального давления, содержащий датчик давления, блок регистрации отклонений величины артериального давления, снабженный оптическим датчиком, контроллер и дисплей.

Изобретения относятся к медицине. Устройство измерения величины артериального давления человека включает блок измерения величины артериального давления, содержащий датчик давления, блок регистрации отклонений величины артериального давления, снабженный оптическим датчиком, контроллер и дисплей.

Изобретение относится к медицинской технике и предназначено для измерения кожного кровотока на основе метода лазерной доплеровской флоуметрии. Устройство содержит источник первичного лазерного излучения, систему транспортировки первичного излучения, систему приема вторичного излучения и два канала электронной обработки сигнала.

Группа изобретений относится к медицинской технике. Устройство для тестирования субъекта для оценки прогресса состояния аневризмы абдоминальной аорты субъекта содержит датчик, выполненный с возможностью восприятия сигнала, представляющего пульсации в объеме крови в части тела субъекта, блок сигнала датчика для приема указанного сигнала датчика.
Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии. До начала искусственного кровообращения выделяют магистральные артерии тех органов, селективная антеградная перфузия которых потребуется в процессе операции.

Группа изобретений относится к медицинской технике, а именно к средствам позиционирования допплеровского ультразвукового преобразователя. Способ содержит этапы, на которых обнаруживают сигнал колебания давления от надутой манжеты, расположенной на артерии пациента, ультразвуковой пульсовый сигнал от доплеровского ультразвукового преобразователя, расположенного вдоль артерии, извлекают первый сигнал из сигнала колебания давления и ультразвукового пульсового сигнала, причем первый сигнал указывает на степень синхронизации между сигналом колебания давления и ультразвуковым пульсовым сигналом, и выводят сигнал индикации для того, чтобы указывать на то, что доплеровский ультразвуковой преобразователь находится в требуемом положении, когда первый сигнал отвечает предварительно определенному условию.

Изобретение относится к медицине, а именно к урологии, и может быть использовано для комплексного лечения цистита у женщин в стадии обострения. Ежедневно проводят хронометрию, заключающуюся в определении максимального значения пика психоэмоциональной и физиологической активности больной.

Изобретение относится к медицине, а именно к реабилитологии, и может быть использовано для оценки переносимости кинезиотерапии больными с острой церебральной недостаточностью. Проводят велоэнергетические пробы. Осуществляют контроль артериального давления (АД) и частоты сердечных сокращений (ЧСС). Также определяют сердечный индекс (СИ), общее периферическое сопротивление сосудов (ОПСС), потребление кислорода (П02) и фактическую энергопотребность (ФЭП). Указанные показатели определяют непосредственно перед началом велоэнергетической пробы и после проведения 5-минутных активных нагрузок разной интенсивности. Определяют величину максимальной активной нагрузки, которая не вызывает развития побочных реакций и осложнений, если два и более из измеренных показателей изменяются более чем на 30% от исходных значений. Способ позволяет просто, точно и комплексно оценить переносимость кинезиотерапии больными за счет учета наиболее значимых показателей. 2 табл., 2 пр.

Изобретение относится к медицине, биоритмологии. Способ долгосрочного самоконтроля артериального давления и пульса включает измерение АД и пульса каждый час в 5 повторностях с интервалом в 2 мин в течение 10 мин: 1-е измерение проводят сразу после включения тонометра, 2-е - на 2-й минуте, 3-е - на 4-й минуте, 4-е - на 6-й минуте, 5-е - на 8-й минуте на протяжении 16 часов: с 7.45 до 23. При измерениях обязательно учитывают биологические ритмы – проводят измерения при прохождении Луной одного и того же созвездия ежегодно в одни и те же месяцы два раза – зимой и летом, в один и тот же или сопредельный лунный день. Измерение проводят четко за 15 мин до конца каждого часа. Из полученных данных рассчитывают средние околосуточные значения АД и пульса, строят графические зависимости SISср – возраст (год) и PULср – возраст (год). Способ позволяет любому взрослому человеку в течение всей жизни осуществлять долгосрочный индивидуальный контроль артериального давления и пульса и своевременно реагировать на их изменения. 6 пр., 6 табл., 6 ил.

Изобретение относится к медицине, офтальмологии, эндокринологии, кардиологии, ранней диагностике ретинопатии (ДР) у больных с сочетанным течением сахарного диабета 2 типа (СД 2 типа) и гипертонической болезни (ГБ). Проводят оптическую когерентную томографию (ОКТ) макулярной зоны (МЗ) сетчатки, определяют объем толщины сетчатки в 9 секторах: в центральной ямке, в 3 и 5 мм от нее с носовой, височной, верхней и нижней сторон. Затем выявляют изменение порогов чувствительности МЗ методом фундус-микропериметрии MAIA путем предъявления световых стимулов в область центральной ямки и в 3 и 5 мм вокруг нее. Определяют уровень гликированного гемоглобина в плазме крови больного по стандартной методике, показатели уровней прекалликреина и калликреина, а также активность эластазы из нейтрофилов (НЭ) в образцах слезной жидкости (СЖ) посредством фотометрического метода с использованием хромогенных субстратов. Измеряют систолическое и диастолическое артериальное давление больного (САД и ДАД). На основании полученных данных по математическим расчетам, согласно формуле изобретения, вычисляют соответствующие критерии: R1, характеризующего выраженность увеличения толщины объема отека по толщине сетчатки в упомянутых 9 секторах МЗ; R2, характеризующего степень изменения порогов чувствительности МЗ с учетом интенсивности светового стимула; D3, характеризующего уровень гликированного гемоглобина (HbA1c) в плазме крови; D4, характеризующего уровень прекалликреина в СЖ; D5, характеризующего уровень калликреина в СЖ; D6, характеризующего уровень НЭ в СЖ; D7, характеризующего уровень САД; D8, характеризующего уровень ДАД. Затем рассчитывают значение критерия DРДГ по формуле , где R1, R2, D3, D4, D5, D6, D7, D8 - значения вышеупомянутых критериев. По обобщенному критерию DРДГ определяют группу и риск прогрессирования заболевания в соответствии со следующими интервалами: при 1,75≥DРДГ>1,72 - доклиническая стадия ДР; при 1,72≥DРДГ>1,67 - непролиферативная стадия ДР, риск прогрессирования низкий; при 1,67≥DРДГ>1,63 - непролиферативная стадия ДР, риск прогрессирования высокий с неблагоприятным клиническим прогнозом для зрения. Способ обеспечивает прогнозирование возможности прогрессирования ДР с учетом компенсаторно-адаптивной состоятельности сосудистой системы у больных данной группы и раннюю диагностику доклинической стадии этой патологии. 15 ил., 2 пр.
Наверх