Неинвазивный способ определения концентрации глюкозы в крови

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для неинвазивного определения концентрации глюкозы в крови. Для этого накладывают термисторы над поверхностной веной головы испытуемого и измеряют температуру и концентрацию глюкозы в крови. При этом определяют концентрацию глюкозы крови по двум калибровочным характеристикам: глюкограмме и термограмме, параметры которых априори отождествляют с верхней и нижней границами адаптивного диапазона двух известных пациентов с нормированными параметрами. Расчет проводят по определенным математическим формулам. Способ обеспечивает повышение точности и метрологической эффективности неинвазивного определения концентрации глюкозы за счет исключения методической и динамической погрешностей для автоматизации компьютерных анализаторов глюкозы в адаптивном диапазоне нормируемых мер при повышении оперативности. 8 ил., 4 табл.

 

Изобретение относится к области медицины, в частности к эндокринологии, и может быть использовано для мониторинга концентрации глюкозы в крови.

Известен способ неинвазивного определения концентрации глюкозы в крови [см. Патент №2198586 (РФ), А61В 5/022, №2000123186 / Эльбаев А.Д.; Акаева С.А.; Курданов Х.А. - 2003], в котором измеряют систолическое и диастолическое артериальное давление натощак и после приема пищи. Рассчитывают содержание глюкозы в крови в ммоль/л натощак (Р) и после приема пищи (Р1) по формулам: P=0,37⋅Е1,65⋅K, где E - постоянная, Е=2,71828, P1=0,65⋅El,5⋅K1, где Е - постоянная, Е=2,71828, К и К1 - коэффициенты корреляции, которые определяют как отношение среднеарифметического значения систолического артериального давления к среднеарифметическому значению диастолического артериального давления, измеренным на обеих руках пациента натощак (К) и после приема пищи (К1).

Недостаток: способ не позволяет достичь желаемой точности и не позволяет осуществлять непрерывный мониторинг концентрации глюкозы в крови.

Известен способ для неинвазивного определения глюкозы в частях человеческого тела [см. патент 5795305 (US), 60/549/ Ok-Kyung Cho, Birgit Holzgreve, 18.08.98]. Используют высокоточные измерения температуры участка тела, инфракрасного излучения данного участка и теплопроводности кожи на данном участке для определения концентрации глюкозы. Анализ основан на математических методах экстраполяции и не принимает в расчет воздействия внешних факторов на изменение температуры тела.

Недостатком этого способа является отсутствие математической модели углеводного обмена. Алгоритм связывает только текущую концентрацию глюкозы в крови с текущей температурой, а значит, способ не предназначен для длительного мониторинга, а также не учитывает влияния индивидуальных факторов на изменение температуры.

За прототип принят способ неинвазивного контроля уровня глюкозы в крови [см. патент 2180514 (РФ), А61В 5/01 №2001101121/14 / Шмелев В.М., Бобылев В.М. - 20.03.2002], в котором определяют концентрацию глюкозы в крови с помощью измерительного устройства, при этом проводят непрерывный мониторинг концентрации глюкозы в крови путем измерения в области поверхностных вен головы тепловых потоков датчиком измерительного устройства, а концентрацию глюкозы (Xg*) определяют по формуле Xg*=X1*+X2*, где X1*=Wmn(s)XT*, X2*=КПWmn(s)XП*, где ХТ* - безразмерное отклонение температуры от установившегося значения, ХП* - безразмерное отклонение теплового потока от установившегося значения, Wmn(s)=1/(TТПs+1) - передаточная функция концентрации глюкозы в крови по температуре и тепловому потоку, ТТП - экспериментально определяемая постоянная времени переходного процесса, КП - экспериментально определяемый безразмерный коэффициент, s=d/dt - оператор дифференцирования.

Недостатком прототипа является низкая метрологическая эффективность из-за высокой погрешности в широком диапазоне информативных параметров измерения, обусловленной фиксированной статистической градуировочной характеристикой.

Технической задачей способа является повышение метрологической эффективности за счет исключения методической и динамической погрешностей для автоматизации компьютерных анализаторов глюкозы в адаптивном диапазоне нормируемых мер.

Техническая задача достигается неинвазивным определением концентрации глюкозы крови по глюкограмме, калибруемой в нормированных границах адаптивного диапазона оптимальными максимальными температурами термограмм известных пациентов.

1. В неинвазивном способе определения концентрации глюкозы в крови, заключающемся в том, что накладывают термисторы над поверхностной веной головы испытуемого и измеряют температуру и концентрацию глюкозы в крови, в отличие от прототипа определяют концентрацию глюкозы крови по двум калибровочным характеристикам: глюкограмме и термограмме, параметры которых априори отождествляют с верхней и нижней границами адаптивного диапазона двух известных пациентов с нормированными параметрами, параметры термограммы: постоянную времени Т и максимальную температуру Е, находят по измеренным избыточным температурам Ui для i=1, 2 в два момента времени t1 и бинарный t2=2t1, параметрами глюкограммы служат: предельная температура E0 и предельная концентрация глюкозы P0 крови, которые регистрируют по измеренным концентрациям глюкозы Pj, где j=1, 2 для двух максимальных температур E1 и кратной E2=nE1 термограммы U(t)

с тождественными границам диапазона параметрами: постоянной времени T и максимальной температурой E

2. В способе по п.1, в отличие от прототипа, глюкограмма

отражает физику натурного эксперимента с тождественными границам диапазона параметрами: предельной температурой Е0 и предельной глюкозой Р0

Сущность предлагаемого способа поясняется на фиг.1-8.

Предлагаемый способ перед измерением включает 2 этапа: 1 - калибровку параметров термограммы и 2 - калибровку параметров глюкограммы.

1 этап

а) При обследовании пациента натощак накладывают термисторы над поверхностной веной головы и измеряют значение температуры (фиг. 1, правая шкала) в начальный момент времени. Избыточные температуры (фиг. 1, левая шкала), с учетом начальной температуры , определяются соотношением:

б) После принятия пациентом глюкозосодержащей пищи регистрируют изменение температуры Ui для i=1, 2 в течение времени t1 и бинарного t2=2t1, по которым рассчитывают предельные параметры термограммы (фиг. 1).

в) Предельные параметры находят априори для известных пациентов с нормированными границами адаптивного диапазона калибровочной характеристики температуры U от времени t (термограмме):

с учетом параметров: Е - максимальная температура и Т - постоянная времени.

Закономерности параметров Е и Т тождественны оптимальным эквивалентам (фиг. 1, прямые 2, 3) термограммы (2), которые интегрируют переменные температуры U и времени t:

что доказывают предельные решения

Постоянную времени T термограммы (2) находят из системы уравнений:

Поделим второе уравнение системы (3) на первое, учитывая, что t2=2t1:

После сокращения на знаменатель и логарифмирования находим параметр термограммы Т - постоянную времени:

Максимальную температуру Е термограммы (1) определяют из инверсной относительно (3) системы уравнений:

После деления второго уравнения системы (5) на первое

учитывая бинарность интервалов , получим логарифмическое уравнение:

что соответствует после экспоненцирования квадратному уравнению:

Раскрывая скобки и сокращая единицы и знаменатель Е, находим алгоритм оптимизации второго параметра калибровочной характеристики термограммы E - максимальную температуру:

Максимальные температуры (6) термограммы (2) служат на 2 этапе нормированными границами адаптивного диапазона исследуемой глюкограммы для ее отождествления с эквивалентом натурного эксперимента за счет нахождения оптимальных параметров эталонной глюкограммы.

2 этап

а) Определяют концентрацию Р глюкозы крови через максимальную температуру Е по калибровочной характеристике глюкограммы, ммоль/л:

с учетом информативных параметров: Р0 - предельная глюкоза крови и Е0 - предельная температура (см. фиг 2).

Закономерности параметров Р0 (фиг. 2, прямая 2) и Е0 (фиг. 2, прямая 3) тождественны оптимальному эквиваленту глюкограммы (7):

что доказывают предельные решения

б) Калибровочную характеристику (7) вводят априори для двух известных пациентов с нормированными границами адаптивного диапазона концентрации глюкозы P1, P2 крови, для которых определяют максимальные температуры E1, E2 на первом этапе. По двум известным концентрациям глюкозы и регистрируемым максимальным температурам P1, E1 и P2, E2 находят предельную глюкозу Р0 крови и предельную температуру Е0 (фиг. 2).

Параметр глюкограммы (7) предельную температуру Е0 находят из системы уравнений

Поделим второе уравнение системы (8) на первое

и после логарифмирования находим предельную температуру Е0 глюкограммы:

Предельную глюкозу Р0 определяют из инверсной относительно (8) системы уравнений

после деления второго уравнения системы (10) на первое

Принимая во внимание кратность отношения , получим логарифмическое уравнение

что соответствует после экспоненцирования степенному уравнению

После деления на знаменатель понижают на единицу степень

и находят второй параметр глюкограммы Р0 - предельную глюкозу

К преимуществам предлагаемого способа диагностики по сравнению с прототипом относится повышение точности способа за счет исключения методической и динамической погрешностей посредством калибровки глюкограммы в нормированных границах адаптивного диапазона оптимальными максимальными температурами термограмм известных пациентов.

Докажем метрологическую эффективность предлагаемого способа относительно прототипа по достоверности измерений в адаптивном диапазоне для исследуемой зависимости.

1. Оценка методической погрешности

а) Термограмма (фиг. 1 и фиг. 3, кривые 1, 2)

Для первого пациента найдем по бинарным интервалам t1=1800, t2=3600 измеренные температуры , (фиг. 1), с учетом начальной температуры избыточные температуры Ui=0,422, 0,578 по алгоритмам (4) и (6) оптимальные параметры Е1=0,668, Т=1800 термограммы (фиг. 3).

По найденным параметрам Е1 и Т для первого пациента находим из (2) калибровочную характеристику Uj:

Для второго пациента найдем по бинарным интервалам t1=1800, t2=3600 измеренные температуры и , (фиг. 1) с учетом начальной температуры Ui=36° избыточные температуры Ui=0,495, 0,677 по алгоритмам (4) и (6) оптимальные параметры Е2=0,783, Т=1800 термограммы.

По найденным параметрам Е2 и T для второго пациента находим (фиг. 3, кривая 2) из (2) калибровочную характеристику Uj:

Оценим достоверность (фиг.4) эталонной (экспериментальной) Uэ (фиг. 3 кривая 1) относительно калибровочной характеристики Ui (фиг. 3 кривая 2) по относительной погрешности εi:

Систематизируем результаты в табл.1 для анализа методической погрешности термограммы инновации (u) и прототипа (n) по эффективности

Табл. 1 показывает, что параметры инновации Eju и Tju однозначно определяют термограммы с минимальной погрешностью не более 0,12% и 0,06% (фиг. 4), а у прототипа Ejn и Тjn погрешность определения 5%. Тогда эффективность (12а) калиброванной термограммы предлагаемого решения отличается в 42-83 раза, т.е. на два порядка выше прототипа, регламентированного статистическим анализом множества ненормированных переменных по жесткой градуировочной характеристике среднестатистического фантома.

б) Глюкограмма

Найдем для известных значений Р1=3,1, Р2=4,7 и определенных максимальных значений температуры Е1=0,668, Е2=0,783 по алгоритмам (9) и (11) оптимальные параметры Е0=0,276 и Р0=0,276 глюкограммы (фиг. 5, кривая 1).

По найденным параметрам Е0 и Р0 находим из (7) калибровочную характеристику Pj (фиг. 5, кривая 2):

Оценим достоверность (фиг.6) глюкограмм эталонной (экспериментальной) Рз (фиг.5, кривая 1) относительно калибровочной характеристики (фиг.5, кривая 2) и прототипа Р (фиг.5, кривая 3) по относительной погрешности εj:

Для анализа глюкограмм систематизируем данные в табл. 2.

Табл. 2 показывает, что параметры Е0 и Р0 однозначно определяют эталонную и откалиброванную глюкограммы с минимальной методической погрешностью не более 0,035% (тождественно фиг. 4), тогда как у прототипа погрешность определения 5% в диапазоне (Е12) здорового пациента и 500% в группах риска (фиг. 6) из-за статистического анализа с линейной аппроксимацией (фиг. 5, график 3).

2. Оценка динамической погрешности

a) Термограмма

Динамическая погрешность (фиг. 7) определяется нелинейностью η1 термограмм, регламентируемой отношением интервалов времени переменных t прототипа и нормированной постоянной времени предлагаемого решения T (фиг. 1, 3):

Нелинейность (14) заявляемого решения η1u тождественна единичному эквиваленту (фиг. 7, кривая 1), т.к.

В прототипе используются ненормированные переменные времени t:

а нелинейности термограмм (фиг. 1) прототипа изменяются по логарифмическому закону

Воспроизводимость результатов термограммы (фиг. 3) представлена в табл. 3.

Из табл. 3 видно, что в предлагаемой инновации параметры Е, T=const (фиг. 1) нормированы границами адаптивного диапазона известных пациентов. Нелинейность предлагаемого решения регламентирована единичному эквиваленту (фиг. 7, прямая 1) в отличие от переменной нелинейности прототипа, изменяющейся по логарифмическому закону из-за множества ненормированных переменных термограмм ti, Ui (фиг. 7, кривая 2).

б) Глюкограмма

Динамическая погрешность определяется нелинейностью η2 глюкограмм (фиг. 5), определяемой отношением концентраций глюкозы Р прототипа и нормированной предельной глюкозы предлагаемого решения Р0.

Нелинейность (15) заявленного решения η2u тождественна единичному эквиваленту (фиг. 8, прямая 1), т.к.

В прототипе используются ненормированные значения концентраций глюкозы Р:

а нелинейности прототипа изменяются по экспоненциальному закону (фиг. 8, кривая 2)

Воспроизводимость результатов термограммы представлена в табл.4.

Из табл. 4 следует, что в предлагаемой инновации параметры E0, P0=const нормированы границами адаптивного диапазона известных пациентов. Нелинейность предлагаемого решения регламентирована единичному эквиваленту (фиг. 8, прямая 1) в отличие от переменной нелинейности прототипа, изменяющейся по экспоненциальному закону (фиг. 8, кривая 2) из-за множества ненормированных переменных термограмм Еi, Рi.

3. Оценка ширины диапазона

Эффективность по диапазону ηD - это отношение диапазона Du предлагаемой инновации к диапазону Dn прототипа (см. фиг. 5, графики 2, 3):

Из формулы (16) видно, что эффективность по диапазону предлагаемой инновации минимум в 5 раз превосходит эффективность по диапазону прототипа.

4. Оценка оперативности

Повышение оперативности предлагаемой инновации доказывает эффективность времени измерения t. В предлагаемом способе t≤Т измерения не превышает постоянную времени (фиг. 1), а для прототипа в 3-5 раз больше tn=(3-5)Т для определения максимальной температуры с погрешностью 5-1%.

Из эффективности по времени для погрешности (5-1)% следует, что оперативность предлагаемого способа в 3-5 раз выше известных способов.

Таким образом, неинвазивное определение концентрации глюкозы крови по глюкограмме, калибруемой в нормированных границах адаптивного диапазона оптимальными максимальными температурами термограмм известных пациентов, в отличие от известных решений снижает методическую и динамическую погрешности на несколько порядков при увеличении оперативности не менее чем в 3 раза, что в итоге повышает метрологическую эффективность определения концентрации глюкозы по температуре с априори заданной точностью для автоматизации компьютерных анализаторов в адаптивном диапазоне нормируемых мер.

Неинвазивный способ определения концентрации глюкозы в крови, заключающийся в том, что накладывают термисторы над поверхностной веной головы испытуемого и измеряют температуру и концентрацию глюкозы в крови, отличающийся тем, что определяют концентрацию глюкозы крови по двум калибровочным характеристикам: глюкограмме и термограмме, параметры которых априори отождествляют с верхней и нижней границами адаптивного диапазона двух известных пациентов с нормированными параметрами, параметры термограммы: постоянную времени Т и максимальную температуру Е, находят по измеренным избыточным температурам Ui для i=1, 2 в два момента времени t1 и бинарный t2=2t1, параметрами глюкограммы служат: предельная температура Е0 и предельная концентрация глюкозы Р0 крови, которые регистрируют по измеренным концентрациям глюкозы Pj, где j=1, 2 для двух максимальных температур E1 и кратной E2=nE1 термограммы U(t)

,

с тождественными границам диапазона параметрами: постоянной времени Т и максимальной температурой Е

, ,

а глюкограмму

калибруют с тождественными границам диапазона параметрами: предельной температурой Е0 и предельной глюкозой Р0

, , где .



 

Похожие патенты:
Изобретение относится к медицине, а именно к функциональной диагностике, и может быть использовано для инфракрасной оценки устойчивости пояснично-крестцового мышечного и суставного комплекса пациента к сгибательно-разгибательной нагрузке.

Изобретение относится к области термометрии и может быть использован для медицинского применения. Предложен цифровой термометр из противомикробной меди, внешняя конструкция которого состоит из корпуса (1), крышки (2) батарейного отсека, то есть удаляемой части, посредством которой батарея вставляется в термометр, кнопки (3) питания, т.е.

Изобретения относятся к медицинской технике. Измеритель влагосодержания (1) пациента содержит блок импедансного типа (30) для измерения влагосодержания или блок электростатического емкостного типа для измерения влагосодержания.

Изобретение относится к медицине, а именно к хирургии, и может быть использовано для раннего прогнозирования развития нагноений послеоперационных ран в доклинической фазе.

Изобретение относится к медицине, а именно к инфекционным болезням, и может быть использовано для прогнозирования тяжести течения трихинеллеза. Определяют максимальную температуру тела, наличие миокардита, отеков лица, боли при движении языка, уровень эозинофилии.

Изобретение относится к ветеринарной медицине, а именно к способам диагностики патологии молочной железы. Проводят измерения поверхностной температуры кожи молочной железы.
Изобретение относится к медицине, а именно к судебной медицине, и может быть использовано для инфракрасной диагностики ушибов мягких тканей, нанесенных твердыми тупыми предметами.

Изобретение относится к медицинской технике. Устройство для измерения температуры тела человека содержит два датчика температуры и контактную поверхность, прилегающую к телу, температуру которого измеряют.

Изобретение относится к медицине, электротехнике и может быть использовано для получения данных о состоянии потовых желез человека. Для этого на участок тела человека осуществляют тепловое воздействие от плотно прилегающего к поверхности кожи человека эластичного электронагревателя.
Изобретение относится к медицине и может быть использовано для инфракрасной оценки устойчивости пальцев рук к повторному охлаждению. Для этого осуществляют регистрацию с помощью тепловизора динамики локальной температуры оголенной ладони и подушечек пальцев правой руки через 30 мин после адаптации человека к температуре 25°C в помещении до и после опускания кисти на 2 мин в воду с тающим снегом.

Изобретение относится к медицине, а именно к ревматологии и физиотерапии, и может быть использовано для прогнозирования эффективности гипербарической оксигенации у больных ревматоидным артритом. Для этого проводят мониторинг топической суточной температуры кожного покрова параартикулярных областей во время проведения первого сеанса гипербарической оксигенации. При этом определяют динамику поведения температурных кривых. Если во время проведения первого сеанса гипербарической оксигенации отмечают повышение температуры параартикулярных областей на 0,2°С и более, то прогнозируют наличие эффективности гипербарической оксигенации. При понижении температуры на 0,2°С и более считают дальнейшее применение гипербарической оксигенации неэффективным. Способ обеспечивает повышение качества курсового лечения гипербарическим кислородом за счёт выделения когорты пациентов с заведомо положительным эффектом на проведение лечения при отсутствии инвазивных вмешательств. 2 ил., 2 пр.

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для инфракрасной диагностики воспалительных заболеваний пародонта. Для этого осуществляют регистрацию излучения, исходящего от исследуемого объекта, при помощи тепловизора, соединенного с компьютером и монитором с функцией цветного инфракрасного изображения, и получают теплограмму. Регистрацию излучения осуществляют при неподвижной фиксации головы пациента в положении, при котором угол между нормалью, проведенной к поверхности исследуемого участка пародонта, и осью тепловизора составляет не более 60°. При этом сначала показания тепловизора фиксируют от слизистой оболочки альвеолярного отростка пародонта в месте предполагаемого воспаления в отсутствие инфракрасного излучения в течение 10-12 секунд. Затем фиксируют показания при облучении источником инфракрасного излучения, который находится на расстоянии 40-50 см от места предполагаемого воспаления, в течение 12-15 секунд. После этого фиксируют показания тепловизора в течение 25 секунд в процессе остывания облученной поверхности пародонта. Далее диагностируют заболевание по замедленной реакции на тепловое воздействие и на прекращение этого воздействия в сравнении с такой реакцией пародонта у здоровых лиц. Способ обеспечивает возможность неинвазивной безопасной высокочувствительной информативной диагностики изменений пародонта до появления клинических признаков заболевания при отсутствии противопоказаний к предложенному исследованию. 2 ил., 1 пр.
Изобретение относится к медицине, а именно к хирургии, и может быть использовано для прогнозирования раневых осложнений у больных, оперированных по поводу грыж передней брюшной стенки. Для этого с помощью компьютерного термографа «ИРТИС-2000» определяют локальную температуру по всей поверхности передней брюшной стенки с определением градиента температуры. При повышении локальной температуры на 3-и сутки после операции в зоне пластики на величину до 1,8°С прогнозируют - гладкое течение послеоперационного периода. При повышении локальной температуры на 3-и сутки после операции в зоне пластики на величину 3,0°С и более прогнозируют - гнойно-септическое осложнение со стороны раны. При повышении локальной температуры на 3-и сутки после операции в зоне пластики на величину от 1,9 до 2,9°С течение послеоперационного периода неопределенное. Такому пациенту выполняют повторное исследование на 5-е сутки после операции. Если выявляют повышение локальной температуры на 1,8°С и менее по сравнению с окружающими тканями, делают вывод о неосложненном течении послеоперационного периода. Если градиент температуры в зоне пластики 1,9°С и более по сравнению с окружающими тканями, делают заключение о развитии гнойно-септического осложнения. Простой и неинвазивный способ обеспечивает объективную оценку локального статуса и соответственно своевременную диагностику раневых осложнений в послеоперационном периоде и возможность своевременной коррекции тактики лечения, что позволяет улучшить ближайшие и отдаленные результаты лечения больных с данной патологией, сократить пребывание пациентов в стационаре. 1 пр.

Изобретение относится к медицине, в частности к онкологии и может быть использовано для терапии опухолей. Животному с опухолью внутривенно вводят раствор золотых наностержней, покрытых полиэтиленгликолем. Через 24 часа после введения проводят диагностическое лазерное облучение инфракрасным лазером с длиной волны в интервале 700-900 нм с плотностью мощности в диапазоне 1-2 Вт/см2 в течение 2 минут. Измеряют температуру нагрева опухоли с помощью термографа. При нагреве опухоли менее 45°С вновь внутривенно вводят наночастицы и через 24 часа после введения наночастиц проводят диагностическое лазерное облучение. Измеряют локальную температуру нагрева опухоли. При достижении в течение 2 минут температуры 45°С и выше проводят терапевтическое облучение инфракрасным лазером длиной волны в интервале 700-900 нм с плотностью мощности 4-5 Вт/см2 в течение 20 минут. Способ обеспечивает повышение эффективности лазерной гипертермии опухолей за счет регрессии перевитых опухолей, проявляющейся в некробиотических изменениях клеток опухоли и торможении ее роста. 2 пр., 1 табл., 4 ил.
Изобретение относится к медицине, а именно к маммологии и пластической хирургии, и может быть использовано для прогнозирования развития капсулярной контрактуры после эндопротезирования молочных желез. Для этого после проведения операции по эндопротезированию молочных желез по крайней мере через 3 месяца методом радиотермометрии определяют внутреннюю температуру ткани молочных желез в 9 симметричных точках с обеих сторон. При этом получают среднее значение внутренней температуры ткани молочных желез, которое принимают за стандарт - индивидуальную норму для данного пациента. Затем измеряют значения внутренней температуры во всех сегментах молочных желез, сравнивают их со стандартом и определяют величину их превышения по отношению к стандарту. В случае превышения этих показателей на 0,7°C и менее определяют отсутствие прогностических признаков развития фиброза. При превышении этих показателей на 0,8°C и более в одном или нескольких сегментах одной или обеих молочных желез прогнозируют вероятное развитие капсулярной контрактуры. Способ обеспечивает объективизацию раннего выявления воспалительного процесса для выбора адекватной и своевременной диагностической и лечебной тактики для профилактики капсулярной контрактуры. 3 з.п. ф-лы, 3 пр.
Изобретение относится к медицине, а именно к гинекологии и онкологии, и может быть использовано для скрининг-диагностики злокачественных опухолевых процессов яичников у женщин постменопаузального периода. Для этого проводят трансабдоминально радиотермометрию в 18 симметричных точках подвздошной области с обеих сторон - по 9 точек с каждой стороны. Получают среднее значение температуры, которую принимают за стандарт. Сравнивают значение температуры, принятой за стандарт, с температурой в каждой из 18 точек. Определяют величину превышения по отношению к стандарту. При значении этого показателя 0,5°C и менее определяют отсутствие очаговой гипертермии в проекции яичников, отсутствие признаков злокачественного новообразования. При значении упомянутого показателя 0,6-1,0°C определяют невыраженную очаговую гипертермию, подозрение на пограничный опухолевый процесс, предшествующий развитию злокачественной опухоли, менопаузальную гормональную терапию не проводят. При значении упомянутого показателя 1,1°C и более в проекции одного или обоих яичников определяют выраженную очаговую гипертермию, высокую вероятность злокачественного опухолевого процесса, считают, что менопаузальная гормональная терапия противопоказана. Способ обеспечивает безвредный неинвазивный безболезненный скрининг-тест, позволяющий зарегистрировать невыявляемую фазу заболевания скрыто протекающих злокачественных новообразований яичников задолго до клинической манифестации онкологического процесса в процессе проведения менопаузальной гормональной терапии.

Изобретение относится к области медицины и медицинской техники, а именно к радиотермометру, предназначенному для неинвазивного измерения температуры внутренних тканей биообъекта. Радиотермометр содержит последовательно соединенные антенну-аппликатор, контактирующую с биообъектом, переключатель, циркулятор, установленный после переключателя, приемное устройство, содержащее усилитель c полосно-пропускающими фильтрами, амплитудный детектор, узкополосный усилитель низкой частоты и синхронный детектор, интегратор, усилитель постоянного тока, генератор опорного напряжения, связанный с переключателем и синхронным детектором. Кроме того, радиотермометр содержит элемент Пельтье, связанный с выходом приемного устройства, первую и вторую СВЧ-нагрузки, установленные на элементе Пельтье и находящиеся в тепловом контакте с ним, по меньшей мере один датчик температуры, выполненный с возможностью измерения температуры СВЧ-нагрузок. Первая СВЧ-нагрузка выполнена с возможностью подключения к переключателю, переключатель выполнен с возможностью подключать к первому плечу циркулятора либо антенну-аппликатор, либо первую СВЧ-нагрузку. Второе плечо циркулятора соединено с приемным устройством, а третье плечо циркулятора соединено со второй СВЧ-нагрузкой. Технический результат - снижение погрешности измерения внутренней температуры биообъекта и повышение точности метода радиотермометрии при выявления злокачественных опухолей, а также снижение габаритов прибора, повышение удобства его использования и снижение себестоимости его изготовления. 4 з.п. ф-лы, 4 ил.
Изобретение относится к медицине и может быть использовано для инфракрасной оценки устойчивости человека к кровопотере. Для этого предварительно определяют самый длинный палец кисти руки. Через 30 минут при нахождении исследуемого с оголенными кистями рук в помещении при температуре +25°C осуществляют циркулярное сдавливание плеча другой руки манжеткой тонометра под давлением, обеспечивающим сдавливание вен. При этом предлагают исследуемому начать задержку дыхания на максимально возможный период времени, вызывая максимально возможное апное. С помощью тепловизора в диапазоне +24 – (+25)°C осуществляют регистрацию динамики локальной температуры в центре оголенной подушечки выбранного ранее самого длинного пальца руки до, во время и через 3 минуты после сдавливания плеча ругой руки и момента задержки дыхания, регистрируя также продолжительность апное. После этого прекращают сдавливание манжеткой тонометра плеча другой руки, определяют разницу локальной температуры в центре подушечки исследуемого пальца и продолжительность апное и выдают заключение. В случае регистрации уменьшения локальной температуры более чем на 1,0°C и длительности апное более 50 секунд делают вывод о высокой устойчивости человека к кровопотере. В случае регистрации уменьшения локальной температуры менее чем на 0,5°C и длительности апное менее 39 секунд делают вывод о низкой устойчивости исследуемого к кровопотере. Способ обеспечивает безопасность и точность оценки устойчивости человека к кровопотере, а также возможность отбора лиц, адаптированных к кровопотере, сохраняющих сознание и работоспособность после потери крови. 1 пр.

Изобретение относится к космической медицине и может быть использовано для инфракрасной оценки адаптации космонавтов к длительным межпланетным пилотируемым полетам. Исследование начинают не менее чем за сутки до начала моделирования полета в условиях нормального атмосферного давления и силы гравитации Земли. C помощью тепловизора определяют локальную температуру подошвы стоп и экранируемой поверхности. Используют эту поверхность далее с температурой ниже выявленного минимального значения локальной температуры подошв космонавта более чем на 0,1°C. Для получения отпечатков подошв на экранируемой поверхности просят космонавта встать на нее на 30 секунд поочередно каждой стопой. Одновременно регистрируют значение давления, оказываемого поверхностью стопы на исследуемую поверхность. Сразу после удаления стопы с исследуемой поверхности регистрируют на ней с помощью тепловизора тепловой отпечаток стопы космонавта. Для этого устанавливают тепловизор в сторону экранируемой поверхности перпендикулярно к ней на расстоянии 1 м, настроенный на инфракрасное исследование в диапазоне температур +25-+36°C. Получают цветное изображение отпечатка стопы на экране тепловизора и фотографируют его. Далее осуществляют моделирование стадий полета, стадии адаптации космонавтов к летательному аппарату и к моделям стадий полета на Марс и возвращения на Землю. Участников эксперимента подвергают воздействию окружающей их среды непрерывно на протяжении многих суток в условиях изменяющегося газового давления и гравитации. В условиях моделирования длительного космического полета получают изображение отпечатков подошв многократно еженедельно в условиях искусственного оказания в течении 30 секунд внешнего давления на стопу с величиной, равной значению давления, оказываемого до начала моделирования космического полета. Каждое очередное исследование проводят в одно и то же время суток. Снимки тепловых отпечатков стоп передают в центр управления полетами, где их архивируют в виде атласа термокарт отпечатков стоп, обрабатывают с помощью компьютера и анализируют динамику локальной температуры теплового следа каждой стопы космонавта. При отсутствии изменений картины инфракрасной плантографии стоп выдают заключение о достаточной адаптации космонавта к длительным межпланетным пилотируемым полетам. При выявлении на термокартах новых зон локальной гипертермии, в которых температура превышает исходные значения более чем на 0,1°C, выдают заключение о недостаточной адаптации космонавта к длительному межпланетному пилотируемому полету. Способ обеспечивает безопасное и точное определение резервов адаптации космонавтов к моделируемым действующим факторам космических полётов. 1 ил., 1 пр.
Изобретение относится к медицине, а именно к ортодонтической стоматологии, и может быть использовано для инфракрасной диагностики прорезывания молочного зуба у ребёнка. При комнатной температуре проводят инфракрасную термографию десен с использованием тепловизора, установленного напротив полости рта на расстоянии 0,5 м c получением цветного изображения на экране тепловизора. Динамику локальной температуры поверхности десен оценивают до, во время и после кратковременного внутриротового охлаждения по равномерности и симметричности распространения зоны понижения температуры по длине десен по мере удаленности их от срединной линии. Охлаждение проводят обдуванием десны потоком воздуха при температуре ниже температуры её поверхности. Используют тепловизор с функцией изображения десны на экране в цветах от красного до фиолетового в зависимости от её локальной температуры в диапазоне +29 - +39°C. В качестве обдувающего устройства используют бытовой фен с функцией создания равномерного потока воздуха комнатной температуры, обдувают переднюю поверхность десны с расстояния 10-25 см с интенсивностью потока воздуха, обеспечивающего в срок от 10 до 30 секунд понижение температуры десны на несколько градусов в диапазоне проводимого исследования. При наличии участка с локальной гипертермией производят термографический снимок десны, конкретизируют его форму, размер и локализацию. В случае выявления локальной гипертермии выдают заключение о наличии прорезывающего зуба, о его форме, размере, месте локализации в челюсти. При равномерности температуры поверхности десны выдают заключение об однородности её структуры и об отсутствии в ней прорезывающегося зуба, после чего проводят исследование второй десны. Способ обеспечивает быстрое, точное, безопасное выявление локальной гипертермии в области десен, указывающих на локализацию, количество, размер и форму прорезывающихся молочных зубов. 1 пр.
Наверх