Светодиодное осветительное устройство полного спектра

Авторы патента:


Светодиодное осветительное устройство полного спектра
Светодиодное осветительное устройство полного спектра
Светодиодное осветительное устройство полного спектра

 


Владельцы патента RU 2607645:

НОВАДАК ТЕКНОЛОДЖИС ИНК. (CA)

Изобретение относится к области светотехники. Техническим результатом является повышение яркости освещения с полным спектром видимого излучения. Устройство для подачи выходного света на световод с целью освещения отображаемого объекта содержит множество твердотельных светоизлучающих источников, каждый из которых независимо снабжается энергией, независимо управляется и излучает свет с длиной волны, которая отличается от длин волн, излучаемых другими светоизлучающими источниками. Устройство также содержит теплоотвод, выполненный с возможностью термического соединения множества твердотельных светоизлучающих источников и обеспечения проведения тепла, образованного множеством твердотельных светоизлучающих источников, оптические элементы, предназначенные для сбора, коллимирования и объединения излучений от множества твердотельных светоизлучающих источников в объединенный пучок света, предназначенный для оптического соединения со световодом. 3 з.п. ф-лы, 4 ил.

 

УРОВЕНЬ ТЕХНИКИ

[001] Настоящее изобретение относится к осветительным системам, в частности для эндоскопии, а более конкретно к осветительным системам полного спектра, использующим светоизлучающие диоды (светодиоды) и/или полупроводниковые лазеры.

[002] В осветительных системах для эндоскопии, микроскопии и подобных областей применения, связанных с формированием оптических изображений, уже многие годы в качестве предпочтительного источника света применяются дуговые лампы или галоген. В последнее время в некоторых из этих областей применения произошло внедрение различных форм твердотельных источников света, таких как светоизлучающие диоды или лазерные диоды. Вследствие выходной яркости или ограничений спектра выходного излучения этих твердотельных источников света использование светодиодов и/или лазерных диодов до недавнего времени было ограничено формированием оптических изображений, в которых низкие уровни освещенности являются достаточными или в которых необходимо/желательно освещение с узкополосным спектром.

[003] Достижение достаточно яркого освещения с полным спектром видимого излучения посредством твердотельных источников света по ряду причин остается трудной задачей.

[004] а) Во-первых, технология светодиодов продолжает совершенствоваться, но она начала развиваться с большим отставанием по сравнению с ламповой технологией в вопросе обеспечения полного выходного оптического излучения. Сейчас доступны устройства со все большим выходным оптическим излучением, но, например, свет от одного покрытого фосфором (''белого'') светодиода все еще имеет величину меньшего порядка, чем свет от дуговой лампы.

[005] b) Кроме того, свет от многочисленных светодиодов, имеющих разные цвета (например, красный, зеленый и синий), может быть собран с использованием дихроических зеркал, чтобы ''сделать источник'' излучения по широкому спектральному диапазону. Однако в указанных выше областях применения, связанных с формированием изображений, обычно требуется передавать свет в жидкостные или волоконно-оптические световоды или световоды на основе стержневой линзы.

Такие оптические световоды обычно имеют небольшую физическую апертуру с поперечными размерами в несколько миллиметров и сдерживаемую/ограниченную числовую апертуру. Кроме того, из соображений протяженности необходимо быстро ограничивать такое практическое выполнение таких осветительных систем с комбинированным источником.

[006] с) Если даже преодолеть требования по протяженности для конструкции с многочисленными светодиодами разного цвета посредством подходящего расположения источников и дихроических зеркал для точного уравнивания длин оптических путей, то возникают другие проблемы, связанные с эффективным охлаждением и стоимостью.

[007] И наконец, хотя выходные яркости красного и синего светодиодов достигли уровней, при которых они могут генерировать свет с яркостью, по существу эквивалентной яркости красного и синего участков спектра дуговой лампы или галогенной лампы, выходная мощность зеленых светодиодов обычно по существу меньше, чем у зеленого света, излучаемого лампами.

[008] Таким образом, желательным и предпочтительным является решение данной проблемы и устранение недостатков известных устройств посредством создания экономичного и надежного осветительного устройства, применяющего твердотельные источники света для излучения яркого сбалансированного по цвету видимого излучения, который может быть эффективно соединен с оптическим световодом. Также предпочтительным является включение в состав данного осветительного устройства, что соответственно повлияет на результирующее световое излучение, других источников УФ излучения и излучения в ближней ИК области (например, для возбуждения тканей флуоресценцией).

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

[009] Согласно одной особенности настоящего изобретения предложено осветительное устройство, в котором использованы твердотельные источники света для формирования яркого, сбалансированного по цвету, видимого выходного оптического излучения с широким спектром.

[0010] Согласно одной из возможных особенностей изобретения осветительное устройство может содержать множество светодиодных источников света большой мощности, которые покрывают видимый спектр (например, от 400-700 нм). Эти светодиодные источники света снабжаются энергией и управляются по отдельности. Свет, создаваемый этими светодиодами, объединяется в один пучок с использованием зеркал или дихроичных фильтров, причем длина волны согласована выходным оптическим излучением от светодиодов. Объединенный свет может быть далее направлен в оптический световод с использованием соответствующего оптического элемента, такого как линза с большой (например >0,5) числовой апертурой.

[0011] Согласно одной из возможных особенностей изобретения, осветительное устройство может содержать светодиодные источники света, расположенные в раздельных корпусах с высокой теплопроводностью. Кристаллы светодиода могут быть гране-излучающими или поверхностно-излучающие, и они могут быть сгруппированы в виде одиночных или многокристальных конфигураций.

[0012] Согласно одной из возможных особенностей изобретения осветительное устройство может содержать комбинацию красных, зеленых и синих светодиодных источников света.

В качестве альтернативы или дополнительно, один или более из этих светодиодных источников света могут иметь другие оттенки видимого спектра, включая фиолетовые, желтые, янтарные/оранжевые светодиоды, в случае необходимости или целесообразности в конкретной области применения (например, в эндоскопе). В качестве альтернативы или дополнительно, одиночное светодиодное устройство может содержать любую комбинацию этих цветовых кристаллов.

[0013] Согласно одной из возможных особенностей изобретения для увеличения зеленого компонента излучаемого света и обеспечения более сбалансированного по цвету выходного излучения осветительное устройство может содержать в дополнение к красным и синим светодиодным источникам света по меньшей мере два зеленых светодиодных источника света, таких как длинноволновой зеленый и коротковолновой зеленый. Пиковые длины волн и ширины полос двух зеленых светодиодов тщательно отбираются для обеспечения того, что объединяющая оптическая схема формирует зеленое выходное оптическое излучение с максимальным спектром. В одном из вариантов реализации длинноволновой зеленый может иметь пиковую длину волны при ~530 нм и приблизительную полную ширину на половине максимума +/-40 нм, а коротковолновый зеленый может иметь пиковую длину волны при ~515 нм и приблизительную полную ширину на половине максимума +/-37 нм.

[0014] Согласно одной из возможных особенностей изобретения, светодиодные источники света могут быть установлены на теплоотводе, находящемся в хорошем тепловом контакте с одиночной теплоотводящей пластиной. Эта отводящая пластина может быть выполнена из металла, имеющего высокую теплопроводность, такого как медь, алюминий, железо, алмаз, железо или серебро и прочих. Отводящая пластина может быть установлена на система с пассивным охлаждением или быть ее частью, причем указанная система может быть теплоотводом с радиаторами, тепловой трубкой или активной охлаждающей системой, такой как термоэлектрический охладитель или жидкостный охладитель. Термический контакт между светодиодами и указанной пластиной может быть, например, обеспечен пайкой или посредством применения термически проводящего состава, такого как кремниевый теплоизоляционный состав 120 типа (Wakefield Thermal Solutions, Нью-Гэмпшир). Такое средство крепления и охлаждающая структура оптимизирует как стоимость/сложность такого сборного устройства, так и эффективность охлаждения, и поэтому также срок службы/надежность твердотельного источника.

[0015] Согласно одной из возможных особенностей изобретения, светодиодные источники света могут быть установлены на плоскости, общей с плоской поверхностью теплоотвода на одиночной теплоотводящей пластине, причем длина оптического пути увеличивается с длиной волны, например красный светодиод имеет наибольший оптический путь, синий светодиод имеет самый короткий оптический путь. Светодиодный источник света расположен рядом с или в фокальной точке собирающей группы, состоящей из асферической линзы (например, Newport КРА040-С, Ирвин, штат Калифорния), которая собирает свет от каждого светодиодного источника света. Эффективность собирания асферической линзы может быть увеличена посредством полевой линзы, установленной между светодиодом и асферической линзой. Асферическая линза проецирует практически коллимированный световой пучок от светодиода на зеркало или дихроичный фильтр (например, Semrock FF670-SDi01-25×36, Рочестер, штат Нью-Йорк), расположенные так, чтобы отражать свет с прямым углом относительно света, направляемого асферической линзой на траекторию объединенного светового пучка. Дихроичный фильтр выполнен так, чтобы отражать по существу весь свет при длине волны светодиодного излучения или выше этой длины волны и пропускать свет со всех более короткими длинами волн. Оптическая сила и расположение каждой асферической линзы и оптическая сила и расположение любой полевой линзы регулируется согласно требованиям для каждого светодиода, чтобы привести в соответствие разности длин оптического пути. Таким образом, можно справиться с ограничениями протяженности и линейным расположением источников света, и может быть максимизирована способность линз с высокой численной апертурой направлять объединенный пучок света в оптический световод.

[0016] Согласно одной из возможных особенностей изобретения все оптические элементы, не соединенные напрямую со светодиодными источниками света (включая все оставшиеся собирающие линзы, отражательные и дихроические зеркала и коллимирующие/конденсорные линзы), могут быть установлены в соответствующем механическом кожухе. Этот кожух может быть выполнен из одиночной заготовки из материала, такого как алюминий или подобный материал, и может быть обработан или может быть отлит и обработан как одиночных элемент. Механический кожух может также состоять из множества отдельно изготовленных элементов (например, механической обработкой) и собранных вместе. Этот кожух имеет группу линейно расположенных входных отверстий, согласованных с линейным порядком расположения светодиодных источников на теплоотводящей пластине - например, одно входное отверстие на каждый светодиодный источник света, - и одно выходное отверстие. После того, как все оптические компоненты устанавливают в кожухе, пластина со светодиодными источниками света соединяется входными отверстиями кожуха, и на выходное отверстие устанавливается затвор, закрывающий выходную апертуру в отсутствие световода. Следовательно, кожух полностью опечатан, и оптические элементы защищены от проникновения пыли и других загрязняющих веществ.

[0017] Согласно одной из возможных особенностей изобретения осветительное устройство может иметь конструкцию без линз, вместо которых оно содержит полированные отражающие поверхности, пропускающие свет, излучаемый светодиодами. Этот свет, как и в выше описанных конструкциях, может быть объединен с использованием дихроичных фильтров с объединенным светом, поданным на оптический световод, посредством указанных отражающих поверхностей.

[0018] Согласно одной из возможных особенностей изобретения осветительное устройство может также содержать другие источники света, такие как один или более лазерный диод, которые соединены с комбинированным оптическим путем. В одном из вариантов реализации лазерные диоды могут представлять собой соединенные оптоволокном лазеры в ближней ИК области, излучающие в диапазоне длин волн 800-820 нм, подходящем для возбуждения флуоресценцией, например индоцианина зеленого (ICG) или другого возбуждаемого в ближней ИК области флуоресцентного агента. В качестве альтернативы или дополнительно, один или более соединенный оптоволокном лазерный диод может излучать свет в ближней ИК области с длиной волны 830 нм с целью имитации флуоресцении индоцианина зеленого. Свет в ближней ИК области, излучаемый этими лазерами, может быть направлен по оптическому пути посредством добавления дополнительного дихроического зеркала, отражающего свет ближней ИК области, но передающего свет с более короткими длинами волн на оптический путь светодиодов.

В качестве альтернативы или дополнительно, осветительное устройство может содержать один или более УФ лазерный диод для возбуждения тканей автофлуоресценцией. Эти лазеры могут быть соединены с каналом синего светодиода или непосредственно соединены с каналом объединенного пучка перед дихроичным фильтром синего светодиода. Осветительное устройство может также содержать мощные светодиоды УФ области или ближней ИК области, имеющей большую мощность, вместо лазерных диодов.

[0019] Такая система также обеспечивает для отображения сопряженную плоскость, проходящую от собирающей группы на световод (т.е. устанавливает для световода круглую коническую поверхность).

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0020] Другие особенности и преимущества настоящего изобретения могут быть понятны из последующего описания предпочтительных вариантов реализации изобретения со ссылками на следующие чертежи.

[0021] На фиг. 1 показано светодиодное устройство с очень теплопроводной подложкой.

[0022] На фиг. 2 показано осветительное устройство со вскрытием его внутренней части, имеющее линейную группу светодиодов, расположенных на теплоотводе, и собирающие, объединяющие и конденсорные оптические части.

[0023] На фиг. 3 показано осветительное устройство со вскрытием его внутренней части, имеющее линейную группу светодиодов, расположенных на теплоотводе, теплообменное устройство и воздуходувные устройства.

[0024] На фиг. 4 показана в качестве примера структура воздушного потока осветительного устройство в кожухе.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

[0025] На чертежах одинаковые или соответствующие элементы могут иметь одинаковые позиционные обозначения. Такие изображенные варианты реализации необходимо рассматривать в качестве иллюстративных вариантов настоящего изобретения, которые никаким образом не являются ограничивающими. Необходимо также отметить, что чертежи не обязательно имеют одинаковый размер с изображаемым устройством, и варианты реализации иногда иллюстрируются посредством графических символов, линиями воображаемого контура, схематическими изображениями и местными видами. В некоторых случаях могут не изображаться элементы, не обязательные для понимания настоящего изобретение или представляющие другие элементы, которые сложны для восприятия.

[0026] Обращаясь в чертежам, в частности фиг. 1, на них изображена светодиодная сборка 100, содержащая подложку 102 с высокой теплопроводностью, которая имеет установочные отверстия 104 для присоединения к теплоотводу 220, показанному на фиг. 2. Светодиодное устройство также включает в себя зажимы 106 для подачи светодиодам электрической энергии.

[0027] На фиг. 2 показано осветительное устройство 210 со вскрытием его внутренней части, имеющее линейную группу светодиодов 212, расположенных на теплоотводе 220, и собирающие 222, объединяющие 224 и конденсорные 226 оптические части. Светодиоды 212 расположены по увеличивающимся длинам оптического пути от выходного отверстия 230, обозначенного ''Белый свет''. Собирающая оптическая часть 222, такая как асферическая линза и в некоторых случаях полевая линза, может быть расположена перед каждым светодиодом. Свет от красного светодиода 232 отражается под углом 90° зеркалом 242. Дополнительные дихроические зеркала 244, 246, 248 размещены на траектории комбинированного пучка между этим зеркалом 242 и выходным отверстием 230, обозначенным ''Белый свет''. Эти дихроические зеркала 244, 246, 248 выполнены так, чтобы отражать, в указанном порядке, под углом 90° свет, излучаемый приведенными в качестве примера длинноволновым зеленым светодиодом 234 (пиковая длина волны при ~530 нм и приблизительная полная ширина на половине максимума +/-40 нм), коротковолновым зеленым светодиодом 236 (пиковая длина волны ~515 нм и приблизительная полная ширина на половине максимума +/-37 нм), и синим светодиодом 238 (пиковая длина волны ~460 нм и приблизительная полная ширина на половине максимума +/-25 нм), передавая при этом длины волн, уже присутствующие в распространяющемся комбинированном пучке, т.е. красный, красный + зеленый длинноволнового спектра, красный + зеленый длинноволнового спектра + зеленый коротковолнового спектра. Свет, излучаемый лазером 250, может быть надлежащим образом добавлен к указанному комбинированному пучку.

На фиг. 3 схематически показано осветительное устройство со вскрытием его внутренней части, имеющее линейную группу светодиодов 212, расположенных на теплоотводе 220, теплообменное устройство 352, соответствующее светодиодному лазеру, и воздуходувные устройства 354, соответствующие светодиодному лазеру.

[0028] На фиг. 4 показана в качестве примера структура воздушного потока осветительного устройства 210 в кожухе 460.

[0029] Настоящее изобретение не ограничено конкретными вариантами реализации, раскрытыми в описании в иллюстративных целях, и охватывает всевозможные модификации и альтернативы, входящие в объем настоящего изобретения, определенного формулой полезной модели.

1. Устройство для подачи выходного света на световод с целью освещения отображаемого объекта, содержащее

множество твердотельных светоизлучающих источников, каждый из которых независимо снабжается энергией, независимо управляется и излучает свет с длиной волны, которая отличается от длин волн, излучаемых другими светоизлучающими источниками,

теплоотвод, выполненный с возможностью термического соединения множества твердотельных светоизлучающих источников и обеспечения проведение тепла, образованного множеством твердотельных светоизлучающих источников, причем теплоотвод, кроме того, содержит теплоотводящую пластину, которая выполнена из металла, имеющего высокую теплопроводность, и имеет плоскую поверхность, и причем каждый из твердотельных светоизлучающих источников непосредственно установлен на указанной плоской поверхности, так что указанные твердотельные светоизлучающие источники ориентированы вдоль общей оптической плоскости, и

оптические элементы для сбора, коллимирования и объединения излучений от множества твердотельных светоизлучающих источников при одновременном снабжении энергией в объединенный пучок света, образованный вдоль общей оптической плоскости и предназначенный для оптического соединения со световодом на выходе,

при этом свет, излучаемый каждым из указанных светоизлучающих источников, проходит оптический путь от соответствующего светоизлучающего источника к выходу, и оптические пути от светоизлучающих источников к выходу увеличиваются с длиной волны света, излученного соответствующим светоизлучающим источником, от наиболее близкого к выходу светоизлучающего источника к наиболее далекому от выхода светоизлучающему источнику.

2. Устройство по п. 1, в котором твердотельные светоизлучающие источники выбраны из группы, включающей светоизлучающие диоды и лазерные диоды.

3. Устройство по п. 1, в котором оптические элементы содержат полевую

линзу и асферическую линзу, выполненные с возможностью сбора и коллимирования излучения от каждого источника из указанного множества твердотельных светоизлучающих источников.

4. Устройство по п. 1, в котором выполнен дихроичный фильтр для соединения коллимированного излучения от каждого источника из указанного множества твердотельных светоизлучающих источников в объединенный пучок света, направленный вдоль общей траектории к выходному отверстию.



 

Похожие патенты:

Изобретение относится к выбору источника света из множества источников света, в частности к выбору источника света путем направления на него устройства выбора источника света.

Изобретение относится к осветительным устройствам с возможностью управления величинами тока СИД и обеспечения различных электрических соединений. Техническим результатом является повышение надежности осветительного устройства.

Группа изобретения относится к области систем управления, а именно к системе из связанных между собой регулируемых источников света, и может использоваться для организации освещения складов, помещений и открытых пространств.

Изобретение относится к области светотехники и может быть использовано для организации освещения секционной площади. Блок управления для системы управления светильниками, функционально соединяемый с источником света в системе освещения, содержащий средство двухсторонней связи с другими блоками управления и средства контроля окружающего пространства в отношении объектов, представляющих интерес, отличающийся тем, что он оснащен средством контроля окружающего пространства в отношении явлений, представляющих интерес, содержит блок вычисления яркости, блок фильтрации информации со средств контроля, блок управления источником света, блок контроля аналоговых датчиков, блок контроля цифровых датчиков, причем средство двухсторонней связи выполнено с возможностью соединения с роутером, при этом первый вход/выход блока фильтрации информации соединен с входом/выходом блока вычисления яркости, второй вход/выход блока фильтрации информации соединен с входом/выходом средства двухсторонней связи, третий вход/выход блока фильтрации информации соединен с входом/выходом блока цифровых датчиков, четвертый вход/выход блока фильтрации информации соединен с входом/выходом блока контроля аналоговых датчиков, выход блока вычисления яркости соединен с входом блока управления источником света, блок управления источником света оснащен выходом для подключения источника света, блок контроля цифровых датчиков оснащен входом для подключения датчиков освещения и/или температуры, а блок контроля аналоговых датчиков оснащен входом для подключения датчиков движения.

Изобретение относится к адаптивной системе освещения и, в частности, к адаптивной системе наружного освещения, которая может содержать погодно-зависимое управление.

Изобретение относится к области светотехники. Схема включения светоизлучающего диода (СИД) для освещения с повышенным КПД использует цепь постоянного тока на стороне нагрузки схемы включения СИД.

Изобретение относится к области светотехники. Схема интерфейса для работы источника света от электронного драйвера флуоресцентной лампы оборудована входными клеммами (7a, 7b) для соединения с соединительными клеммами для лампы электронного драйвера флуоресцентной лампы, - первой цепью (5a), взаимно соединяющей первую пару входных клемм (7a), - второй цепью (5b), взаимно соединяющей вторую пару входных клемм (7b), - третьей цепью (11, 9), взаимно соединяющей первую клемму (T1) первой цепи и вторую клемму (T2) второй цепи, и содержащей выпрямитель (31), причем выходные клеммы упомянутого выпрямителя соединены во время работы с источником света.

Устройство для управления уровнями света, выдаваемого твердотельной нагрузкой освещения при низких уровнях затемнения, включает в себя схему стабилизации, подключенную параллельно к твердотельной нагрузке освещения.

Способ управления угловым распределением света светового пучка, испущенного светоизлучающим устройством (102, 200) с первым набором источников света (105, 211), содержащим по меньшей мере один источник света, сконфигурированный для испускания света внутри первого углового диапазона (221, 231, 241), и второй набор источников света (107, 210), содержащий по меньшей мере один источник света, сконфигурированный для испускания света внутри второго углового диапазона (222, 232, 242), в котором первый угловой диапазон отличен от второго углового диапазона.

Использование: для подключения светового прибора в сеть переменного тока. Сущность изобретения заключается в том, что схема включения светодиодного светового прибора в сеть переменного тока содержит n (n=2, 3, …) последовательно соединенных СИД, диодный выпрямитель, положительный выход которого подключен к аноду первого СИД, первый резистор, одним выводом подключенный к отрицательной выходной клемме диодного выпрямителя, при этом в схему введены n управляемых ключей, причем первый ключ подключен параллельно второму СИД, второй ключ подключен параллельно третьему СИД, …, n-1 ключ - параллельно n-му СИД, первый вывод n-го ключа подключен к катоду n-го СИД, а второй вывод - ко второму выводу первого резистора, контроллер с процессором и двумя АЦП, резисторный делитель напряжения из последовательно соединенных второго и третьего резисторов, включенный параллельно выходу диодного выпрямителя, дифференциальные входы первого АЦП подключены к первому резистору, дифференциальные входы второго АЦП подключены к третьему резистору, а n выходов процессора подключены соответственно к управляющим входам первого, второго, …, n-го управляемых ключей.

Способ измерения перемещений изображения марки в цифровых автоколлиматорах включает в себя формирование изображения марки в виде линейчатого растра в плоскости многоэлементного приёмника излучения.

Двухканальный индикатор на лобовом стекле содержит индикатор с ЭЛТ, двухканальную коллиматорную головку, с установленной в ней механической визирной сеткой, расположенной на общей оптической оси с экраном ЭЛТ индикатора, полупрозрачный отражатель.

Нашлемная широкоугольная коллиматорная дисплейная оптическая система содержит проектор, включающий в себя жидкокристаллический дисплей, линзовую проекционную систему, состоящую из трех компонентов, двухзеркальный компонент и светоделительное коллимирующее вогнутое зеркало, соединяющее изображения от внешнего пространства и от жидкокристаллического дисплея.

Способ создания двухканальных информационных коллиматорных систем включает в себя размещение на оптической оси объектива и двух индикаторов, один из которых является индикатором просветного типа.

Использование: в области оптического приборостроения, в частности в оптических системах авиационных тренажеров, и также для улучшения их технических характеристик.

Комплекс предназначен для контроля и измерения параметров тепловизионных приборов. Комплекс содержит объектив, сменную миру, расположенную в фокальной плоскости объектива, фоновый излучатель, расположенный за мирой и снабженный исполнительным элементом, устройство управления, выход которого подключен к исполнительному элементу фонового излучателя, процессор температурный, выход которого подключен к входу устройства управления, устройство измерения температуры миры, выход которого подключен к первому входу процессора температурного.

Изобретение относится к коллиматорам, которые могут быть использованы для освещения жидкокристаллических экранов. Коллиматор выполнен в виде клиновидного оптического волновода, который имеет первый конец, второй конец, противолежащий первому концу.

Автоколлиматор может использоваться для измерения углов поворота относительно двух осей, ортогональных оптической оси объектива автоколлиматора, с использованием одной ПЗС-линейки.

Изобретение относится к способу (варианты) и системе (варианты) для лазерной сварки и может быть использовано для соединения различных деталей друг с другом. Система содержит источник (1) лазерного луча, коллиматор (2) лазерного луча и фокусирующее устройство (3).

Объектив может использоваться для работы в видимом и ближнем ИК-диапазоне длин волн. Объектив коллиматора содержит первичное зеркало, на первую по ходу лучей поверхность которого нанесено зеркальное покрытие, вторичное зеркало с зеркальным покрытием на кольцевой периферийной части, причем отражающие поверхности зеркал обращены друг к другу, двухлинзовый оптический элемент, установленный за первичным зеркалом со стороны пространства изображений и состоящий по ходу лучей из одиночной отрицательной линзы, обращенной вогнутой поверхностью к пространству изображений, и одиночной двояковыпуклой линзы.

Изобретение относится к области микроскопии. Осветительная система для микроскопа содержит по меньшей мере один источник света, выполненный с возможностью подачи двух коллимированных световых пучков к поверхности предмета, где два коллимированных световых пучка по меньшей мере частично перекрываются, и отводимый светоделитель на линии визирования микроскопа.
Наверх