Способ определения коэффициента неоднородности смеси сыпучих материалов



Способ определения коэффициента неоднородности смеси сыпучих материалов
Способ определения коэффициента неоднородности смеси сыпучих материалов
G01N1/20 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2607400:

Открытое акционерное общество "Энергетический институт им. Г.М. Кржижановского" (RU)

Изобретение относится к области лабораторных исследований процессов смешения различных сыпучих материалов в химической промышленности, в промышленном производстве строительных материалов и в других отраслях промышленности. Определяют коэффициент неоднородности полидисперсной смеси сыпучих материалов в смесителе барабанного типа. Производят деление смеси сыпучего материала в смесителе поперечными сечениями на равные по толщине участки отбора проб. Устанавливают съемные пластины на границе каждого участка. Отбирают пробы равных объемов смеси из идентичных точек каждого выделенного участка по всей его толщине с помощью пробоотборников. Пробоотборники состоят из капсул с подвижными поршнями и вставлены в отверстия в съемном пробоотборном диске. Коэффициент неоднородности смеси вычисляют для каждой точки отбора, в среднем по каждому сечению и в среднем по смесителю в целом, по формуле:

,

где - среднее арифметическое значение концентрации ключевого компонента в пробах, %; ci - значение концентрации ключевого компонента в i-й пробе, %; n - число проанализированных проб. Обеспечивается увеличение точности определения коэффициента неоднородности смеси. 6 ил.

 

Изобретение относится к области лабораторных исследований процессов смешения различных сыпучих материалов в химической промышленности, в промышленном производстве строительных материалов и в других отраслях промышленности.

Известен способ определения коэффициента неоднородности смеси, включающий фотографирование фронтальной поверхности смеси, находящейся в смесителе в плоском сечении рабочего объема, компьютерную обработку полученной фотографии, определение «плоскостного» коэффициента неоднородности смеси, расчет коэффициента неоднородности смеси [Л.В. Королев, М.Ю. Таршис. Метод оценки качества смешения сыпучих материалов по распределению частиц в плоском сечении рабочего объема, Известия вузов. Химия и химическая технология, 2002, том 45, вып 1, с 98-100]. К недостатку данного способа следует отнести сложность расчета коэффициента неоднородности смеси только по величине «плоскостного» коэффициента неоднородности смеси, не дающего представления о качестве смеси в слоях, удаленных от фронтальной поверхности. Другим недостатком данного способа является невозможность его применения для определения коэффициента неоднородности сыпучих материалов, содержащих фракции менее 100 мкм, склонных вследствие электризации к налипанию на поверхность, через которую осуществляется фотосъемка, что меняет истинную картину распределения частиц в материале.

Наиболее близким к предлагаемому изобретению является способ определения коэффициента неоднородности смеси, включающий определение необходимого числа проб, минимально допустимого веса пробы, отбор проб, определение концентрации ключевого компонента в пробе с помощью разделения смеси рассевом на ситах или другими способами, с дальнейшим вычислением коэффициента неоднородности смеси [Макаров Ю.И. Аппараты для смешения сыпучих материалов / Ю.И.Макаров. - М.: Машиностроение, 1973. - 216 с.].

К недостатку данного способа следует отнести отсутствие возможности отбора проб из разных точек сечения без нарушения структуры соседних слоев материала в смесителе, что искажает истинную картину процесса смешения сыпучих материалов, особенно смесей, сильно различающихся по фракционному составу.

Техническим результатом, на достижение которого направлено данное изобретение, является увеличение точности определения коэффициента неоднородности смеси за счет исключения возможности нарушения структуры соседних слоев материала в смесителе при отборе проб, что позволяет получить неискаженные количественные данные о качестве смешения сыпучих сред как в каждой точке отбора пробы, так и в среднем по каждому сечению и по смесителю в целом.

Технический результат достигается тем, что смесь сыпучего материала в смесителе разделяют поперек горизонтальной оси на равные по толщине участки отбора проб и на границе каждого участка, последовательно вдоль горизонтальной оси смесителя, выделяют и отбирают пробы смеси равных объемов из идентичных точек каждого выделенного участка по всей его толщине, а коэффициент неоднородности смеси вычисляют для каждой точки отбора, в среднем по каждому сечению и в среднем по смесителю в целом.

Предлагаемый способ осуществляют с помощью устройства, где на фиг. 1 представлена схема общего вида устройства, на фиг. 2 - поперечный разрез по пазу, закрытому откидной шторкой, на фиг. 3 - поперечный разрез по пазу со вставленной в паз пластиной, на фиг. 4 - схема съемного пробоотборного диска, а на фиг. 5 - схема пробоотборника. На фиг. 6 представлена таблица значений концентраций ключевого компонента в опытах и значений коэффициентов неоднородности для каждой точки отбора проб.

Устройство (фиг. 1) включает смеситель барабанного типа 1 с питателями 2, 3, съемные тонкостенные пластины 4, 5, съемный пробоотборный диск 6 и пробоотборники 7. Боковая поверхность корпуса смесителя 1 снабжена сдвоенными пазами 8, 9, в которые вставляют съемные тонкостенные пластины 4, 5. Сдвоенные пазы 8, 9 во время вращения смесителя закрывают откидными шторками 10, соединенными с корпусом смесителя 1 шарнирами 11 (фиг. 2). Съемные тонкостенные пластины 4, 5 вставляют в пазы 8, 9 при откинутой шторке 11 (фиг. 3). Съемный пробоотборный диск 6 (фиг. 4) содержит корпус 12 с отверстиями 13, в которые вставляют пробоотборники 7. Пробоотборник 7 (фиг. 5) содержит капсулу 14, в которую помещен подвижный поршень 15. Продольный размер (длина) каждой капсулы составляет 1,2-1,3 величины суммы: толщины корпуса пробоотборного диска, толщины тонкостенной пластины и расстояния между сдвоенными пазами.

Способ осуществляют следующим образом.

Перед началом процесса смешения пазы 8, 9 закрывают шторкой 10. Включают приводы смесителя 1 и питателей 2, 3 и начинают процесс смешения материалов. После установления стабильного соотношения масс материала на входе и выходе из смесителя 1 прекращают подачу материала из питателей 2, 3 и прекращают вращение смесителя 1 в положении, когда пазы 8, 9 находятся в верхней полусфере смесителя. Освобождают ближайшие к выходу из смесителя пазы 8, 9 от шторки 10 и вводят в них тонкостенные пластины 4, 5 до их соприкосновения с противоположной стенкой смесителя. Удаляют из смесителя 1 весь материал, расположенный на участке от выхода до ближайшей к выходу тонкостенной пластины 4, пробоотборный диск 6 подводят к тонкостенной пластине 4 до соприкосновения с ней его фронтальной плоскости и затем последовательно вдвигают до соприкосновения с пластиной 4 капсулы 7 и подвижные поршни 15, после чего тонкостенную пластину 4 вынимают. В сыпучий материал, расположенный между фронтальной плоскостью пробоотборного диска 4 и оставшейся второй тонкостенной пластиной 5, вводят последовательно каждую капсулу 7 до ее упора в пластину 5, одновременно соответственно выдвигая поршень 15 из капсулы 7. За счет вдавливания капсулы 7 она заполняется пробой материала. Собранный в каждой капсуле 13 материал рассеивают на ситах и вычисляют коэффициенты неоднородности смеси как в каждой точке отбора пробы, так и в среднем по каждому сечению и смесителю в целом. После окончания отбора проб из всех точек данного сечения пробоотборный диск 6 вынимают и операции повторяют на следующем сечении.

Пример

Проведен сравнительный опыт по определению коэффициента неоднородности смеси в одних и тех же точках в 3-х сечениях смесителя барабанного типа, путем отбора проб горизонтальным поворотным пробоотборником и заявляемым способом. Смешиванию подвергалась фракция сланца от 1,0 мм до 3,0 мм с фракцией сланцевой золы до 1,0 мм. Условия проведения процесса (скорость вращения барабана и время смешения) в обоих случаях идентичны.

Коэффициент неоднородности Vc.i. определялся по формуле:

где - среднее арифметическое значение концентрации ключевого компонента в пробах, %; ci - значение концентрации ключевого компонента в i-й пробе, %; n - число проанализированных проб.

Значения концентраций ключевого компонента в опытах и коэффициент неоднородности для каждой точки отбора проб приведены в таблице 1 (фиг. 6).

Полученные значения находятся в диапазоне 2-6%, характеризующем удовлетворительное качество смешения компонентов в смесителях, но показатели, полученные пробоотборником, имеют больший разброс.

Таким образом, предлагаемый способ позволяет определять коэффициент неоднородности смеси, компоненты которой различны по фракционному составу, и позволяет получать количественные данные о качестве смешения сыпучих сред как в каждой точке отбора пробы, так и в среднем по каждому сечению и смесителю в целом.

Способ определения коэффициента неоднородности полидисперсной смеси сыпучих материалов в смесителе барабанного типа, включающий отбор проб смеси, нахождение концентрации ключевого компонента путем рассеивания пробы на ситах и вычисление коэффициента неоднородности смеси, отличающийся тем, что смесь сыпучего материала в смесителе разделяют поперечными сечениями на равные по толщине участки отбора проб, устанавливая съемные пластины на границе каждого участка, и отбирают пробы смеси равных объемов из идентичных точек каждого выделенного участка по всей его толщине с помощью пробоотборников, состоящих из капсул с подвижными поршнями, вставленных в отверстия в съемном пробоотборном диске, а коэффициент неоднородности смеси вычисляют для каждой точки отбора, в среднем по каждому сечению и в среднем по смесителю в целом, по формуле:

,

где - среднее арифметическое значение концентрации ключевого компонента в пробах, %; ci - значение концентрации ключевого компонента в i-й пробе, %; n - число проанализированных проб.



 

Похожие патенты:
Изобретение относится к технологии производства многокомпонентных гетерогенных смесей и может быть использовано в химической, фармацевтической, лакокрасочной и других отраслях промышленности при получении и анализе степени однородности как готовой многокомпонентной гетерогенной композиции, так и ее полуфабрикатов.

Изобретение относится к контрольно-измерительной технике, а именно к способам разделения минерального сырья оптическим методом. Согласно способу получают цифровое RGB-изображение объекта и преобразуют его в пространство HLS.

Группа изобретений относится к системе для удержания образца текучего вещества при проведении измерения и способу подачи образца текучего вещества в оптический сканирующий аппарат.

Изобретение относится к области определения качества гомогенизации многокомпонентных гетерогенных смесей и может быть использовано в химической и других отраслях промышленности при получении и анализе степени однородности как готовой многокомпонентной гетерогенной композиции, так и ее полуфабрикатов.

Группа изобретений относится к контрольно-измерительной технике и может быть использовано для предварительной оценки обогатимости руд твердых полезных ископаемых и определения параметров их селекции.

Изобретение относится к датчикам с переменной длиной пути для оптического анализа материала на месте. Предоставляется датчик, имеющий головку датчика, в которой образовано отверстие для приема образца, подлежащего анализу.

Изобретение относится к способам контроля параметров печатной бумаги. Способ определения прозрачности плоских светопропускающих запечатываемых материалов основан на регистрации относительных световых потоков, отраженных образцом бумаги, который сначала размещают на черной подложке, затем на плоском металлическом зеркале, и последующем расчете показателей прозрачности бумаги.

Изобретение относится к устройству и к способу для экономичного inline-измерения методом ближней инфракрасной спектроскопии, в частности, для экономичного inline-измерения методом ближней инфракрасной спектроскопии ингредиентов, качественных параметров или в целом свойств зерен злаков и проч., а также их составляющих в потоках продукта (3) в мукомольных производствах или на комбикормовых заводах.

Группа изобретений относится к системе и к способу охарактеризовывания частиц в потоке продуктов помола зерна в установке для его помола, где охарактеризовывание включает в себя охарактеризовывание частиц зерна по размеру.

Изобретение относится к области приборостроения и может быть использовано для измерения параметров взвеси в жидкости. Способ определения фоновой мутности заключается в выделении частицы заданных размеров, с помощью фильтра, для чего применяют гравитационное разделение частиц взвеси в ламинарном потоке жидкости с заданной стабилизированной скоростью ее движения.

Группа изобретений относится к способам измерения объемной или массовой доли жидкости и примесей в газовом потоке, а также к отбору пробы для определения гранулометрического состава механических примесей.

Изобретение относится к области аналитических исследований пленок из нефти и нефтепродуктов и может применяться для определения состава нефти и нефтепродуктов в природных водоемах.

Изобретение относится к способу определения трещиностойкости наплавки роликов установки непрерывной разливки стали (УНРС) и может найти применение при изготовлении и восстановлении дуговой наплавкой роликов системы вторичного охлаждения УНРС.

Группа изобретений относится к измерительному кристаллу для использования с микрофлюидной резистивной схемой для проведения анализа. Измерительный кристалл (100) для использования с отдельной микрофлюидной резистивной схемой (20) содержит канал (104) пробы, канал (114) отходов, размеры которых являются одинаковыми.
Изобретение может быть использовано для выбора допустимых для насыщения алевролитов терригенных пород рабочих жидкостей при проведении петрофизических исследований в лабораторных условиях.
Изобретение может быть использовано в процессе пробоподготовки алевролитов терригенных пород к проведению петрофизических исследований. Применяют водный раствор красителя метиленового голубого (C16H18ClN3S·3H2O) объемом 10 см3 с концентрацией 0,73 мг/см3 на 1 г кернового материала в качестве индикатора для проведения петрофизических исследований путем экспрессного разделения образцов керна на отдельные группы.

Группа изобретений относится к инструментам и технологиям исследования воздействия факторов космического пространства на вещества и микроорганизмы. Устройство состоит из корпуса (1), выполненного, например, из фторопласта.
Изобретение относится к экспериментальным исследованиям в космическом пространстве. Способ включает взятие проб с помощью стерилизованного и гермоизолированного на Земле пробозаборника.

Изобретение относится способу отбора образца материала с плохими характеристиками текучести. Обеспечивают наличие устройства для взятия образца материала, содержащее вращатель, имеющий механизм вращения, сверло, прикрепленное к механизму вращения и вращаемое им, и аккумулирующую образец трубу, окружающую сверло.

Изобретение относится к области океанологии, гидрофизики, геохимии и экологии морей и может быть использовано для получения первичного материала с целью анализа взвеси, состава воды, а также для исследования связи донных осадков с картиной подводных течений и временное их распределение.

Изобретение относится к технологическим химическим процессам, в частности к нефтехимии, и может быть использовано для стабилизации различных эмульсий и коллоидных растворов, например, при производстве коллоидных и полимерных дисперсий, нефтяных масел, смазочных материалов, технических жидкостей, топлив, лаков, красок и т.п., то есть в процессах, направленных на получение стабильных эмульсий и коллоидных растворов.
Наверх