Способ строчного фрезерования пера лопатки газотурбинного двигателя на многокоординатных станках с чпу

Изобретение относится к машиностроению и может быть использовано при обработке лопаток газотурбинного двигателя на многокоординатных фрезерных станках с числовым программным управлением. Способ включает сообщение лопатке вращения вокруг собственной оси и обработку пера лопатки поперечными строчками фрезой со сферической рабочей поверхностью, которой сообщают вращение и интерполированное осевое перемещение. Для каждой строчки и угла поворота лопатки предварительно рассчитывают осевой и полярный моменты инерции сечений лопатки, затем определяют предельно допустимое значение составляющей силы фрезерования, по которому рассчитывают окружную подачу фрезы, с учетом которой в процессе обработки задают частоту вращения лопатки, рассчитывают интерполированный угол разворота оси фрезы от нормали к точкам профиля сечения лопатки относительно оси, перпендикулярной оси фрезы и проходящей через центр ее сферической рабочей поверхности, и соответствующую указанному развороту частоту вращения фрезы из условия обеспечения заданной шероховатости поверхности пера лопатки и скорости фрезерования. Повышается производительность обработки и качество обработки. 1 табл., 4 ил.

 

Изобретение относится к области машиностроения и предназначено для обработки лопаток газотурбинного двигателя (ГТД) на многокоординатных фрезерных станках с числовым программным управлением (ЧПУ).

Известен способ строчного фрезерования пера лопатки газотурбинного двигателя, при котором лопатку обрабатывают фрезой, совершающей вращение и осевое перемещение (Крымов В.В. и др. «Производство лопаток газотурбинных двигателей», М., Машиностроение, 2002, с. 142-146).

Недостатком известного способа является низкое качество поверхности и большой припуск после фрезерования (0,7…0,3 мм) под последующее шлифование и полирование.

Наиболее близким по технической сущности является способ строчного фрезерования профиля лопатки газотурбинного двигателя, при котором лопатке сообщают вращение вокруг собственной оси и обрабатывают фрезой со сферической рабочей поверхностью, совершающей вращение и интерполированное осевое перемещение (патент RU №2354508, В23С 3/18, 2007 г.).

Недостатком известного способа, принятого за прототип, является низкое качество поверхности и низкая производительность обработки вследствие необоснованного назначения управляемых параметров режимов фрезерования.

Технический результат заявляемого изобретения заключается в повышении производительности обработки при обеспечении требуемых показателей качества (точности профиля пера лопатки и шероховатости фрезеруемой поверхности).

Указанный технический результат достигается тем, что в способе строчного фрезерования пера лопатки газотурбинного двигателя на многокоординатных станках с ЧПУ, включающем сообщение лопатке вращения вокруг собственной оси и обработку пера лопатки поперечными строчками фрезой со сферической рабочей поверхностью, которой сообщают вращение и интерполированное осевое перемещение, СОГЛАСНО ИЗОБРЕТЕНИЮ, для каждой строчки и угла поворота лопатки предварительно рассчитывают осевой и полярный моменты инерции сечений лопатки, затем определяют предельно допустимое значение составляющей силы фрезерования, по которому рассчитывают окружную подачу фрезы, с учетом которой в процессе обработки задают частоту вращения лопатки, рассчитывают интерполированный угол разворота оси фрезы от нормали к точкам профиля сечения лопатки относительно оси, перпендикулярной оси фрезы и проходящей через центр ее сферической рабочей поверхности, и соответствующую указанному развороту частоту вращения фрезы из условия обеспечения заданной шероховатости поверхности пера лопатки и скорости фрезерования.

На фиг. 1 изображено перо лопатки (схема к расчету деформации лопатки при поперечном строчном фрезеровании).

На фиг. 2 - сечение А-А на фиг. 1.

На фиг. 3 - схема контакта фрезы и обрабатываемой поверхности в сечении А-А.

На фиг. 4 - схема контакта фрезы и обрабатываемой поверхности для соседних строчек сечения А-А.

Для осуществления предлагаемого способа устанавливают управляемые параметры режима фрезерования, влияющие на точность, шероховатость профиля пера лопатки и производительность его обработки. Точность профиля пера лопатки для каждой строчки и угла ее поворота будет определяться величиной деформации лопатки, которая не должна превышать допуска на его изготовление. На фиг. 1 и 2 приведены следующие обозначения: l - длина пера лопатки, м; ai - координата строчки лопатки, м; Pi - составляющая силы фрезерования в направлении координаты Y для каждой строчки и угла поворота лопатки, Н; bi - плечо приложения силы Pi относительно оси Z, м; δi - суммарная деформация пера лопатки от изгиба и скручивания под действием силы Pi для каждой строчки и угла поворота, м.

При обработке пера поперечными строчками лопатка вращается вокруг оси Z, а фреза перемещается при прохождении каждой строчки в направлении координат Y и X с подачей S. После одного полного оборота лопатки вокруг оси Z фреза смещается в продольном направлении на шаг строчки и процесс фрезерования возобновляется. Каждое сечение обрабатываемой поверхности пера лопатки характеризируется размером ai. При прохождении фрезой строчки в сечении ai постоянно изменяется расстояние между ее режущей частью и осью вращения лопатки, т.е. изменяется размер bi. Для каждой строчки и угла поворота лопатки, при рассмотрении ее как двухопорной балки, величина суммарной деформации пера лопатки δi определяется как сумма деформаций под действием силы Pi от изгиба (fyi) и скручивания (fкр⋅i) из следующих выражений (Ицкович Г.М. и др. Руководство к решению задач по сопротивлению материалов. Высшая школа, М., 1970. C. 77-79, 192-194):

где Е - модуль упругости обрабатываемого материала, Н/м2; G - модуль сдвига материала, Н/м2; Jx - момент инерции площади поперечного сечения пера лопатки относительно оси X, м4; Jk - момент инерции площади поперечного сечения пера лопатки при кручении относительно оси Z, м4.

Суммарное значение линейных и угловых деформаций пера лопатки определяется выражением

Для расчета δi по формуле (1) необходимо знать числовые значения моментов инерции Jx и Jk, которые должны быть предварительно рассчитаны для каждой строчки и угла поворота лопатки по чертежу геометрической модели лопатки для операции фрезерования.

Точность обработки профиля пера лопатки определяется зависимостью

где K=0,3…0,7 - коэффициент использования поля допуска, Топ - допуск на операционные размеры при фрезеровании профиля пера лопатки.

Из выражения (2) может быть определено предельно допустимое значение составляющей силы фрезерования [Pi] для каждой строчки и угла поворота лопатки

Составляющая силы фрезерования Pi определяется из выражения (Гуревич Я.Л., Горохов М.В., Захаров В.И. и др. Режимы резания труднообрабатываемых материалов. М., Машиностроение. 1986, с. 136-137).

где Ср, х, у - коэффициент и показатели степени, определяемые экспериментально, Vp - скорость фрезерования, м/мин, Si - подача фрезы при строчном фрезеровании, мм/мин. При фрезеровании титановых сплавов: Ср=55…65, х=0,15…0,2, у=0,65…0,7; Vp≥120 м/мин, Si≤1000 мм/мин, t=0,1…0,2 (при окончательных проходах).

Предельно допустимое значение составляющей силы фрезерования [Pi] зависит от двух взаимно независимых управляемых параметров режима фрезерования (Vp, Si), сочетание которых должно быть обеспечено для каждой строчки и угла поворота лопатки согласно условию (3). Рекомендуемая скорость фрезерования Vp обеспечивается для каждой строчки и угла поворота лопатки интерполированным разворотом оси фрезы от нормалей к точкам профиля сечения лопатки относительно оси, перпендикулярной оси фрезы и проходящей через центр сферической рабочей поверхности, на угол γ (Фиг. 3). В процессе формообразования поперечной строчки каждая точка, образующая профиль пера лопатки, характеризуется своим положением нормалей: N1, N2, N3 и т.д. При этом для обеспечения постоянства значений эффективных радиусов Rmin режущей кромки фрезы угол наклона γ должен быть отличным от 0, что возможно, если нормалям N1, N2, N3 отвечают соответственно положения осей фрезы 01, 02, 03 и т.д. В этом случае Rmin отличны от нуля, что исключает процессы пластического деформирования (подмятие материала вершиной фрезы) при фрезеровании профиля пера лопатки. При окончательном фрезеровании профиля пера значение угла разворота γ оси фрезы относительно нормалей к точкам профиля может быть найдено из геометрических соотношений, приведенных на Фиг. 4:

где Rф - радиус сферической поверхности фрезы, м; Rz - высотный параметр продольной шероховатости профиля пера лопатки при поперечном строчном фрезеровании, оговариваемый чертежом, м; h - шаг строчек вдоль оси лопатки, м.

После преобразования (5) получим

Частота вращения фрезы nф, соответствующая рассчитанному по формуле (6) углу разворота оси фрезы γ и требуемой скорости фрезерования Vp, определяется из выражения

где: nф - частота вращения фрезы, с-1.

Подставляя (4) в (3) получим выражение для расчета второго управляемого параметра режима фрезерования Si для каждой строчки и угла поворота лопатки в виде

по значению которого задают частоту вращения лопатки n0 для каждой строчки и угла поворота лопатки из следующего выражения

где Si - окружная подача фрезы; Rαi - радиус точки профиля пера лопатки относительно оси ее вращения, соответствующей углу поворота α для i-й строчки; βi - угол между вектором Si и перпендикуляром к радиусу Rαi.

Выбор n0 для каждой строчки и угла поворота лопатки изменяет производный режим фрезерования Si=Sz⋅z⋅n0, где Sz - рекомендуемая подача на зуб фрезы, z - число зубьев фрезы, и соответственно обеспечивает максимальную производительность фрезерования через изменение машинного времени

где L - длина контура при фрезеровании i-й строчки, N - число строчек при фрезеровании лопатки.

Для обеспечения требуемой точности профиля и шероховатости поверхности пера лопатки при максимальной производительности обработки установлена зависимость управляемого параметра режима фрезерования для каждой строчки N и угла поворота лопатки α в виде n0=f(N, α).

Способ осуществляется следующим образом.

Для осуществления предлагаемого способа предварительно рассчитывают осевой и полярный моменты инерции сечений лопатки для каждой строчки N и угла поворота α лопатки. Устанавливается зависимость Jx, Jp=f(N, α).

Определяют предельно допустимое значение составляющей силы фрезерования [Pi] для каждой строчки N и угла поворота лопатки α в соответствии с выражением (3). Устанавливается зависимость [Pi]=f(N, α).

Из условия обеспечения требуемой шероховатости Rz поверхности лопатки и рекомендуемой скорости фрезерования Vp рассчитывается для каждой строчки N и угла поворота лопатки α угол разворота оси фрезы γ относительно нормали к точкам профиля сечения лопатки относительно оси, перпендикулярной оси фрезы и проходящей через центр сферической рабочей поверхности, в соответствии с выражением (6), и соответствующая ему частота вращения фрезы nф в соответствии с выражением (7). Устанавливаются числовые значения γ и nф.

Для обеспечения максимальной производительности обработки, при неизменной рекомендуемой скорости фрезерования Vp, из условия обеспечения предельно допустимого значения силы фрезерования [Pi], в соответствии с выражением (3), устанавливают функциональную зависимость для каждой строчки N и угла поворота лопатки α для второго управляемого параметра режима фрезерования Si, в соответствии с выражением (8), по значению которого определяют значения no, в соответствии с выражением (9). Устанавливают зависимость n0=f(N, α).

Установлена функциональная зависимость управляемых параметров режима фрезерования для каждой i-й строчки и угла поворота лопатки α в виде nф, n0=f(N, α) из условия обеспечения требуемых точности и шероховатости поверхности профиля пера лопатки при максимальной производительности фрезерования.

Получив зависимость управляемых параметров в виде nф, n0=f(N, α), разрабатывают управляющую программу для станка с ЧПУ.

Пример конкретного выполнения.

На 5-координатном фрезерном станке с ЧПУ фирмы Matsuura модели МАМ 72-63V фрезеровалась рабочая лопатка IV ступени ГТД из сплава ВТ 8М длиной 151,63 мм, к точности формы, размеров и расположения пера которой предъявляются требования 13-14 квалитета (предельное отклонение контуров сечений профиля пера от теоретического Toп=0,1 мм). Шероховатость поверхности профиля пера Rz=20 мкм. Лопатка обрабатывалась фрезой со сферической рабочей поверхностью D12R6-64RL12 TiAIN фирмы Cerin (диаметр фрезы 12 мм, число зубьев z=4, радиус сферической рабочей поверхности Rф=3,5 мм) на рекомендуемых параметрах режима: скорость фрезерования Vp=120 м/мин, подача на зуб фрезы Sz=0,05 мм/зуб. При заданной рекомендуемой скорости фрезерования частота вращения фрезы np=1000Vp/(2πRф)=2730 об/мин, что определяет производную скорость окружной подачи Sm=Sz⋅z⋅np=546 мм/мин. Строчное фрезерование выполнялось со смещением фрезы вдоль оси лопатки на величину шага строчки h=1,5 мм. Полное формообразование пера лопатки осуществлялось после фрезерования 100 строчек. Машинное время фрезерования пера лопатки составило tм= i=i 100 L i / S m =87,5мин .

По предлагаемому способу предварительно определяют осевой и полярный моменты инерции для всех строчек и углов поворота лопатки. Выполним проектный расчет окружной подачи фрезы Si по выражению (8) при фрезеровании строчки Ni=59 (ai=87 мм, bi=0), когда возможен наибольший прогиб δi под действием составляющей силы фрезерования Pi. Для этого сечения и углов поворота лопатки предварительно рассчитывают осевые моменты инерции Jx приведенные в таблице.

Согласно данным таблицы наибольший прогиб лопатки в этом сечении будет происходить при углах поворота α=0,180°, наименьший - при α=90,270°. Расчет Si выполним при следующих значениях параметров, входящих в выражения (8): Топ=0,1 мм, k=0,7, ai=87 мм, bi=0, l=151,63 мм, Е=2,1⋅105 Н/мм2, G=8⋅104 Н/мм2, Vp=120 м/мин, Ср=60, Jxmin=62,49 мм4, Jmax=121,1 мм4.

Расчетные значения Si составили: при α=0,180° - Si=355 мм/мин, при α=90,270° - Si=947 мм/мин. По полученным значениям в соответствии с выражением (9) устанавливают значение управляемого параметра режима фрезерования n0. Аналогичный проектный расчет выполняют для фрезерования каждой строчки и угла поворота лопатки.

Переменность окружной скорости подачи Sпер при фрезеровании каждой строчки лопатки позволило снизить машинное время фрезерования пера, расчетное значение которого составило t м = i=1 N L 1 / S пер =73,4мин .

Получив зависимость управляемых параметров режима фрезерования в виде nф, n0=f(N, α), разрабатывают управляющую программу для станка с ЧПУ.

Эффективность предложенного способа фрезерования оценивалась по производительности фрезерования (машинному времени на формообразование профиля пера лопатки). При обработке лопатки на базовых и рекомендуемых способом параметрах режима фрезерования были обеспечены требуемые параметры точности и шероховатости поверхности профиля пера лопатки. Рекомендуемые способом параметры режима фрезерования, за счет сокращения машинного времени, позволили повысить производительность обработки в 1,2 раза.

Предложенный способ фрезерования обеспечивает повышение производительности обработки при обеспечении требуемых параметров качества.

Способ строчного фрезерования пера лопатки газотурбинного двигателя на многокоординатных станках с ЧПУ, включающий сообщение лопатке вращения вокруг собственной оси и обработку пера лопатки поперечными строчками фрезой со сферической рабочей поверхностью, которой сообщают вращение и интерполированное осевое перемещение, отличающийся тем, что для каждой строчки и угла поворота лопатки предварительно рассчитывают осевой и полярный моменты инерции сечений лопатки, затем определяют предельно допустимое значение составляющей силы фрезерования, по которому рассчитывают окружную подачу фрезы, с учетом которой в процессе обработки задают частоту вращения лопатки, рассчитывают интерполированный угол разворота оси фрезы от нормали к точкам профиля сечения лопатки относительно оси, перпендикулярной оси фрезы и проходящей через центр ее сферической рабочей поверхности, и соответствующую указанному развороту частоту вращения фрезы из условия обеспечения заданной шероховатости поверхности пера лопатки и скорости фрезерования.



 

Похожие патенты:

Изобретение относится к области металлообработки и может быть использовано, например, при чистовой обработке лопаток газотурбинного двигателя. Способ включает удаление обработкой с помощью адаптированного инструмента (20) припуска обрабатываемой зоны (8), при этом для определения конечного положения инструмента в ходе обработки осуществляют цифровое моделирование поверхности (11) теоретического профиля в виде сетки (13) и моделирование позиции каждой точки (Р) контакта между деталью и инструментом (20) в процессе обработки, измеряют посредством зондирования детали для каждого узла Ni, находящегося за пределами внешней границы (12) обрабатываемой зоны (8), отклонение (дельта Ni) между положением узла Ni на исходной поверхности (10) и рассчитанной позицией узла на поверхности (11) теоретического профиля, путем соответствующих расчетов определяют отклонение (дельта Р), необходимое для добавления к каждой точке Р для достижения в ней контакта между деталью и инструментом (20), относительно системы координат обрабатывающего станка.

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера рабочих лопаток газотурбинных двигателей на станках с ЧПУ. Способ включает обработку концевой торовой фрезой, которую перемещают эквидистантно обрабатываемой поверхности.

Изобретение относится к машиностроению и может быть использовано при обработке криволинейных поверхностей пера лопаток газотурбинных двигателей. Способ включает использование сферической фрезы, содержащей торцевые зубья, имеющие притупленные режущие кромки на перемычке с перекрытием ими оси вращения фрезы, которую устанавливают с расположением оси вращения по нормали в каждой точке контакта с обрабатываемой поверхностью.

Изобретение относится к области машиностроения и может найти применение при изготовлении двухвенцовой звездочки. Способ включает обработку пазов плунжерным фрезерованием.

Группа изобретений относится к машиностроению и может быть испоьзована при фрезеровании изделий с врезной подачей. Режущая головка содержит поверхность основания, боковую область, соединенную с поверхностью основания, верхнюю область, соединенную с боковой областью, и верхние ножи, расположенные на верхней области и имеющие режущие кромки, предназначенные для контакта с изделием для удаления материала и проходящие от центральной точки верхней области к периферии верхней области и расположенные под углом относительно базовой плоскости, приблизительно перпендикулярной указанной оси.

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера рабочих лопаток газотурбинных двигателей. Способ основан на выборе безопасной частоты вращения шпинделя, обеспечивающей исключение резонанса между частотами колебаний фрезы, воздействующих на обрабатываемую поверхность, и собственными частотами обрабатываемой лопатки, которую закладывают в управляющие программы обработки.

Изобретение относится к машиностроению и может быть использовано при производстве лопаток газотурбинных двигателей. Способ включает фрезерование пера лопатки на пятикоординатном станке с числовым программным управлением.

Изобретение относится к области обработки металлов резанием и может быть использовано при фрезеровании концевыми фрезами лопаток моноколес газотурбинных двигателей (ГТД) на станках с числовым программным управлением.

Изобретение относится к машиностроению и может быть использовано в авиадвигателестроении при обработке профиля пера рабочих лопаток газотурбинных двигателей, в частности аэродинамических моделей лопаток роторов газотурбинных двигателей, имеющих малую толщину и осевые габариты 200-300 мм.

Изобретение относится к машиностроению и может быть использовано при фрезеровании деталей со сложной пространственной геометрией, характеризующейся чередованием выступов и пазов, в частности, при изготовлении моноколес центробежных или осевых лопаточных машин.

Изобретение относится к области авиадвигателестроения, в частности к технологии изготовления моноколес газотурбинных двигателей, преимущественно имеющих сложнопрофильные лопатки. Способ включает прорезку пазов, обработку спинки, корыта и дна межлопаточных каналов за один технологический установ одним режущим инструментом. Инструмент совершает прямолинейное движение вдоль трех осей пространственной системы координат и поворот вокруг указанных осей. В процессе обработки изменяют диаметр режущей части режущего инструмента, образованной внешними и внутренними режущими кромками, на величину, определяемую кривизной обрабатываемых поверхностей, путем прямолинейного перемещения режущих элементов в радиальном направлении. Повышается точность формообразования и производительность за счет уменьшения количества проходов. 6 ил.

Изобретение относится к авиационной промышленности и может быть использовано для изготовления моноколес турбомашин. Способ включает последовательную черновую обработку концевыми фрезами верхних, средних и концевых участков лопаток и дальнейшую их чистовую обработку. При этом после проведения черновой обработки верхних и средних участков лопаток выявляют дефекты на их поверхности. Удаляют участки лопаток с выявленными дефектами. Восстанавливают верхние и средние участки лопаток. Для восстановления верхних и средних участков лопаток по месту их удаления формируют выступ под корневые участки лопаток на кольцевой заготовке. Изготавливают технологическую накладку в виде платика со сквозным вырезом, совпадающим с контуром выступа под корневые участки лопаток. Также изготавливают конструктивную деталь, контактная плоскость которой соразмерна с контактной плоскостью платика, а ее объем соответствует объему удаленных верхних и средних участков лопаток. С помощью электронно-лучевой сварки соединяют между собой выступ под корневые участки лопаток, платик и конструктивную деталь. Далее проводят черновую обработку восстановленных участков лопаток. Изобретение позволяет расширить технологические возможности изготовления моноколеса газотурбинного двигателя за счет устранения дефектов в процессе его изготовления. 5 ил.

Группа изобретений относится к машиностроению и может быть использована при фрезеровании деталей сложной пространственной формы. Способ включает построчное фрезерование сферической фрезой вращающейся заготовки на многокоординатном обрабатывающем центре с ЧПУ. Осуществляют взаимное относительное перемещение вращающейся заготовки и рабочей части вращающейся фрезы с заданными направлением строки, скоростью подачи вдоль строки и шириной фрезерования. Производят непрерывное возвратно-поступательное циклическое перемещение заготовки вдоль ее продольной оси на расстояние, равное 0,5-1,2 заданной ширины фрезерования, со скоростью, превышающей заданную скорость подачи вдоль строки не менее чем в 1,5 раза. Приведена конструкция обрабатывающего центра для осуществления указанного способа. Снижается вариативность значений шероховатости по направлениям фрезеруемой поверхности. 2 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к способам чистовой обработки поверхности лопатки. Осуществляют обработку передней кромки и задней кромки, а также чистовую обработку участка корыта и участка спинки до поверхности лопатки лопаточного элемента. Концевую фрезу подводят к участку корыта и участку спинки соответствующей области поверхности лопатки после того, как увеличивают скорость концевой фрезы и осуществляют чистовую обработку на указанных участках соответствующей области поверхности лопатки обрабатываемой детали. При этом скорость концевой фрезы уменьшают после того, как концевую фрезу для чистовой обработки перемещают от соответствующей области поверхности лопатки обрабатываемой детали. Снижается трение между концевой фрезой и обрабатываемой лопаткой, увеличивается срок службы и производительность обработки. 1 з.п. ф-лы, 6 ил.

Изобретение относится к обработке металлов резанием и может быть использовано при формировании криволинейных поверхностей лопаток цельнофрезерованного рабочего колеса газотурбинного двигателя на станках с числовым программным управлением. Способ включает использование концевых фрез, которыми осуществляют черновую обработку, при которой прорезают межлопаточные пазы одинаковой ширины в радиальном направлении, и чистовую обработку, при которой фрезеруют профиль пера лопатки от вершины лопатки к радиусу перехода в ступицу. При чистовой обработке съем металла ведут поочередно чередующимися со стороны корыта и спинки строками, измеренными по высоте пера лопатки. Ширину первой строки α1 выбирают меньшей или равной половине ширины последующей строки α2, а ширину последующих строк αi - равной или меньшей предыдущей строки αi-1 при условии, что чередование строк не приводит к симметричному снятию металла со стороны корыта и спинки и обеспечивает максимальную жесткость обрабатываемого пера лопатки. Обеспечивается точность изготовления рабочего колеса. 3 ил.

Изобретение относится к области изготовления лопаток турбомашин. Профиль лопасти лопатки определяют по цифровой теоретической модели. Изготовливают заготовку с припуском вдоль задней кромки лопасти относительно теоретического профиля и снимают упомянутый припуск адаптивной механической обработкой, включающей позиционирование заготовки в эталонной системе координат станка, зондирование координат положения заданных точек (Ni) на первой стороне заготовки вдоль ее задней кромки, определение отклонения положений (дельта Ni) заданных точек (Ni) от их положений, заданных теоретической моделью, осуществление разбиения на клетки обработки стороны заготовки, при этом вершины клеток определяют, исходя из положений упомянутых точек (Ni), определение количества материала заготовки, снимаемого с поверхности клеток относительно их вершин и с учетом упомянутых отклонений положений (дельта Ni), и обработку лопасти. Использование изобретения позволяет повысить точность изготовления лопатки. 2 н. и 10 з.п. ф-лы, 8 ил.

Изобретение относится к режущим инструментам и может быть использовано для удаления материала с изделия. Головка имеет базовую поверхность, боковую и верхнюю области. Верхняя область ограничивает центральный участок и периферию и содержит верхние зубья с режущими кромки, каждая из которых проходит от центрального участка в направлении периферии и имеет проходящую в осевом направлении вершинную часть. Каждый зуб определяет лучевую ось, которая образует угол относительно отсчетной радиальной линии, проходящей от центра верхней области, и пересекает указанную линию у периферии. Каждая режущая кромка имеет переднюю поверхность с плоской зоной, параллельной лучевой оси и расположенной под углом относительно отсчетной плоскости, параллельной оси вращения головки. Режущие кромки имеют подрезанную поверхность, расположенную ниже плоской зоны под углом относительно отсчетной плоскости, параллельной оси вращения головки. Приведены действия способа фрезерования изделия с помощью фрезы, содержащей такую режущую головку. Обеспечивается более качественное врезание по оси Z по сравнению с головками, режущие поверхности которых лежат в одной плоскости в процессе врезного фрезерования вдоль оси Z, и эффективное удаление материала при перемещении фрезы. 3 н. и 6 з.п. ф-лы, 12 ил.

Изобретение относится к машиностроению и может быть использовано при обработке лопаток газотурбинного двигателя на многокоординатных фрезерных станках с числовым программным управлением. Способ включает сообщение лопатке вращения вокруг собственной оси и обработку пера лопатки поперечными строчками фрезой со сферической рабочей поверхностью, которой сообщают вращение и интерполированное осевое перемещение. Для каждой строчки и угла поворота лопатки предварительно рассчитывают осевой и полярный моменты инерции сечений лопатки, затем определяют предельно допустимое значение составляющей силы фрезерования, по которому рассчитывают окружную подачу фрезы, с учетом которой в процессе обработки задают частоту вращения лопатки, рассчитывают интерполированный угол разворота оси фрезы от нормали к точкам профиля сечения лопатки относительно оси, перпендикулярной оси фрезы и проходящей через центр ее сферической рабочей поверхности, и соответствующую указанному развороту частоту вращения фрезы из условия обеспечения заданной шероховатости поверхности пера лопатки и скорости фрезерования. Повышается производительность обработки и качество обработки. 1 табл., 4 ил.

Наверх