Способ определения местоположения станции сети связи vsat



Способ определения местоположения станции сети связи vsat
Способ определения местоположения станции сети связи vsat
Способ определения местоположения станции сети связи vsat
Способ определения местоположения станции сети связи vsat
Способ определения местоположения станции сети связи vsat
Способ определения местоположения станции сети связи vsat
Способ определения местоположения станции сети связи vsat
Способ определения местоположения станции сети связи vsat
Способ определения местоположения станции сети связи vsat
Способ определения местоположения станции сети связи vsat

 


Владельцы патента RU 2606958:

Федеральное государственное казенное военное образовательное учреждение высшего образования "Академия Федеральной службы охраны Российской Федерации" (Академия ФСО России) (RU)

Изобретение относится к радиотехнике, а именно к способам определения местоположения источников радиоизлучения, и может быть использовано при построении систем определения местоположения станции сетей связи VSAT. Достигаемым техническим результатом способа определения местоположения станции сети связи VSAT является повышение точности определения местоположения станции сети связи VSAT в условиях ретрансляции радиосигналов через искусственный спутник Земли на геостационарной орбите и отсутствия ЭМД к данной станции со стороны пункта радиоконтроля. Технический результат достигается тем, что способ определения местоположения станции сети связи VSAT согласно изобретению дополнен тем, что определяют время интерференции сигнала, передаваемого на станцию сети связи VSAT от спутника-ретранслятора. Далее рассчитывают координаты Солнца в геоцентрической системе координат и координаты спутника-ретранслятора. Вычисляют координаты станции сети связи VSAT путем решения системы нелинейных уравнений второго порядка. Определяют географические координаты станции сети связи VSAT. 1 ил.

 

Изобретение относится к радиотехнике, а именно к способам определения местоположения источников радиоизлучения, и может быть использовано при построении систем определения местоположения станции сетей связи VSAT.

Известен способ определения местоположения источника радиоизлучения (RU 2292560, МПК G01S 5/02). Технический результатом является обеспечение однозначного определения местоположения источника при одновременном уменьшении времени определения местоположения. В способе определения местоположения источника радиоизлучения, включающем прием радиоизлучения в центральном и не менее чем в двух периферийных пунктах, измерение амплитуды принятых радиосигналов, передачу с периферийных пунктов на центральный пункт измеренных значений амплитуды, преобразование всех измеренных значений амплитуды в функцию пространственной неопределенности, по положению максимума которой определяют местоположение источника, причем прием радиоизлучения выполняют с помощью идентичных приемников и антенн, всенаправленных в горизонтальной плоскости с одинаковыми высотами поднятия над поверхностью земли, согласно изобретению в центральном пункте дополнительно принимают радиосигналы с помощь дополнительных антенн и приемников, по результатам приема в центральном пункте определяют линию положения источника радиоизлучения, а преобразование всех измеренных значений амплитуды в функцию пространственной неопределенности и определение положения ее максимума выполняют на линии положения источника радиоизлучения.

Основным недостатком аналога является то, что для определения местоположения источника радиоизлучения требуется наличие трех пунктов контроля.

Наиболее близким по своей сущности к заявляемому изобретению (прототипом) является способ определения местоположения VSAT-станции в спутниковой сети (RU 2450284, МПК G01S 5/02), заключающийся в том, что измеряют множество значений дифференциальных наклонных дальностей до нескольких эфемерид одного или нескольких спутников с известными координатами одноканальным дальномерным и многоканальным дальномерно-разностным модемами и определяют общую искомую точку пересечения гиперболических поверхностей в пространстве, дополнительно контролируют служебную и техническую информацию, циркулирующую в спутниковой сети, определяют временные задержки, используемые с целью обеспечения работоспособности сети в условиях территориального разнесения телекоммуникационных устройств и учета нестабильности местоположения спутника на геоорбите, рассчитывают дальности до нескольких эфемерид одного спутника и определяют координаты перемещенной "пиратской" VSAT-станции как точку пересечения сферических поверхностей в пространстве, решая систему нелинейных уравнений методом поэтапного снижения разрядности систем уравнений и уменьшения числа переменных в уравнениях, приводя к виду решения с использованием метода простой итерации.

Основным недостатком прототипа является то, что точность определения местоположения VSAT-станции составляет ±3 км.

Задачей изобретения является создание способа определения местоположения перемещенной «пиратской» станции сети связи VSAT одним пунктом контроля, обеспечивающего простоту реализации определения местоположения станции за счет комплексного анализа служебной, технической информации, циркулирующей в спутниковой сети, реализующей режим TDMA (MF-TDMA), а также учитывающего время интерференции сигнала, передаваемого на станцию сети связи VSAT от спутника-ретранслятора, и солнечного излучения, и позволяющего повысить точность определения местоположения станции в условиях ретрансляции радиосигналов через искусственный спутник Земли на геостационарной орбите и отсутствия ЭМД к данной станции со стороны пункта радиоконтроля.

Задача изобретения решается тем, что способ определения местоположения станции сети связи VSAT, включающий в себя то, что на станции радиомониторинга контролируют служебную информацию, циркулирующую в VSAT-сети, анализируют данные для станции сети связи VSAT, согласно изобретению дополнен тем, что определяют время интерференции сигнала, передаваемого на станцию сети связи VSAT от спутника-ретранслятора, и солнечного излучения, вычисляют прямое восхождение и склонение Солнца для заданного времени, рассчитывают координаты Солнца в геоцентрической системе координат, вычисляют координаты спутника-ретранслятора, используя модель движения спутника-ретранслятора по геостационарной орбите относительно земной поверхности, вычисляют с использованием полученных данных и модели поверхности Земли координаты станции сети связи VSAT путем решения системы нелинейных уравнений второго порядка, определяют географические координаты станции сети связи VSAT.

Перечисленная новая совокупность существенных признаков позволяет повысить точность определения местоположения станции сети связи VSAT в условиях ретрансляции радиосигналов через искусственный спутник Земли на геостационарной орбите и отсутствия ЭМД к данной станции со стороны пункта радиоконтроля за счет анализа данных для станции сети связи VSAT о времени интерференции сигнала, передаваемого на станцию сети связи VSAT от спутника-ретранслятора, и солнечного излучения, а также данных о спутнике-ретрансляторе, через который работает станция сети связи VSAT.

Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие изобретения условию патентоспособности «новизна».

Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного объекта, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на решение указанной задачи. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».

«Промышленная применимость» способа обусловлена наличием элементной базы, на основе которой могут быть выполнены устройства, реализующие данный способ с достижением указанного в изобретении назначения.

Заявленный способ поясняется чертежами, на которых показаны:

фиг. 1 - блок-схема алгоритма, реализующий способ определения местоположения станции сети связи VSAT.

На фиг. 1 представлена последовательность операций способа определения местоположения станции сети связи VSAT.

Исходные параметры для алгоритма определения местоположения станции сети связи VSAT, которые следуют из анализа данных для станции сети связи VSAT о времени интерференции сигнала, передаваемого на станцию сети связи VSAT от спутника-ретранслятора, и солнечного излучения, а так же из анализа данных о спутнике-ретрансляторе, через который работает станция сети связи VSAT:

- период наибольшего влияния излучений Солнца на работу станции сети связи VSAT-Δt=t2-t1, где t1 - начальное время наблюдения явления солнечной интерференции для данной станции, a t2 - конечное время наблюдения;

- долгота подспутниковой точки - λсп.

Условия и ограничения:

- вычисления производятся в инерциальной геоцентрической системе координат (центром системы координат является центр Земли, любой объект позиционируется тремя координатами x, y, z),

- спутник находится на геостационарной орбите.

На первом этапе работы алгоритма, описывающего данный способ, осуществляется ввод исходных данных - времени начала проявления интерференции сигнала, передаваемого на станцию сети связи VSAT от спутника-ретранслятора, и солнечного излучения t1, времени завершения этого явления t2 и долготы подспутниковой точки λсп.

После ввода исходных данных на втором этапе алгоритма находится среднее значение времени в периоде наибольшего влияния излучений Солнца на работу станции сети связи tcp.

На третьем этапе происходит вычисление номера юлианского дня (JDN) по дате григорианского календаря. Вначале вычисляются промежуточные коэффициенты [7]:

где a, y, mc - коэффициенты;

month - месяц;

year - год.

После этого рассчитывается номер юлианского дня JDN:

где day - число в данном месяце расчета.

Все деления целочисленные, то есть остатки деления отбрасываются. Для перехода к "полной" Юлианской дате, содержащей дробную часть, используется формула:

где h - час наблюдения явления интерференции сигнала спутника-ретранслятора и солнечного излучения,

m - минута наблюдения явления интерференции сигнала спутника-ретранслятора и солнечного излучения,

s - секунда наблюдения явления интерференции сигнала спутника-ретранслятора и солнечного излучения,

JD - Юлианская дата для времени tcp.

При делении в этой формуле дробная часть не отбрасывается. Сутки не должны содержать високосной секунды (23:59:60).

Далее рассчитывается Юлианская дату начала года JD0, подставляя в переменные day и month значения, равные 1 в формулах 2, 3, 4.

Получаются выражения:

Все деления целочисленные, то есть остатки деления отбрасываются.

На четвертом этапе алгоритма идет расчет прямого восхождения Солнца и его склонения.

где Tu - эпоха в Юлианских столетиях,

JD - Юлианская дата для времени tcp,

αсс - прямое восхождение для среднего Солнца.

где η - уравнение времени,

α - прямое восхождение истинного Солнца,

δ - склонение Солнца,

ε=23,43929110 - угол наклонения плоскости эклиптики к плоскости земного экватора.

На пятом этапе алгоритма вычисляется расстояние Земля - Солнце Rc:

где υ - истинная аномалия,

αс=149597870 км - большая полуось орбиты Земли,

ес=0,0167 - эксцентриситет орбиты Земли.

На шестом этапе алгоритма вычисляются координаты Солнца xс, yс, zc [8].

где Rc - расстояние Земля - Солнце,

α - прямое восхождение Солнца,

δ - склонение Солнца.

На седьмом и восьмом этапах определяются координаты спутника для геостационарной орбиты.

где r - радиус геостационарной орбиты относительно центра Земли О с координатами (0,0,0), r=42164 км.

Определение координат станции сети связи VSAT, который находится на одной прямой с линией Солнце-спутник, происходит на девятом этапе, используя уравнение прямой в пространстве и уравнение сферы (Землю принимаем за сферу с радиусом R).

Получаем систему уравнений:

где xсп, yсп, zсп - координаты спутника;

xс, yс, zc - координаты Солнца;

R - радиус Земли.

Решение системы нелинейных уравнений реализуют методом поэтапного снижения разрядности систем уравнений с уменьшением числа переменных в уравнениях, приводя систему к виду, который решается с использованием метода простой итерации.

При решении данной системы уравнений находятся x, y, z - координаты станции сети связи VSAT.

На десятом этапе алгоритма с использованием координат станции сети связи VSAT находятся широта и долгота станции, решая систему уравнений:

где ϕ - широта земной станции,

λ - долгота земной станции,

R - радиус Земли.

На одиннадцатом этапе производится корректировка координат станции сети связи VSAT. Это требуется по причине того, что поверхность Земли представляет собой не идеальный шар, требуется произвести корректировку координат, используя данные о приближенной широте ϕ. Наиболее приближенным к модели поверхности земли является эллипсоид Красовского.

Полярный радиус Земли по эллипсоиду Красовского равен: Rp=6356853 м.

Экваториальный радиус Земли по эллипсоиду Красовского: Re=6378245 м.

Радиус Земли в точке с широтой ϕ находится по формуле

где R0 - радиус Земли в точке с широтой ϕ,

Rp - полярный радиус Земли по эллипсоиду Красовского,

Re - экваториальный радиус Земли по эллипсоиду Красовского,

ϕ - широта станции сети связи VSAT.

где xсп, yсп, zсп - координаты спутника;

xс, yс, zc - координаты Солнца;

R0 - радиус Земли на широте ϕ.

Решение системы нелинейных уравнений реализуют методом поэтапного снижения разрядности систем уравнений с уменьшением числа переменных в уравнениях, приводя систему к виду, который решается с использованием метода простой итерации.

При решении данной системы уравнений находятся x, y, z - скорректированные координаты станции сети связи VSAT.

На двенадцатом этапе, решая систему уравнений, с использованием полученных скорректированных координат станции сети связи VSAT находятся широта и долгота станции:

где ϕ - широта земной станции,

λ - долгота земной станции,

R - радиус Земли.

На тринадцатом этапе предлагается выбрать новые исходные данные для нового расчета, либо продолжить работу.

На четырнадцатом этапе алгоритма происходит вывод полученных результатов.

Результаты апробированы в ходе экспериментов, способ позволяет определить координаты станции сети связи VSAT с точностью до 2 км, которая обуславливается погрешностью определения временного пика явления интерференции сигнала, передаваемого на станцию сети связи VSAT от спутника-ретранслятора, и солнечного излучения.

Таким образом, разработанный способ определения местоположения станции сети связи VSAT, позволяет повысить точность определения местоположения станции сети связи VSAT в условиях ретрансляции радиосигналов через искусственный спутник Земли на геостационарной орбите и отсутствия ЭМД к данной станции со стороны пункта радиоконтроля.

Способ определения местоположения станции сети связи VSAT, включающий в себя то, что на станции радиомониторинга контролируют служебную информацию, циркулирующую в VSAT-сети, анализируют данные для станции сети связи VSAT, отличающийся тем, что определяют время интерференции сигнала, передаваемого на станцию сети связи VSAT от спутника-ретранслятора, и солнечного излучения, вычисляют прямое восхождение и склонение Солнца для заданного времени, рассчитывают координаты Солнца в геоцентрической системе координат, вычисляют координаты спутника-ретранслятора, используя модель движения спутника-ретранслятора по геостационарной орбите относительно земной поверхности, вычисляют с использованием полученных данных и модели поверхности Земли координаты станции сети связи VSAT путем решения системы нелинейных уравнений второго порядка, определяют географические координаты станции сети связи VSAT.



 

Похожие патенты:

Изобретение относится к системам определения географического местоположения. Техническим результатом является повышение точности определения местоположения.

Изобретение относится к радиотехнике и может использоваться в системах определения местоположения. Технический результат состоит в повышении точности определения временных изменений при повторной передаче.

Устройство предназначено для определения путевых информаций (FI), которые относятся к отрезку пути (14), который проехал пассажир. Устройство содержит носимый пассажиром приемный блок (16) для приема сигнала, который генерируется наземным, связанным с определенным местоположением передающим блоком (24, 28), и вычислительный блок (32) для определения путевой информации посредством оценки сигнала, при которой оценивается по меньшей мере одна сигнальная характеристика принятого сигнала.

Изобретение относится к радиотехнике и может использоваться для обеспечения коммуникации мобильных абонентов и определения их местоположения. Технический результат состоит в том, что изобретение позволяет при плохой видимости спутников назначать ретрансляторы из навигационно-связных терминалов мобильных абонентов, которые могут стать источником локального навигационного поля.
Изобретение относится к технике связи и может использоваться для определения пространственных координат стационарного или подвижного передающего радиосигнал объекта.

Изобретение относится к области навигации по сигналам космических аппаратов глобальных радионавигационных спутниковых систем и может быть использовано для определения угловой ориентации летательного аппарата в пространстве.

Изобретение относится к геопозиционированию. Техническим результатом является повышение точности местоположения терминала на поверхности зоны покрытия.

Изобретение относится к области радиосвязи. Техническим результатом является локализация узла в беспроводной сети.

Изобретение относится к области радионавигации. Техническим результатом является повышение точности определения местонахождения с использованием двухмерных датчиков на промышленном транспортном средстве.

Изобретение относится к радиотехнике и может использоваться в системах навигации. Технический результат состоит в повышении точности позиционирования.

Изобретение относится к радиотехнике и может быть использовано для определения координат наземных источников радиоизлучения (ИРИ) при радиопеленговании с борта летательного аппарата (ЛА). Достигаемый технический результат - повышение точности определения координат наземных ИРИ и снижение вычислительных затрат при радиопеленговании с борта ЛА. Указанный результат достигается за счет того, что осуществляют прием радиосигналов бортовой пеленгаторной антенной (БПА), частотную селекцию радиосигналов, определение линий радиопеленгов в азимутальной плоскости БПА, регистрацию полученных данных периодически отсчетами, формирование не менее одной независимой пары пересекающихся полуплоскостей положения наземного ИРИ, ортогональных азимутальной плоскости БПА, проходящих через каждую полученную линию радиопеленга, выбор и весовую обработку пар независимых отсчетов данных, учитывающих зависимости дисперсий оценок координат наземного ИРИ от взаимного расположения в пространстве ЛА и наземного ИРИ. При этом дополнительно введены операции формирования нормалей к полуплоскостям положения наземного ИРИ, определения не менее одной линии положения наземного ИРИ как линии пересечения независимой пары пересекающихся полуплоскостей положения наземного ИРИ, параметры которой определяют из условия ортогональности к вышеупомянутым нормалям, и определения координат наземного ИРИ как точки пересечения линии положения наземного ИРИ с поверхностью Земли с использованием итерационной процедуры ее поиска. Кроме того, при выборе и весовой обработке пар независимых отсчетов данных дополнительно учтены зависимости дисперсий оценок координат наземного ИРИ от параметров угловой ориентации БПА и от углов пересечения линии положения и нормалей к полуплоскостям положения наземного ИРИ с поверхностью Земли. 1 з.п. ф-лы, 5 ил.
Наверх