Способ получения катионзамещенного трикальцийфосфата

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления плотной и пористой керамики, применяющейся в качестве скэффолдов в инженерии костной ткани, мишеней для создания покрытий на металлических имплантатах в хирургии и стоматологии и в других областях медицины. Описан способ получения катионзамещенного трикальцийфосфата путем осаждения средних фосфатов кальция, образующихся при сливании и постоянном перемешивании водных растворов нитрата кальция и двухзамещенного фосфата аммония, взятых в мольном соотношении 3:2, при pH 7,0, с последующим фильтрованием образовавшегося осадка и его термической обработкой при температурах 700-1300°C. При этом к реакционной смеси добавляют рассчитанное количество растворов солей нитратов, или ацетатов, или хлоридов следующих элементов: железа, цинка, меди, натрия, калия, стронция, бария, висмута, кремния, при следующем соотношении реагентов, мол.%: нитрат кальция - 40-59,9, двухзамещенный фосфат аммония - 40, соль - 0,1-20. Образующиеся после термической обработки порошки характеризуются однородным фазовым составом, соответствующим структуре витлокита, высокодисперсным состоянием с размером частиц от 20 нм до 2 мкм и антимикробной активностью. 1 табл., 4 пр.

 

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления плотной и пористой керамики, применяющейся в качестве скэффолдов в инженерии костной ткани, мишеней для создания покрытий на металлических имплантатах в хирургии и стоматологии и в других областях медицины.

Порошок трикальцийфосфата (ТКФ) используется для получения керамических материалов, применяемых в медицине в качестве прочных костных имплантатов и/или пористых матриксов для восстановления костной ткани. Основными характеристиками, определяющими использование ТКФ, являются фазовый состав и дисперсность. Уменьшение размеров частиц порошков ТКФ позволяет получать материалы с более высокой прочностью и более высокой резорбируемостью, что способствует созданию на их основе надежных костных имплантатов и пористых матриксов для быстрого восстановления костной ткани. В связи с тем, что часто в ходе операций и последующего лечения происходит инфицирование раневого пространства, приводящее к необходимости повторных операций, придание материалу имплантата антимикробных свойств становится важной задачей.

Известен способ получения АФК при смешении растворов диаммонийфосфата и нитрата кальция. Смесь при барботировании аргоном выдерживали при рН 11 в течение 48 часов при комнатной температуре (J. Amer. Ceram. Soc. 1989, 72, №8, 1476-1478). Однако, несмотря на сложность технологии, указанный способ не позволяет получить АФК в чистом виде без примесей других побочно образующихся фосфатов кальция, например кальцийдефицитного гидроксиапатита кальция.

Наиболее близким по техническому решению является патент РФ №2367633. Способ получения наноразмерного порошка на основе системы трикальцийфосфат-гидроксиапатит для синтеза керамических биоматериалов. Проводят химическое взаимодействие нитрата кальция и гидрофосфата аммония в растворе с добавлением аммиака, осаждают влажный порошок, промывают последовательно водой, этанолом и толуолом и прокаливают при 150-900°C и получают порошок на основе ТКФ, содержащий гидроксиапатит (ГА), характеризующийся атомарным соотношением Са/Р от 1,48 до 1,69 и площадью удельной поверхности не менее 120-200 м2/г. Недостатком данного способа является отсутствие у получаемого порошка бактерицидных свойств, а также нежелательная примесь ГА, который медленно резорбируется в организме при имплантации ГА и керамических имплантатов, получаемых из этого порошка. Кроме того, порошок ТКФ, полученный данным способом, не проявляет антибактериальной активности.

Техническим результатом предлагаемого изобретения является придание порошку ТКФ и пористым керамическим материалам из него антибактериальной активности и получение материалов из ТКФ без примесей ГА и других фосфатов кальция (порошки характеризуются однородным фазовым составом, соответствующим структуре витлокита), после термической обработки при 700-1300°C; размер частиц от 20 нм до 2 мкм.

Технический результат достигается тем, что в способе получения катионзамещенного трикальцийфосфата путем осаждения средних фосфатов кальция, образующихся при сливании и постоянном перемешивании водных растворов нитрата кальция и двухзамещенного фосфата аммония, взятых в мольном соотношении 3:2, при рН 7,0, с последующим фильтрованием образовавшегося осадка и его термической обработкой при температурах 700-1300°C, согласно изобретению к реакционной смеси добавляют рассчитанное количество растворов солей нитратов, или ацетатов, или хлоридов следующих элементов: железа, цинка, меди, натрия, калия, стронция, бария, висмута, кремния, при следующем соотношении реагентов, мол.%:

нитрат кальция - 40-59,9

двухзамещенный фосфат аммония - 40

соль железа, цинка, меди, натрия, калия, стронция, бария, висмута, кремния - 0,1-20

Образующиеся после термической обработки при 700-1300°C порошки характеризуются однородным фазовым составом, соответствующим структуре витлокита, высокодисперсным состоянием с размером частиц от 20 нм до 2 мкм и антимикробной активностью.

Присутствие ионов цинка, железа, меди в полученном порошке ТКФ обеспечивает антибактериальную активность. Уменьшение соотношения (нитрат кальция + соль металла)/фосфат аммония меньше чем 1,5 приводит к появлению в материале после термообработки при 700°C фазы пирофосфата кальция, который является нежелательным компонентом, затрудняющим получение керамики из полученного порошка. При увеличении соотношения (нитрат кальция + соль металла)/фосфат аммония больше чем 1,5, а также при увеличении рН выше 7,0 в материале после термообработки формируется фаза ГА, которая также является нежелательной.

Пример 1

В реактор с пропеллерной мешалкой помещали 280 мл раствора нитрата кальция концентрации 0,5 моль/л, 20 мл раствора нитрата цинка концентрации 0,5 моль/л, 20 мл 25%-ного водного раствора аммиака. Из капельной воронки по каплям при перемешивании добавляли 200 мл раствора двухзамещенного фосфата аммония концентрации 0,5 моль/л. рН реакционной смеси поддерживали на уровне 6,9±0,1, добавляя по каплям 10%-ный водный раствор аммиака. Перемешивание реакционной смеси продолжали в течение 60 мин, после чего образовавшийся осадок отделяли фильтрованием, промывали дистиллированной водой и этанолом и сушили в сушильном шкафу при температуре 105°C. Для определения фазового состава осадок прокаливали в течение 1 часа при 900°C. По данным рентгенофазового анализа основной кристаллической фазой полученных порошков является витлокит, примесей пирофосфата и ГА не обнаружено.

Пример 2

Материал получен аналогично примеру 1; отличие состоит в том, что вместо 20 мл раствора нитрата цинка концентрации 0,5 моль/л вводили 20 мл раствора ацетата меди концентрации 0,5 моль/л; температура термической обработки материала - 1300°C. По данным рентгенофазового анализа основной кристаллической фазой полученных порошков является витлокит, примесей пирофосфата и ГА не обнаружено.

Пример 3

Материал получен аналогично примеру 1; отличие состоит в том, что вместо 20 мл раствора нитрата цинка концентрации 0,5 моль/л вводили 20 мл раствора нитрата серебра концентрации 0,5 моль/л; температура термической обработки материала - 700°C. По данным рентгенофазового анализа основной кристаллической фазой полученных порошков является витлокит, примесей пирофосфата и ГА не обнаружено.

Пример 4

Материал получен аналогично примеру 1; отличие состоит в том, что вместо 20 мл раствора нитрата цинка концентрации 0,5 моль/л вводили 20 мл раствора хлорида железа (III) концентрации 0,5 моль/л; температура термической обработки материала - 1100°C. По данным рентгенофазового анализа основной кристаллической фазой полученных порошков является витлокит, примесей пирофосфата и ГА не обнаружено.

Для всех полученных материалов антибактериальную активность определяли по отношению к штамму E.Coli, помещая спрессованный из полученного порошка образец в чашку Петри с культурой E.Coli. О наличии антибактериальной активности материала судили по ширине светлого кольца, образующегося вокруг образца (табл. 1).

Все образцы, приведенные в таблице, получены прессованием синтезированных порошков замещенных фосфатов кальция с последующим их спеканием при температуре 1100°C.

Ag1 и Ag2 - сереброзамещенный ТКФ, содержание серебра 0,34% масс., параллельные посевы культуры E.Coli

Cu1 и Cu2 - медьзамещенный ТКФ, содержание меди 0,20% масс., параллельные посевы культуры E.Coli

Fe1 и Fe2 - железозамещенный ТКФ, содержание железа 0,50% масс., параллельные посевы культуры E.Coli

Zn1 и Zn2 - цинкзамещенный ТКФ, содержание цинка 0,20% масс., параллельные посевы культуры E.Coli

Способ получения катионзамещенного трикальцийфосфата путем осаждения средних фосфатов кальция, образующихся при сливании и постоянном перемешивании водных растворов нитрата кальция и двухзамещенного фосфата аммония, взятых в мольном соотношении 3:2, при рН 7,0, с последующим фильтрованием образовавшегося осадка и его термической обработкой при температуре 700-1300°C, отличающийся тем, что к реакционной смеси добавляют рассчитанное количество растворов солей нитратов, или ацетатов, или хлоридов следующих элементов: железа, цинка, меди, натрия, калия, стронция, бария, висмута, кремния, при следующем соотношении реагентов, мол.%:

нитрат кальция - 40-59,9

двухзамещенный фосфат аммония - 40

соль железа, цинка, меди, натрия, калия, стронция, бария, висмута, кремния - 0,1-20,

при этом образующийся после термической обработки при температуре 700-1300°C порошок характеризуется однородным фазовым составом, соответствующим структуре витлокита, высокодисперсным состоянием с размером частиц от 20 нм до 2 мкм и антимикробной активностью.



 

Похожие патенты:

Изобретение может быть использовано в электровакуумной промышленности, черной металлургии, химической промышленности, в частности в производстве пиротехнических составов.

Изобретение относится к способу получения биорезорбируемого материала на основе фосфатов кальция (ФК) с использованием микроволнового (СВЧ) излучения. Способ включает в себя следующие стадии: приготовление и перемешивание смеси гидроксида кальция и концентрированного 60-80%-ного раствора фосфорной кислоты, с последующим воздействием СВЧ-излучения в течение 20 мин при периодическом перемешивании реакционной смеси и прокаливанием при 600°С в течение 3 ч.

Изобретение может быть использовано в производстве медицинских материалов, стимулирующих восстановление дефектов костной ткани, в том числе в стоматологии, и в качестве сорбентов для адсорбции ионов тяжелых металлов.
Изобретение относится к способам получения формиатов щелочноземельных металлов, а именно безводного формиата стронция. Способ получения безводного формиата стронция осуществляют взаимодействием муравьиной кислоты и кристаллического карбоната стронция.
Изобретение относится к способам получения формиатов щелочноземельных металлов, в частности формиата бария. Способ получения формиата бария осуществляют взаимодействием кристаллического карбоната бария с муравьиной кислотой.
Изобретение относится к технологии получения формиатов щелочноземельных металлов, в частности формиата кальция. Способ получения формиата кальция осуществляют взаимодействием кристаллического карбоната кальция с муравьиной кислотой, выделением и сушкой целевого продукта, при этом карбонат кальция добавляют к 11-12%-ному водному раствору муравьиной кислоты порциями со скоростью 10-50 г/мин с интервалом 10-30 минут между порциями при температуре 25-40°C, при этом муравьиную кислоту используют в 10-20%-ном избытке от стехиометрии, после чего реакционную массу упаривают, охлаждают при перемешивании и фильтрацией отделяют выпавший целевой продукт, промывают насыщенным, предварительно очищенным водным раствором формиата кальция, отжимают и сушат при 80-90°C.

Изобретение может быть использовано в производстве магнитных порошков, постоянных магнитов, магнитопластов, магнитных жидкостей, а также устройств магнитной записи высокой плотности.
Изобретение может быть использовано при изготовлении пигментов для белых красок и покрытий, в том числе для терморегулирующих покрытий. Для получения порошков твердых растворов Ba(1-x)SrxTiO3 порошки карбоната бария BaCO3, карбоната стронция SrCO3 и диоксида титана TiO2 смешивают в необходимом количестве весовых частей.

Изобретение может быть использовано в химической промышленности. Установка для получения карбида кальция включает реактор с корпусом в виде герметичной цилиндрической вертикальной емкости, верхний торец которой снабжен соосным с ней загрузочным каналом (3).

Изобретение может быть использовано в производстве строительных материалов. Фотокаталитический композиционный материал практически без диоксида титана содержит известняк по меньшей мере 0,05% по весу натрия и титанат кальция в кристаллических фазах СТ2 и/или СТ5, характеризуемых следующими дифракционными максимумами: СТ2: (002) d=4,959; (210-202) d=2,890; (013) d=2,762 и (310-122) d-2,138; СТ5: (002) d=8,845; (023) d-4,217; (110) d=3,611 и (006) d=2,948.

Изобретение относится к переработке бериллийсодержащих рудных концентратов с получением сульфата бериллия. Шихту приготавливают из расчета получения массового соотношения SiO2/CaO в смеси концентратов, равного 2,25÷2,45, а добавку карбоната натрия назначают из расчета получения массового соотношения SiO2/(CaO+Na2O) в шихте, равного 1,45÷1,65.

Настоящее изобретение относится к способам получения коллоидных частиц оксида металла (варианты), в частности диоксида кремния, а также к самим коллоидным частицам.

Изобретение может быть использовано в химической промышленности. Способ комплексной переработки природных рассолов хлоридного кальциево-магниевого типа включает получение кристаллогидрата хлорида кальция с примесью хлорида магния и обогащение рассола по литию с дальнейшей переработкой литиевого концентрата на соединения лития.

Группа изобретений относится к слоистому двойному гидроксиду со структурой гидроталькита и способу его получения. Слоистый двойной гидрокисд описывается общей формулой Mg(1-x)Al3+ (x-y)Ni3+ y(OH)2(Ann-)x/n·mH2O, где в качестве трехзарядных катионов металла выступают одновременно катионы алюминия и никеля, y принимает значения от 0,0025 до 0,0625, x=0,25.

Настоящее изобретение относится к способам комплексной переработки отработанных катализаторов. Заявлен способ, в котором извлечение молибдена и церия проводят в две стадии, на первой стадии проводят извлечение соединения молибдена, после чего проводят стадию извлечения соединения церия.

Изобретение относится к технологии получения технологических солевых растворов горнорудного производства, в частности к повышению стабильности этих растворов. .

Изобретение относится к области получения сложных оксидных материалов, в частности к получению сложных оксидных соединений редкоземельных металлов (РЗМ), и может быть использовано при производстве высокотемпературных электропроводящих керамических изделий (например, электродов и других частей электропроводящих устройств, работающих в высокотемпературных и/или окислительных средах), элементов тонкой технологической керамики, катализаторов для различных применений и др.

Изобретение относится к области химической и гидрометаллургической технологии и может быть использовано для разложения силикатных руд и утилизации шлаков металлургической и угольной промышленности.

Изобретение относится к фильтру со смесительным устройством, у которого доля смешивания при изменении всего объемного потока остается в значительной степени постоянной.

Изобретение относится к фармацевтической промышленности, а именно к способу получения гранулированного нанокристаллического гидроксилапатита (ГАП). Способ получения гранулированного нанокристаллического гидроксилапатита включает синтез гидроксилапатита в насыщенном растворе гидроксида кальция, декантированном после суточного отстаивания от осевших агрегатов Са(ОН)2, путем приливания щелочного раствора ортофосфорной кислоты при постоянном перемешивании до достижения значения рН реакционной смеси не ниже 10, затем отстаивают, декантируют жидкую фазу и замораживают полученный коллоидный раствор высокочистого наногидроксилапатита в камере лиофильной сушки, предварительно охлажденной, после чего осуществляют лиофильную сушку в вакууме при температуре -5°С и готовые гранулы разделяют на фракции.
Наверх