Измерительная ячейка дифференциального сканирующего калориметра

Изобретение относится к области термопорометрии, в частности к устройствам для проведения измерений распределения размера пор пористых сред, и может найти применение в различных отраслях промышленности, например нефтегазовой, химической и пищевой. Измерительная ячейка дифференциального сканирующего калориметра содержит цилиндрический корпус, выполненный из металла с высокой температуропроводностью. В корпусе размещена по меньшей мере одна металлическая вставка в виде диска, выполненного из металла с высокой температуропроводностью, в верхней части которого выполнено углубление для размещения образца исследуемого материала. В верхней части корпуса выполнен гермоввод для вакуумирования и подачи жидкости, а нижняя часть корпуса снабжена герметичной крышкой, выполненной с возможностью герметичного размещения внутри корпуса. Техническим результатом является обеспечение повышенной температуропроводности образца в ячейке, уменьшение эффекта запаздывания температуры, обеспечение возможности работы как с твердыми пористыми телами цилиндрической формы, так и с порошками, а также ячейка позволяет производить вакуумирование образцов и заполнение жидкими средами. 8 з.п. ф-лы, 2 ил.

 

Изобретение относится к области термопорометрии, в частности к устройствам для проведения измерений распределения размера пор пористых сред, и может найти применение в различных отраслях промышленности, например нефтегазовой, химической и пищевой.

Метод термопорометрии (криопорометрии) основан на калориметрических измерениях фазового перехода твердое тело - жидкость (например, вода-лед) в пористом материале, причем температура замерзания жидкости в порах зависит от размера пор. При уменьшении размера пор снижается температура замерзания жидкости, соответственно поры определенного размера характеризуются собственной температурой замерзания.

В экспериментах по методу термопорометрии пористую среду, заполненную жидкостью (например, водой) помещают в измерительную ячейку дифференциального сканирующего калориметра (ДСК). ДСК способны работать при различных температурах (диапазон зависит от модели калориметра). Для изменения температуры камеры калориметра осуществляют нагрев камеры или ее охлаждение. Контролируемое изменение температуры камеры калориметра называется сканированием по температуре, отсюда название - сканирующий калориметр. Сканирующий режим позволяет, в частности, изучать фазовые переходы, сопровождающиеся выделением или поглощением тепла, такие, например, как изменение фазового состояния жидкости.

Камера калориметра охлаждается так, чтобы вся жидкость замерзла (в экспериментах с водой, например до -30°C), и далее происходит плавный медленный нагрев камеры калориметра. В ходе эксперимента измеряют тепловой поток в зависимости от температуры камеры калориметра. Изменение теплового потока свидетельствует о фазовом переходе определенного количества вещества (чем сильнее изменение, тем большее количество вещества) при данной температуре.

Типичный ДСК оборудован двумя ячейками, в одну из которых (S) помещают исследуемый образец. Другая ячейка (R) является ячейкой сравнения и может, в зависимости от эксперимента, либо оставаться пустой, либо также заполняться. Ячейки теплоизолированы друг от друга, находятся при контролируемой температуре, которая может изменяться с помощью нагревателя камеры калориметра. Измерение разницы температур между каждой из ячеек и камерой калориметра осуществляют, как правило, с помощью термопар. Правильная калибровка калориметра позволяет рассчитать разницу тепловых потоков между ячейками калориметра и камерой калориметра. Суммирование разницы тепловых потоков по времени позволяет определить разницу количества тепла, выделившегося или поглотившегося в каждой из ячеек. В ДСК экспериментальные ячейки сменные, и в зависимости от типа эксперимента могут применяться различные пары экспериментальных ячеек.

В связи с конечной температуропроводностью материала камеры калориметра, и измерительной ячейки, всегда существует некоторое запаздывание между измеряемой температурой камеры калориметра и реальной температурой измерительной ячейки в данный момент. Кроме того, сигнал «размывается», то есть, например, вместо узкого пика (повышение теплового потока) при нуле градусов при измерении фазового перехода воды получается некоторая кривая конечной толщины - характеризуемой так называемой тепловой постоянной калориметра. Для уменьшения эффекта размазывания кривой теплового потока, камера калориметра и измерительные ячейки изготавливают из материала с высокой температуропроводностью (например, серебро). Конечная температуропроводность образца в ячейке также влияет на уширение измеряемой кривой.

Стандартная цилиндрическая ячейка калориметра, используемая для экспериментов по термопорометрии, представляет из себя сосуд цилиндрической формы, герметично закрываемый крышкой (см., например, - “Principles of Thermal Analysis and Calorimetry” под редакцией P.J. Haines, 2002, стр 72). При низкой температуропроводности образца в ходе эксперимента образец прогревается неравномерно, что ухудшает точность проводимых экспериментов по термопорометрии. Температуропроводность в данной ячейке определяется температуропроводностью образца в ячейке и поэтому может быть низкой. Ячейка не предусматривает возможность ее вакуумирования перед заполнением образцом и, таким образом, не позволяет исследователям быть уверенными в том, что все пустотное пространство ячейки было заполнено.

Технический результат, достигаемый при реализации предлагаемого изобретения, заключается в обеспечении повышенной температуропроводности образца в ячейке, уменьшении эффекта запаздывания температуры, а также в обеспечении возможности работы как с твердыми пористыми телами цилиндрической формы, так и с порошками. Кроме того, предлагаемая измерительная ячейка позволяет производить вакуумирование образцов и заполнение жидкими средами, за счет чего обеспечивается заполнение всего пустотного объема ячейки жидкостью и отсутствие воздушных пузырей, которые снижают температуропроводность. Предлагаемая конструкция измерительной ячейки универсальна и может быть использована в различных ДСК.

Изобретение поясняется чертежами, где на фиг. 1 показана конструкция измерительной ячейки в соответствии с предлагаемым изобретением, а на фиг. 2 показан вариант выполнения диска, используемого в ячейке.

Как показано на фиг. 1, основными элементами конструкции ячейки ДСК являются корпус 1, гермоввод 2, металлические вставки в виде дисков 3 с исследуемыми образцами 4 и герметичная крышка 5. Диски 3 закреплены в корпусе 1 посредством крышки 5, у которой есть уплотнительное кольцо и она скользит с сопротивлением внутри корпуса 1. Количество дисков 3 может быть разным. Гермоввод 2 размещен в верхней части корпуса 1 и предназначен для подключения вакуумного насоса (на фиг. 1 не показан) и последующего заполнения жидкостью. Гермоввод представляет из себя вакуумное соединение резьбового типа с вакуумным уплотнением металл-металл или любое другое вакуумное уплотнение, например, металл-тефлон. Внешний вид диска 3 представлен на фиг. 2. В верхней части каждого диска 3 выполнено углубление 6 для размещения исследуемого образца. Для вакуумирования и заполнения жидкостью исследуемого образца 4 в днище диска выполнено по меньшей мере одно отверстие 8; на внешней боковой поверхности диска 3 также могут быть выполнены продольные и кольцевые канавки 7.

Предлагаемая ячейка для дифференциального сканирующего калориметра (фиг. 1) представляет из себя цилиндрический корпус из металла с высокой температуропроводностью (например, серебро, медь или сталь), в который помещают металлические вставки - диски 3 определенной формы, выполненные из металла с высокой температуропроводностью (например, серебро, медь или сталь). Наличие таких дисков позволяет значительно повысить температуропроводность образца в ячейке и таким образом повысить точность термопорометрических измерений. Форма дисков позволяет использовать в качестве образца как порошки, так и твердые тела цилиндрической формы (форма диска).

Ячейка работает следующим образом. В диски 3 (фиг. 1) устанавливают исследуемые образцы. Диски с исследуемыми образцами устанавливают в корпус 1 и закрепляют, например, закрывают корпус 1 снизу герметичной крышкой 5, имеющей вакуумное кольцевое уплотнение. Через гермоввод 2 производят вакуумирование и заполнение ячейки жидкостью. Ячейка готова к работе.

Особенностью предлагаемой ячейки является возможность насыщать пористый материал жидкостью непосредственно в ячейке уже после заполнения ее сухим материалом. Для этого после сборки ячейки с образцами к гермовводу 2 присоединяют вакуумную линию, ячейку с образцами вакуумируют и затем через тот же гермоввод подают жидкость, заполняющую поры образца и пустоты измерительной ячейки. Благодаря этому можно точно оценить объем жидкости заполняющей поры образца.

Гермоввод 2 закрывают и устанавливают ячейку с образцами в ДСК. Далее проводят эксперимент по термопорометрии. Камеру ДСК охлаждают, так, чтобы вся жидкость в ячейке замерзла, а затем медленно нагревают, производя измерения теплового потока. Измерения можно также проводить при охлаждении образца. Проводят интерпретацию данных измерений с целью получения информации о распределении пор образца по размерам.

В качестве образцов могут использоваться порошки - так, например порошки стекол с контролируемым размером пор (CPG - controlled pore glass) могут быть использованы для точной предварительной калибровки калориметра. Так как размер пор в этих порошках хорошо известен, измеренная кривая распределения теплового потока может быть соотнесена с размером пор и использована в дальнейшем для интерпретации измерений пористых сред с более сложным распределением пор по размерам.

В качестве образцов могут использоваться также твердые тела цилиндрической формы (диск), так, например, могут использоваться образцы горной породы. Например, в случае использования ДСК (ВТ2.15 Setaram) внешний размер ячейки составляет около 15 мм в диаметре. Размер одного цилиндра/диска образца может составлять около 10 мм в диаметре и, например, 2 мм в высоту, при этом можно использовать около 20 дисков, чтобы заполнить ячейку целиком.

1. Измерительная ячейка дифференциального сканирующего калориметра, содержащая цилиндрический корпус, выполненный из металла с высокой температуропроводностью, в корпусе размещена по меньшей мере одна металлическая вставка в виде диска, выполненного из металла с высокой температуропроводностью, в верхней части диска выполнено углубление для размещения образца исследуемого материала, при этом в верхней части корпуса выполнен гермоввод для вакуумирования и подачи жидкости, а нижняя часть корпуса снабжена герметичной крышкой, выполненной с возможностью герметичного размещения внутри корпуса.

2. Измерительная ячейка по п. 1, в которой в боковой поверхности диска выполнены продольные и кольцевые канавки.

3. Измерительная ячейка по п. 1, в которой в днище диска выполнено по меньшей мере одно отверстие.

4. Измерительная ячейка по п. 1, в которой корпус выполнен из меди.

5. Измерительная ячейка по п. 1, в которой корпус выполнен из стали.

6. Измерительная ячейка по п. 1, в которой корпус выполнен из серебра.

7. Измерительная ячейка по п. 1, в которой диск выполнен из меди.

8. Измерительная ячейка по п. 1, в которой диск выполнен из стали.

9. Измерительная ячейка по п. 1, в которой диск выполнен из серебра.



 

Похожие патенты:

Изобретение относится к литейному производству, а именно к определению формы зерен формовочного песка на основе кварца, и может быть использовано при оценке состояния поверхности формовочного песка различных месторождений.

Изобретение относится к нефтедобывающей промышленности, а именно к определению исходных данных для проектирования разработки продуктивной залежи вмещающей, нефть с повышенным содержанием асфальтено-смолистых веществ, проявляющую неньютоновские свойства нелинейной вязкопластичной нефти.
Изобретение относится к способам определения качества металлических разнофункциональных покрытий на изделиях, получаемых обработкой давлением. Способ определения качества покрытий на изделиях, получаемых обработкой давлением, заключается в том, что образец-свидетель перед подготовкой поверхности по ГОСТ 9.301.78 и нанесением покрытия на него подвергают осадке по схеме напряженно-деформированного состояния аналогично таковой для конкретного вида обработки давлением, при котором получено изделие.
Изобретение относится к сельскому хозяйству, а именно к машинному доению коров. Сначала каждую корову доят доильным аппаратом через счетчик молока.

Изобретение относится к способам анализа образцов пористых материалов. Для определения распределения и профиля проникшего загрязнителя в пористой среде приготовляют суспензию загрязнителя, содержащего по меньшей мере один твердый компонент и окрашенного по меньшей мере одним катионным красителем.

Изобретение относится к способам и устройствам для измерения содержания растворенного газа, остающегося в нефти после сепарации, при различных давлениях и температурах в установках замера дебитов скважин.

Изобретение относится к способам контроля состояния атмосферного воздуха и может быть использовано для мониторинга загрязнения окружающей среды аэрозолями, а также для контроля аварийных выбросов.

Изобретение относится к области аналитической химии. Испытуемый образец золошлакового материала и пары азотной кислоты подвергают контакту в изолированной камере в течение 8-90 часов.

Изобретение относится к области поверхностных явлений и может быть использовано в разных отраслях, в том числе для характеристики дисперсных материалов или раздробленных материалов, песка, цемента и т.п.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано при изучении возможного взаимодействия в недрах земли пластовых вод и жидких производственных отходов при закачивании последних в глубокозалегающие водоносные пласты.

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано при проектировании разработки нефтяных и газовых месторождений, на которых планируется применение кислотной обработки пласта и создание трещин гидроразрыва. Для эксперимента используют образцы керна с близким литологическим составом и схожими фильтрационно-емкостными и физико-механическими свойствами. По возможности, образцы выбуривают из одного куска исходного кернового материала. В экстрагированных и высушенных образцах керна создают остаточную водонасыщенность с помощью модели пластовой воды. Для пород-коллекторов нефтяных месторождений образцы затем насыщают керосином или нефтью. На основе литологической характеристики пород-коллекторов подбирается кислотный состав. Каждый образец в отдельности помещают в установку, позволяющую фильтровать кислотный состав. В установке создают эффективные напряжения, соответствующие пластовым условиям, и прокачивают определенное количество поровых объемов образца керна кислотного состава по всем образцам, кроме одного. Далее производят испытание упругих и прочностных свойств всех образцов керна статическим методом. Строят корреляционную зависимость изменения упругих и прочностных свойств образцов керна в зависимости от прокачанных поровых объемов кислотного состава. Техническим результатом является определение закономерности изменения упругих и прочностных свойств пород-коллекторов от прокачиваемых объемов кислотного состава. 1 ил.

Изобретение относится к нефтедобывающей отрасли и может быть использовано при проектировании разработки нефтяных месторождений с трещиноватым типом коллектора, на которых используется система поддержки пластового давления (ППД) в виде нагнетания воды. Проэкстрагированный и высушенный образец керна с единичной трещиной насыщают дистиллированной водой или моделью нагнетаемой воды. Образец помещают в установку для фильтрационных исследований образцов керна. Создают эффективные напряжения, соответствующие пластовым условиям, и определяют проницаемость образца при фильтрации дистиллированной воды или модели нагнетаемой воды. В процессе фильтрации воды образец подвергают циклическому воздействию увеличивающихся и уменьшающихся эффективных напряжений (минимум три цикла), а также выдержке при различном значении постоянного эффективного напряжения (минимум три выдержки). Одновременно производят отбор профильтровавшейся воды (минимум три пробы) и определяют ее химический состав. На основе динамики изменения проницаемости образца керна и химического состава профильтровавшейся воды определяют зависимость изменения проницаемости образца керна с трещиной при совместном воздействии фильтрации воды и постоянных эффективных напряжений. На основе зависимости изменения ширины трещины от изменяющихся эффективных напряжений определяют величину изменения проницаемости за счет упругих деформаций образца керна. Техническим результатом является определение закономерности изменения трещинной составляющей проницаемости при совместном воздействии фильтрующейся воды и изменяющихся эффективных напряжений. 1 табл., 3 ил.

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано при проектировании разработки нефтяных и газовых месторождений. Способ заключается в том, что для эксперимента используют экстрагированные и высушенные образцы керна, отобранные из одного продуктивного объекта. Предварительно определяют открытую пористость и абсолютную проницаемость образцов по газу в стандартных условиях. Делают подборку из данных образцов таким образом, чтобы она включала образцы с максимальной, минимальной и средними значениями открытой пористости и абсолютной проницаемости (5 и более образцов). Для исследования эффективной пористости и эффективной проницаемости в образцах керна создают остаточную водонасыщенность с помощью модели пластовой воды. Для пород-коллекторов нефтяных месторождений образцы затем насыщают керосином или нефтью. Каждый образец помещают в установку, позволяющую определять изменение пористости и проницаемости по жидкости (для нефтяных месторождений) или по газу (для газовых месторождений). В установке ступенями увеличивают эффективные напряжения до величины, соответствующей начальным пластовым условиям. Выдерживают образец до тех пор, пока величина проницаемости не стабилизируется. Увеличивают эффективные напряжения до величины, соответствующей снижению пластового давления на определенное значение (например, 10 МПа), и выдерживают образец до тех пор, пока величина проницаемости не стабилизируется. Циклы увеличения и длительной выдержки образцов керна повторяют не менее трех. Затем эффективные напряжения ступенчато уменьшают с количеством ступеней не менее пяти. Техническим результатом является определение закономерностей изменения пористости и проницаемости образцов керна при фильтрации флюида и воздействии эффективных напряжений различной величины до стабилизации проницаемости образцов керна минимум на трех режимах воздействия. 3 ил.

Изобретение относится к области молекулярной физики и может использоваться для определения средней длины пробега и эффективного диаметра не только молекул воздуха, но и молекул других газов (кислород, азот, углекислый газ и др.) с соответствующими физическими поправками. Это достигается тем, что устройство дополнительно снабжено припаянным к средней боковой части стеклянного цилиндрического сосуда стеклянным трубчатым уровнемером с измерительной шкалой, отходящим от верхней боковой части стеклянного цилиндрического сосуда стеклянным вакуумным краном, припаянными к стеклянной монолитной пробке со шлифом горла тремя вращательными стеклянными «рожками», присоединенными последовательно и герметично к капилляру из нержавеющей стали гибким полимерным капилляром, стеклянным трубчатым тройником с тремя стеклянными вакуумными кранами и полимерной надуваемой-сдуваемой камерой со стеклянным вакуумным краном. Технический результат, достигаемый при реализации заявленного устройства, заключается в повышении точности прецизионного визуального измерения уровня воды в стеклянном цилиндре. 2 ил.
Изобретение относится к области медицины, в частности к онкологии, и предназначено для определения оптимального срока выполнения оперативного вмешательства после пролонгированной лучевой терапии при раке прямой кишки. В биопсийном материале опухоли прямой кишки до начала курса лучевой терапии и через 4 недели после ее окончания проводят ДНК-цитометрический анализ и определяют индекс пролиферации опухоли. Отличие индексов пролиферации в 1,3 раза и менее является показателем для окончания перерыва в лечении и выполнения операции. Отличие индексов пролиферации более чем в 1,3 раза является показателем для продления перерыва в лечении и выполнения операции через 6-8 недель после окончания курса лучевой терапии. Изобретение обеспечивает определение оптимального срока выполнения операции после окончания курса лучевой терапии и снижение затрат на лечение рака прямой кишки. 2 пр.

Изобретение относится к области геологии и может быть использовано для моделирования многофазного потока текучей среды. Структура пор горных пород и других материалов может быть определена посредством микроскопии и подвержена цифровому моделированию для определения свойств потоков текучей среды, проходящих сквозь материал. Для экономии вычислительных ресурсов моделирование предпочтительно осуществляют на стандартном элементе объема (СЭО). В некоторых вариантах осуществления способа определение многофазного СЭО может быть выполнено путем выведения параметра, связанного с пористостью, из модели пор и матрицы материала; определения многофазного распределения внутри пор материала; разделения модели пор и матрицы на несколько моделей фаз и матрицы; и выведения параметра, связанного с пористостью, из каждой модели фаз и матрицы. Затем можно определить и проанализировать зависимость параметра от фазы и насыщения для выбора подходящего размера СЭО. Технический результат – повышение точности и достоверности получаемых данных. 2 н. и 18 з.п. ф-лы, 15 ил.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности. Предложен способ определения коэффициента диффузии растворителей в листовых изделиях из капиллярно-пористых материалов, заключающийся в том, что в исследуемом листовом материале создают равномерное начальное содержание распределенного в твердой фазе растворителя. Затем исследуемый материал помещают на плоскую подложку из непроницаемого для растворителя материала, гидроизолируют верхнюю поверхность материала, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия дозой растворителя. Затем измеряют изменение во времени сигнала гальванического преобразователя на заданном расстоянии от точки нанесения импульса дозой растворителя, фиксируют значения сигнала гальванического датчика в два момента времени и рассчитывают коэффициент диффузии. Причем измерение коэффициента диффузии осуществляют при условии достижения в эксперименте максимума сигнала гальванического преобразователя Еmax, составляющего 0,75-0,95 от максимально возможного значения данного сигнала Ее, соответствующего переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния. Фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов гальванического датчика Е1 и Е2 из диапазона (0,7-0,9)Eе соответственно на восходящей и нисходящей ветвях кривой изменения сигнала во времени, а расчет коэффициента диффузии производят по формуле: где r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия. Технический результат - повышение точности и быстродействия измерения коэффициента диффузии растворителей в листовых изделиях их капиллярно-пористых материалов. 1 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в плазме и в газоразрядных приборах. Технический результат - обеспечение возможности формирования тепловой кумулятивной струи, плавящей металл, и образованного ею канала на поверхности металла необходимой длины. Способ формирования тепловой кумулятивной струи, плавящей металл, и образованного ею канала на металлической поверхности катодной пластины в импульсном дуговом разряде при взрыве размещенной между электродами проволочки необходимой длины, включает подачу на электроды напряжения, обеспечивающего лавинный пробой разрядного промежутка, возникающий при наличии в воздухе паров испаряющейся проволочки с формированием тепловой кумулятивной струи, плавящей металл, на металлической поверхности катодной пластины, размещение на поверхности катодной пластины диэлектрической преграды на пути кумулятивной струи и перемещение диэлектрической преграды вдоль этой струи до получения необходимой длины тепловой кумулятивной струи и длины образованного ею канала проплавленного металла. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области геофизики и может быть использовано для определения трещинной пористости горных пород. Способ определения трещинной пористости горных пород включает в себя экспериментальное определение скорости (Vp) распространения упругой продольной волны каждого образца в термобарических условиях, превышающих пластовые на 10-15%, общую пористость (Кп.общ.) каждого образца в термобарических условиях, превышающих пластовые на 10-15%. После этого строят график зависимости (Vp) от (Кп.общ.), в результате чего графически определяют скорость (Vp.ск.) распространения упругой продольной волны в минеральном скелете исследуемой породы. Затем рассчитывают трещинную пористость (Кп.тр.) каждого из образцов исследуемой породы по формуле: При этом в случае получения отрицательных величин рассчитываемой трещинной пористости полученное наибольшее отрицательное ее значение приравнивают нулю и определяют уточненное значение скорости распространения упругой продольной волны в минеральном скелете (Vp.ск.ут.) по формуле: После чего вновь рассчитывают величину трещинной пористости (Кп.тр.) каждого образца исследуемой породы по формуле (1), используя для расчета полученное по формуле (2) уточненное значение скорости распространения упругой продольной волны в минеральном скелете (Vp.ск.ут). Технический результат - повышение точности проводимых исследований по определению величины трещинной пористости пород при исследовании образцов горных пород. 2 ил., 2 табл.

Изобретение относится к области термопорометрии, в частности к устройствам для проведения измерений распределения размера пор пористых сред, и может найти применение в различных отраслях промышленности, например нефтегазовой, химической и пищевой. Измерительная ячейка дифференциального сканирующего калориметра содержит цилиндрический корпус, выполненный из металла с высокой температуропроводностью. В корпусе размещена по меньшей мере одна металлическая вставка в виде диска, выполненного из металла с высокой температуропроводностью, в верхней части которого выполнено углубление для размещения образца исследуемого материала. В верхней части корпуса выполнен гермоввод для вакуумирования и подачи жидкости, а нижняя часть корпуса снабжена герметичной крышкой, выполненной с возможностью герметичного размещения внутри корпуса. Техническим результатом является обеспечение повышенной температуропроводности образца в ячейке, уменьшение эффекта запаздывания температуры, обеспечение возможности работы как с твердыми пористыми телами цилиндрической формы, так и с порошками, а также ячейка позволяет производить вакуумирование образцов и заполнение жидкими средами. 8 з.п. ф-лы, 2 ил.

Наверх