Способ идентификации паров моноэтаноламина в газовых смесях, равновесных парах над твердыми, жидкими пробами



 


Владельцы патента RU 2607388:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВО "ВГУИТ"). (RU)

Изобретение относится к аналитической химии органических соединений. Способ характеризуется тем, что применяются два сенсора на основе пьезокварцевых резонаторов (ПКР) объемных акустических волн с базовой частотой колебания 10,0 МГц, на электроды которых наносят пленки из насыщенного раствора фторида калия в ацетоне, для чего электроды опускают в насыщенный раствор фторида калия в ацетоне и выдерживают в течение 10 и 5 с, после удаления свободного растворителя в течение 10 мин при температуре t = 100°C , наносятся фазы фторида калия массой 4,0 и 1,0 мкг соответственно, выдерживают их 2 мин для установления стабильности исходной частоты колебания каждого сенсора QUOTE (Гц), предварительно анализируемую твердую фазу массой 1 – 5 г измельчают, жидкую фазу объемом 10 QUOTE отбирают и выдерживают в бюксе с полиуретановой пробкой в течение 20 и 10 мин соответственно, анализируемые газовую смесь или равновесные пары над твёрдыми, жидкими пробами объемом 5 QUOTE отбирают газовым шприцем и инжектируют в ячейку детектирования со скоростью 1 QUOTE , при этом вещества взаимодействуют с покрытиями из фторида калия и изменяются частоты колебания обоих сенсоров, фиксируют частоту колебаний сенсора с массой пленки 4,0 мкг через 30 с после инжекции паров QUOTE (Гц) и для сенсора с массой пленки 1,0 мкг через 60 с после инжекции QUOTE (Гц), по полученным данным рассчитывают для каждого сенсора изменение частот колебаний относительно исходной и, если соотношение изменений частот колебаний сенсоров с массой пленок соответственно 4,0 и 1,0 мкг составляет 1,2 ± 0,3, то делают вывод о присутствии в газовой смеси паров моноэтаноламина. Достигается возможность определения наличия паров моноэтаноламина в газовых смесях, равновесных парах над твердыми, жидкими пробами с высокими экспрессностью и селективностью в минимальном объеме пробы. 1 пр.

 

Изобретение относится к аналитической химии органических соединений и может быть использовано для детектирования паров моноэтаноламина в газовых смесях, равновесных парах над твердыми и жидкими пробами.

Технической задачей изобретения является установление наличия паров моноэтаноламина в газовых смесях, равновесных парах над твердыми и жидкими пробами с высокими экспрессностью и селективностью в минимальном объеме пробы.

Для решения технической задачи изобретения предложен способ идентификации паров моноэтаноламина в газовых смесях, равновесных парах над твердыми и жидкими пробами, характеризующийся тем, что применяются два сенсора на основе пьезокварцевых резонаторов (ПКР) объемных акустических волн с базовой частотой колебания 10,0 МГц, на электроды которых наносят пленки из насыщенного раствора фторида калия в ацетоне, для чего электроды опускают в насыщенный раствор фторида калия в ацетоне и выдерживают в течение 10 и 5 с, после удаления свободного растворителя в течение 10 мин при температуре t=100°С, наносятся фазы фторида калия массой 4,0 и 1,0 мкг соответственно, выдерживают их 2 мин для установления стабильности исходной частоты колебания каждого сенсора , (Гц), предварительно анализируемую твердую фазу массой 1-5 г измельчают, жидкую фазу объемом 10 см3 отбирают и выдерживают в бюксе с полиуретановой пробкой в течение 20 и 10 мин соответственно, анализируемые газовую смесь или равновесные пары над твердыми, жидкими пробами объемом 5 см3 отбирают газовым шприцем и инжектируют в ячейку детектирования со скоростью 1 см3/с, при этом вещества взаимодействуют с покрытиями из фторида калия и изменяются частоты колебания обоих сенсоров, фиксируют частоту колебаний сенсора с массой пленки 4,0 мкг через 30 с после инжекции паров (Гц) и для сенсора с массой пленки 1,0 мкг через 60 с после инжекции (Гц), по полученным данным рассчитывают для каждого сенсора изменение частот колебаний относительно исходной по уравнению: , , находят коэффициент по уравнению: ,

где и - изменение частоты колебания сенсоров с массой пленок 4,0 и 1,0 мкг соответственно, Гц;

и - начальная частота колебания сенсоров с массой пленок 4,0 и 1,0 мкг соответственно, Гц;

- частота колебания сенсора с массой пленки 4,0 мкг через 30 с после инжекции пробы, Гц;

- частота колебания сенсора с массой пленки 1,0 мкг через 60 с после инжекции пробы, Гц;

если , то делают вывод о присутствии в газовой смеси паров моноэтаноламина.

Технический результат изобретения заключается в идентификации паров моноэтаноламина в газовых смесях, равновесных парах над твердыми и жидкими пробами с высокими экспрессностью и селективностью в минимальном объеме пробы.

Моноэтаноламин применяется в фармацевтической, лакокрасочной, текстильной промышленности, при производстве пластмассы для стабилизации эмульсий в качестве буферного вещества, при производстве антигистаминных препаратов, входит в состав некоторых средств в косметической и бытовой химии как сырье для получения диспергаторов, эмульгаторов, стабилизаторов пен, ПАВ, моющих и чистящих средств, шампуней и др. Легко проникает в кожу и увеличивает риск развития рака. Класс опасности в атмосферном воздухе - 2.

Способ определения паров моноэтаноламина в газовых смесях, равновесных парах над твердыми, жидкими пробами осуществляется следующим образом.

Применяют два сенсора на основе ПКР объемных акустических волн с базовой частотой колебания 10,0 МГц. На электроды ПКР наносят пленки из насыщенного раствора фторида калия в ацетоне. Электроды опускают в насыщенный раствор фторида калия в ацетоне и выдерживают в течение 10 с для первого сенсора и 5 с для второго. Удаляют свободный растворитель при температуре t=100°С в течение 10 мин так, чтобы после удаления свободного растворителя масса пленки составила 4,0 и 1,0 мкг соответственно.

Сенсоры с массой пленки 4,0 и 1,0 мкг помещают в ячейку детектирования с инжекторным вводом пробы и выдерживают их 2 мин для установления стабильности исходной частоты колебания сенсора (Гц) и (Гц) соответственно.

При анализе твердой фазы, ее отбирают массой 1-5 г, предварительно измельчают, помещают в бюкс с полиуретановой пробкой и выдерживают в течение 20 мин. Жидкую фазу отбирают объемом 10 см3 и выдерживают в бюксе с полиуретановой пробкой в течение 10 мин. Для определения в твердой и жидкой пробах паров моноэтаноламина отбирают 5 см3 равновесной газовой фазы над ними и вкалывают в ячейку детектирования со скоростью 1 см3/с. Анализируемую газовую фазу отбирают газовым шприцем объемом 5 см3 и вкалывают в ячейку детектирования со скоростью 1 см3/с, содержащую два модифицированных фторидом калия ПКР объемных акустических волн с массой пленок фторида калия 4,0 и 1,0 мкг соответственно.

Моноэтаноламин из газовой фазы сорбируется пленками сорбента, в результате чего изменяется частота колебаний ПКР. Фиксируют частоту колебания резонатора через 30 с после инжекции пробы для сенсора с массой пленки 4,0 мкг (Гц) и частоту колебания резонатора через 60 с после инжекции пробы для сенсора с массой пленки 1,0 мкг (Гц). Рассчитывают изменение частоты колебания для каждого сенсора относительно исходной по уравнению:

,

,

После этого находят коэффициент по уравнению: , где и - изменение частоты колебания сенсоров с массой пленок 4,0 и 1,0 мкг соответственно, Гц;

и - начальная частота колебания сенсоров с массой пленок 4,0 и 1,0 мкг соответственно, Гц;

- частота колебания сенсора с массой пленки 4,0 мкг через 30 с после инжекции пробы, Гц;

- частота колебания сенсора с массой пленки 1,0 мкг через 60 с после инжекции пробы, Гц.

Если в результате измерений , то делают вывод о наличии в газовой смеси паров моноэтаноламина.

Регенерация сенсора (полное восстановление исходной частоты колебаний) осуществляется в закрытой ячейке детектирования пропусканием лабораторного воздуха, не содержащего пары моноэтаноламина, в течение 2-5 мин.

Продолжительность анализа твердых и жидких проб составляет порядка 25-30 мин, газовых сред - 8-15 мин.

Способ поясняется следующим примером.

Пример 1. Анализ средства для холодной химической завивки волос.

В качестве объекта анализа выбрано средство для холодной химической завивки волос. Для анализа отбирают пробу массой 1,0 г, помещают в бюкс с полиуретановой пробкой и выдерживают в течение 20 мин; отбирают газовым шприцем 5 см3 равновесной газовой фазы над пробой и вкалывают в ячейку детектирования с пьезокварцевыми резонаторами с массой пленок 4,0 и 1,0 мкг. Фиксируют исходную частоту колебания каждого сенсора: и .

Вещества из газовой фазы сорбируются пленкой сорбента, в результате чего изменяется частота колебания каждого сенсора. Фиксируют частоту колебания для сенсора с массой пленки 4,0 мкг через 30 с после инжекции паров и для сенсора с массой пленки 1,0 мкг через 60 с после инжекции паров .

Рассчитывают изменение частоты колебания каждого сенсора по уравнению:

,

;

Находят коэффициент по уравнению:

.

Сравнивают полученное число с идентификационным параметром для моноэтаноламина . Делают вывод о наличии в равновесной газовой фазе над пробой паров моноэтаноамина. В составе средства для холодной химической завивка заявлен моноэтаноламин. Продолжительность анализа составляет 28 мин.

Способ осуществим.

Предложенный способ дает возможность установить наличие паров моноэтаноламина в газовых смесях, равновесных парах над твердыми и жидкими пробами с высокими экспрессностью и селективностью в минимальном объеме пробы. При изменении массы фторида калия на сенсорах, уменьшении объема или массы анализируемых проб и объема газовых смесей, изменении времени и порядка регистрации сигналов сенсоров существенно уменьшится селективность детектирования и изменится разница в чувствительности сенсоров, что приводит к невозможности детектирования моноэтаноламина в смеси других газов и паров.

Способ идентификации паров моноэтаноламина в газовых смесях, равновесных парах над твердыми, жидкими пробами заключается в применении двух сенсоров на основе пьезокварцевых резонаторов (ПКР) объемных акустических волн с базовой частотой колебания 10,0 МГц, на электроды которых наносят пленки из насыщенного раствора фторида калия в ацетоне, для чего электроды опускают в насыщенный раствор фторида калия в ацетоне и выдерживают в течение 10 и 5 с, после удаления свободного растворителя в течение 10 мин при температуре t=100°С, наносятся фазы фторида калия массой 4,0 и 1,0 мкг соответственно, выдерживают их 2 мин для установления стабильности исходной частоты колебания каждого сенсора , (Гц), предварительно анализируемую твердую фазу массой 1-5 г измельчают, жидкую фазу объемом 10 см3 отбирают и выдерживают в бюксе с полиуретановой пробкой в течение 20 и 10 мин соответственно, анализируемые газовую смесь или равновесные пары над твердыми, жидкими пробами объемом 5 см3 отбирают газовым шприцем и инжектируют в ячейку детектирования со скоростью 1 см3/с, при этом вещества взаимодействуют с покрытиями из фторида калия и изменяются частоты колебания обоих сенсоров, фиксируют частоту колебаний сенсора с массой пленки 4,0 мкг через 30 с после инжекции паров (Гц) и для сенсора с массой пленки 1,0 мкг через 60 с после инжекции (Гц), по полученным данным рассчитывают для каждого сенсора изменение частот колебаний относительно исходной по уравнению: , , находят коэффициент по уравнению: ,

где и - изменение частоты колебания сенсоров с массой пленок 4,0 и 1,0 мкг соответственно, Гц;

и - начальная частота колебания сенсоров с массой пленок 4,0 и 1,0 мкг соответственно, Гц;

- частота колебания сенсора с массой пленки 4,0 мкг через 30 с после инжекции пробы, Гц;

- частота колебания сенсора с массой пленки 1,0 мкг через 60 с после инжекции пробы, Гц;

если , то делают вывод о присутствии в газовой смеси паров моноэтаноламина.




 

Похожие патенты:

Группа изобретений относится к определению массовой доли ацетальдегида, выделяющегося в полиэтилентерефталате (ПЭТ) или его композитах. Способ определения массовой доли ацетальдегида в ПЭТ или его композитах включает запаивание пробы в стеклянные ампулы диаметром 5-6 мм на воздухе или путем вакуумирования, помещение ампул в термостат при температуре 120±2°С и выдерживание в течение 2 ч, последующее помещение ампул в термостатированную ячейку с ударным механизмом, продуваемую инертным газом и нагреваемую до температуры 20-80°С, с последующим вскрытием ампул с помощью ударного механизма и оценкой содержания ацетальдегида методом газовой хроматографии.

Изобретение относится к области измерительной техники и может быть использовано для оценки состояния поверхностей резиновых и пластиковых нитей. Заявлено устройство для оценки технического состояния поверхности нитей, включает в себя температурный генератор, температурный датчик, интерфейс, анализатор изображения и элемент принятия решения.
Изобретение относится к аналитической химии газовых и воздушных сред и касается способа определения ацетона и фенола в равновесной газовой фазе над полимерными материалами и воздухе рабочей зоны.

Изобретение относится к способам оценки драпируемости меховых и кожевенных полуфабрикатов. Способ включает закрепление образца на держателе с возможностью вертикального перемещения, определение параметров проекций образца, общей драпируемости, драпируемости в продольном и поперечном направлениях.

Изобретение относится к области экспериментального определения температуры хрупко-вязкого перехода при распространении быстрой трещины в образцах материалов, на основе полиолефинов при их испытании на растяжение в исследуемом интервале температур и предназначено для использования при создании однородного хрупкого слоя на поверхности образца, действующего в качестве инициатора трещины.

Изобретение относится к аналитической химии, а может быть использовано для оценки безопасности изделий из фенолформальдегидных пластмасс. Для этого используют многоканальный анализатор газов (МАГ-8) с 8-мью пьезокварцевыми резонаторами, электроды которых модифицируют нанесением растворов полидиэтиленгликольсукцината, полиэтиленгликольсебацината, полиэтиленгликольфталата, полифенилового эфира, триоктилфосфиноксида, пчелиного клея, пчелиного воска и комбинированного сорбента - пчелиного клея с хлоридом железа (III).
Изобретение относится к области прогнозирования процессов старения синтетических полимерных материалов (СПМ) в зависимости от продолжительности их эксплуатации или хранения.

Изобретение относится к средствам и способам виброзащиты объектов техники, в частности к прокладкам-амортизаторам под подошву шпал или брусьев стрелочных переводов, а также для виброзащиты строительных конструкций и промышленного оборудования.
Изобретение относится к медицине и предназначено для оценки эффективности нутриционной поддержки при язвенном колите. В качестве маркера используют растворимую форму молекул адгезии семейства ICAM - sICAM-1, sICAM-2, sICAM-3.

Изобретение относится к аналитической химии пищевых производств. Способ оценки безопасности упаковочных полимерных материалов для тепловой обработки вакуумированных пищевых продуктов включает формирование полимерного материала в виде пакета, его вакуумирование, герметизирование и термическую обработку, после которой пакет термостатируют при комнатной температуре, вкалывают в него шприцем 5,0 см3 осушенного воздуха и через 5 мин, не вынимая шприца, отбирают 3,0 см3 воздуха.

Использование: для создания сенсора изменения состава атмосферы в замкнутых объемах. Сущность изобретения заключается в том, что газовый сенсор содержит температуропроводную подложку из кристаллического материала с плоскопараллельными поверхностями, на рабочей поверхности которой размещен пленочный нагреватель из электропроводящего материала, а на нерабочей - измеритель температуры на основе акустической линии задержки, электромеханические пьезоэлектрические преобразователи встречно-штыревого типа которой подключены к генератору и регистратору выходного сигнала, блок управления нагревателем, пленочный нагреватель выполнен в виде набора обособленных протяженных элементов из газочувствительных материалов, выбранных из условия изменения их электросопротивления при адсорбции различных по составу газов, элементы подключены к индивидуальным выходам блока управления нагревателями, при этом каждый упомянутый элемент ограничен по длинным сторонам канавками, заполненными термо- и звукоизолирующим материалом, измеритель температуры на основе акустической линии задержки выполнен многоканальным по числу протяженных элементов, каждый канал размещен по направлению распространения энергетических потоков поверхностных акустических волн и/или пластинчатых упругих мод разных порядков n в подложке, при этом излучение и прием указанных волн и/или мод производится индивидуальными системами генерации-приема на частотах fn, определяемых выражением fn=Vn/λ, где Vn - скорость поверхностных акустических волн или пластинчатых упругих мод, λ - период встречно-штыревых преобразователей, а протяженные элементы размещены вдоль проекций на рабочую поверхность подложки указанных направлений распространения энергетических потоков..

Изобретение относится к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей кислорода и может быть использовано для экологического мониторинга.

Изобретение относится к изготовлению средств выявления примесей газов и определения концентрации газов в воздушной среде. Способ изготовления чувствительных элементов датчиков концентрации газа согласно изобретению включает нанесение диэлектрической пленки на лицевую сторону кремниевой подложки, формирование на пленке структуры чувствительных элементов и создание тонких диэлектрических мембран методом анизотропного травления кремниевой подложки с обратной стороны, проводимого в два этапа, первый до нанесения диэлектрической пленки, а второй после завершения всех операций формирования структуры чувствительных элементов с предварительной защитой от травителя лицевой стороны подложки, при этом первый этап травления проводят сначала в водном растворе смеси этилендиамина с пирокатехином, а затем в водном растворе гидроокиси калия, а второй этап проводят только в водном растворе смеси этилендиамина с пирокатехином.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и изменения содержания микропримесей аммиака.

Изобретение может быть использовано в газоанализаторах, газосигнализаторах и газовых пожарных извещателях для контроля довзрывных концентраций взрыво-пожароопасных газов и газовых смесей.

Изобретение относится к проведению экспресс-анализа воздуха или смесей газов. Портативный анализатор газов с массивом пьезосенсоров включает высокопрочный полимерный корпус с насадкой-нагнетателем и защитной крышкой из фторопласта, на верхней панели корпуса расположена ячейка с массивом из трех пьезосенсоров с чувствительными пленочными покрытиями для определения компонентов воздуха и равновесной газовой фазы над полимерными изделиями, продуктами питания, топливом по совокупности их легколетучих соединений, внутри корпуса расположены миниатюрная схема возбуждения, соединенная с тремя микроконтроллерами, запрограммированными в сумме на 150 ячеек памяти для регистрации и преобразования сигналов пьезосенсоров и передачи их на моно- или полихромный дисплей для отображения аналитического сигнала в виде «визуальных отпечатков» максимумов трех сенсоров и для сохранения информации на съемном носителе памяти, приводящимися в действие автономно от встроенного компактного источника питания, на панели корпуса размещены кнопка включения прибора, кнопка работы нагнетателя и переключатель на отдельные режимы измерения: анализ топлива, полимерных материалов, пищевых продуктов и индикаторы работы пьезосенсоров и моно-/полихромный дисплей для отображения аналитического сигнала.

Использование: для непрерывного контроля утечек взрывоопасных жидкостей (в том числе органических растворителей, аммиака, керосина, бензина) и выдачи звукового или светового сигнала при повышении концентраций паров жидкостей в воздухе помещений, замкнутых объемах (подземных сооружениях и коммуникациях) и наружных установок.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам для регистрации и измерения содержания оксида углерода. Датчик состоит из полупроводникового основания, выполненного в виде поликристаллической пленки твердого раствора (ZnTe)0,68(CdSe)0,32, и непроводящей подложки.

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию и облучению в процессе эксплуатации.

Использование: для регистрации и измерения содержания микропримесей диоксида азота. Сущность изобретения заключается в том, что датчик состоит из полупроводникового основания, выполненного в виде поликристаллической пленки твердого раствора (InSb)0,94(CdTe)0,06, нанесенной на электродную площадку пьезокварцевого резонатора.

Изобретение относится к области газового анализа, в частности к устройствам, применяемым для регистрации и измерения содержания микропримесей аммиака. Техническим результатом изобретения является повышение чувствительности и технологичности изготовления датчика. Датчик содержит полупроводниковое основание и подложку. Полупроводниковое основание выполнено из поликристаллической пленки антимонида индия, легированного теллуридом кадмия - (InSb)0,98(CdTe)0,02, а подложкой служит электродная площадка пьезокварцевого резонатора. Заявляемый датчик при существенном упрощении технологии его изготовления позволяет определять содержание аммиака с чувствительностью, в несколько раз превышающей чувствительность известных датчиков. 3 ил.
Наверх