Теплообменник



Теплообменник
Теплообменник
Теплообменник
Теплообменник
Теплообменник
Теплообменник
Теплообменник

 


Владельцы патента RU 2607916:

Письменный Владимир Леонидович (RU)

Рекуперативный теплообменник, в котором один из теплоносителей, прежде чем попасть в теплообменник, проходит через смеситель, в котором смешивается с этим же теплоносителем, но уже прошедшим через теплообменник, нагнетаемым компрессором. Теплообменник, будучи рекуперативным, по эффективности (способности к выравниванию температур теплоносителей) соответствует смесительному теплообменнику. Технический результат - повышение эффективности теплообменника. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к теплотехнике.

Известны рекуперативные, регенеративные и смесительные теплообменники (БЭС, том 25, издание третье, Москва: Советская энциклопедия, 1976. С. 455).

Рекуперативные теплообменники - аппараты, в которых теплоносители с различной температурой разделены твердой стенкой. Недостатком рекуперативных теплообменников является значительное термическое сопротивление, которое препятствует передаче теплоты от одного теплоносителя к другому.

Смесительные теплообменники - аппараты, в которых теплообмен идет при непосредственном соприкосновении теплоносителей, что обеспечивает максимально возможную передачу теплоты от одного теплоносителя к другому. Недостатком смесительных теплообменников является то, что физические свойства теплоносителей при смешении изменяются.

Целью изобретения является обеспечение максимально возможной передачи теплоты от одного теплоносителя к другому (как в смесительных теплообменниках) при сохранении физических свойств теплоносителей (как в рекуперативных теплообменниках).

Известен теплообменник, в котором теплоносители с различной температурой разделены твердой стенкой, при этом один из теплоносителей, прежде чем попасть в теплообменник, проходит через смеситель, в котором смешивается с этим же теплоносителем, прошедшим через теплообменник, нагнетаемым насосом (CN 103415538 А, МПК C08F 2/01, C08F 2/18, опуб. 27.11.2013).

Поставленная цель достигается тем, что в теплообменнике, в котором теплоносители с различной температурой разделены твердой стенкой, один из теплоносителей, прежде чем попасть в теплообменник, проходит через смеситель, в котором смешивается с этим же теплоносителем, прошедшим через теплообменник. При этом расход теплоносителя, поступающего из теплообменника в смеситель, составляет более 90 процентов от расхода теплоносителя, поступающего из смесителя в теплообменник. Для подачи теплоносителя из теплообменника в смеситель используется компрессор. В качестве теплоносителя используется газ или жидкость.

Сущность изобретения заключается в том, что изменение температуры одного из теплоносителей и теплообмен между теплоносителями осуществляются раздельно. Изменение температуры теплоносителя осуществляется в смесительном теплообменнике (смесителе), а теплообмен между теплоносителями - в рекуперативном теплообменнике. Обмен теплотой в рекуперативном теплообменнике ведет к изменению температуры теплоносителя, которое усиливается в смесительном теплообменнике, и так до тех пор, пока на разделительной стенке рекуперативного теплообменника не установится минимальный перепад температур. Перепад температур тем меньше, чем больше теплоносителя из рекуперативного теплообменника возвращается в смесительный теплообменник: при 90 процентном возврате теплоносителя эффективность теплообмена рекуперативного теплообменника практически не отличается от эффективности теплообмена смесительного теплообменника, и при этом сохраняются физические свойства теплоносителей.

На фиг. 1 изображен теплообменник;

на фиг. 2 изображен термодинамический цикл, реализуемый в теплообменнике;

на фиг. 3 показаны характеристики эффективности теплообменника.

Теплообменник (фиг. 1) состоит из рекуперативного теплообменника 1, компрессора 2, смесителя 3, входного канала 4.

Работа теплообменника осуществляется следующим образом. Теплоноситель (газ) под давлением через входной канал 4 поступает в смеситель 3 и далее в теплообменник 1. Охлажденный (нагретый) в теплообменнике 1 теплоноситель частично отводится потребителю. Оставшаяся часть теплоносителя поступает в компрессор 2, из которого - в смеситель 3. В смесителе 3 охлажденный (нагретый) теплоноситель перемешивается с теплоносителем, поступающим в смеситель через канал 4. В результате смешения температура теплоносителя понижается (повышается). Образовавшаяся смесь поступает в теплообменник, и цикл повторяется. Изменение температуры теплоносителя будет продолжаться до тех пор, пока не произойдет выравнивание тепловых потоков в теплообменнике 1 и смесителе 3.

На фиг. 2 изображен термодинамический цикл, реализуемый в теплообменнике. Рабочим телом цикла является газ (теплоноситель), циркулирующий внутри теплообменника 1 (температура газа внутри теплообменника выше температуры газа снаружи теплообменника). Газ (процесс а-б) расширяется и охлаждается в теплообменнике (отводится теплота q2). Охлажденный газ сжимается до исходного давления (процесс б-с). К газу при постоянном давлении подводится теплота q1 (процесс с-а). Цикл повторяется. Количество подведенной и отведенной теплоты равны (q1=q2), так как вся работа расширения газа (процесс а-б) преобразуется в теплоту.

Количество подведенной (отведенной) теплоты в цикле (фиг. 2) зависит от интенсивности теплообменных процессов и массы рабочего тела цикла.

Интенсивность теплообменных процессов характеризуется коэффициентом интенсивности охлаждения газа

,

где Та и Тб - температуры газа в точках а и б цикла,

Т2 - исходная температура наружного газа (второй теплоноситель).

Масса рабочего тела, участвующего в теплообмене, характеризуется коэффициентом циркуляции газа (теплоносителя)

,

где G* - расход газа, поступающего из теплообменника в смеситель,

G - расход газа, поступающего из смесителя в теплообменник.

Температуры газа в цикле а-б-с определяются как

,

,

,

где T1 и Т2 - исходные температуры внутреннего и наружного газа (первый и второй теплоносители, соответственно);

π - степень повышения давления в компрессоре;

ηс - к.п.д. в процессе сжатия;

к - показатель адиабаты.

На фиг. 3 показано изменение температуры газа на выходе из теплообменника (точка б на фиг. 2) в зависимости от коэффициента интенсивности охлаждения газа ϑ и коэффициента циркуляции δц при исходных температурах газов: T1=900 К, Т2=300 К и степени повышения давления в компрессоре π=1,1. Видно, что при коэффициентах циркуляции δц>0,9 температура газа на выходе из теплообменника (независимо от коэффициента ϑ) приближается к исходной температуре наружного газа Т2.

Изобретение позволяет приблизить эффективность рекуперативного теплообменника (способность к выравниванию температур теплоносителей) к эффективности смесительного теплообменника, что открывает новые возможности для повышения к.п.д. энергетических установок, например авиационных двигателей, в которых использование подобных теплообменников позволит в разы уменьшить расходы воздуха на охлаждение двигателей.

1. Теплообменник, в котором теплоносители с различной температурой разделены твердой стенкой, при этом один из теплоносителей, прежде чем попасть в теплообменник, проходит через смеситель, в котором смешивается с этим же теплоносителем, прошедшим через теплообменник, нагнетаемым компрессором, отличающийся тем, что расход теплоносителя, поступающего из теплообменника в смеситель, составляет более 90 процентов от расхода теплоносителя, поступающего из смесителя в теплообменник.

2. Теплообменник по п. 1, отличающийся тем, что теплоноситель - газ.

3. Теплообменник по п. 1, отличающийся тем, что теплоноситель - жидкость.



 

Похожие патенты:

Изобретение относится к теплообменной технике и может использоваться в микроканальных теплообменниках. Микроканальный теплообменник состоит из жесткого корпуса, содержащего теплообменную матрицу, образованную из спаянных между собой тонких гладких теплопроводных пластин одинаковой конструкции, патрубков для подвода и отвода горячего и холодного теплоносителей, теплообменная матрица крепится к расположенным на входе и выходе теплоносителей пластинам с отверстиями, обеспечивающими подачу каждого из теплоносителей к коллекторным каналам горячего и холодного теплоносителей, расположенным противоположно друг другу, далее подачу теплоносителя к основным каналам горячего и холодного теплоносителей, при этом соседние пластины теплообменной матрицы по-разному ориентированы, что обеспечивает возможность подвода и отвода потока теплоносителя с разных сторон, при этом гладкие теплопроводные пластины спаяны между собой с помощью тонкой проволоки, образуя микроканалы.

Изобретение относится к способу изготовления охлаждающего модуля (10) в виде корпуса с внутренним пространством (24) для размещения батарейных ячеек (22), причем корпус имеет между впускной и выпускной зонами один или несколько параллельных друг другу охлаждающих каналов (20) и выполняется, по меньшей мере, частично из одного или нескольких отрезков полого профиля (30).

Изобретение относится к реактору со стационарным слоем катализатора, состоящему из многосекционного корпуса, крышки и днища, штуцеров для подачи и вывода продуктов реакции, каждая секция которого состоит из реакционной зоны - цилиндрического корпуса с устройством для удержания мелкозернистого катализатора, и теплообменной зоны - кожухотрубного теплообменника, в трубки которого подается реакционная смесь, а в межтрубное пространство - теплоноситель.

Группа изобретений относится к способам отвода низкопотенциального тепла от энергетических систем космических аппаратов (КА). Способ работы капельного холодильника-излучателя (КХИ) включает нагрев теплоносителя, его преобразование в поток капель, охлаждающихся излучением в космическом пространстве, сбор капель и подачу конденсата в энергетическую систему.

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. В теплообменнике, содержащем пакет теплообменных пластин (1, 1а, 1b, 1с), образованных из листового металла, имеющего трехмерный рельеф (2, 3), каждая пластина (1, 1а, 1b, 1с) теплообменника имеет канавку (10), в которой расположена прокладка (9), причем указанная канавка (10) имеет днищевую внутреннюю поверхность (11), при этом указанная днищевая внутренняя поверхность (11) имеет по меньшей мере один выступ (14, 15), направленный к указанной соседней теплообменной пластине (1а).

Нагреватель предназначен для подогрева магистральных трубопроводов, транспортирующих нефть и газ с морских платформ ледового класса, в том числе использующих в качестве источника энергии атомные реакторы.

Изобретение относится к области теплотехники и может быть использовано в системах теплообмена, предназначенных для восстановления и использования отработанного тепла.

Изобретение относится к области теплотехники и может быть использовано в охлаждающих башнях с теплообменниками сухого типа. Теплообменник для охлаждения жидкости, направленный вертикально вдоль продольной оси, включает в себя первую охладительную дельту, установленную в первой точке вдоль продольной оси и содержащую первый впускной трубопровод для впуска потока жидкости, соединенный по текучей среде с первым подающим магистральным трубопроводом, и первый выпускной трубопровод для выпуска потока жидкости, соединенный по текучей среде с первым впускным трубопроводом и первым отводящим магистральным трубопроводом; и вторую охладительную дельту, установленную во второй точке вдоль продольной оси над первой охладительной дельтой, содержащую второй впускной трубопровод для впуска потока жидкости, соединенный по текучей среде со вторым подводящим магистральным трубопроводом, и второй выпускной трубопровод для выпуска потока жидкости, соединенный по текучей среде со вторым впускным трубопроводом и вторым отводящим магистральным трубопроводом.

Изобретение относится к области энергетики, а именно к аппаратам воздушного охлаждения (АВО), применяемым для охлаждения природного газа. Охлаждаемый газ из магистрального газопровода после компрессорной станции подается в теплообменные трубы теплообменной секции.

Изобретение относится к конструкции теплообменника, в частности к теплообменнику металлическому системы отопления помещения. Теплообменник содержит трубопровод в виде стенки сквозной полости с внешней поверхностью, концевыми участками, а также внешние элементы теплопередачи, которые закреплены к одному концевому участку.

Изобретение относится к способу производства углеводородов посредством термического разложения углеводородсодержащего загружаемого материала в печи для крекинга. При этом печь для крекинга имеет зону излучения и зону конвекции, где термический крекинг углеводородсодержащего загружаемого материала осуществляют в зоне излучения, и дымовой газ зоны излучения в зоне конвекции используют как теплоноситель для предварительного нагрева различных загружаемых материалов, углеводородсодержащий загружаемый материал предварительно нагревают и/или преобразуют в пар посредством расположенного в зоне конвекции теплообменника, и питательную воду котла посредством по меньшей мере одного расположенного в зоне конвекции теплообменника предварительно нагревают и/или преобразуют в пар. Способ характеризуется тем, что независимо от агрегатного состояния углеводородсодержащего загружаемого материала, температура дымового газа при выходе из зоны конвекции варьируется в диапазоне 30°С и является меньшей чем 150°С, и технологический режим потоков в теплообменниках зоны конвекции регулируют таким образом, что при газообразном углеводородсодержащем загружаемом материале почти 100% всей площади теплообмена всех теплообменников в зоне конвекции участвует в теплообмене с дымовым газом, в то время как при жидком углеводородсодержащем загружаемом материале в теплообмене с дымовым газом участвует только заданная доля от 100% площади поверхности теплообмена теплообменника в зоне конвекции, которая не служит для предварительного нагрева и/или преобразования в пар углеводородсодержащего загружаемого материала. По меньшей мере один теплообменник для нагрева и/или преобразования в пар питательной воды котла, который при газообразном углеводородсодержащем загружаемом материале обтекается питательной водой котла, при жидком углеводородсодержащем загружаемом материале не обтекается питательной водой котла, в частности, шунтируется или обходится посредством байпасного регулирования, и причем по меньшей мере один теплообменник с по меньшей мере одним другим, расположенным в зоне конвекции теплообменником может соединяться последовательно по потоку, при этом при жидком углеводородсодержащем загружаемом материале питательная вода котла пропускается в обход по меньшей мере одного теплоносителя, и только по меньшей мере один последующий другой теплоноситель обтекается для нагрева и/или преобразования в пар питательной водой котла, а при газообразном углеводородсодержащем загружаемом материале в первую очередь по меньшей мере один теплоноситель, а затем по меньшей мере один другой теплоноситель обтекаются питательной водой котла для нагрева и/или преобразования в пар питательной воды котла, и причем теплообменник для предварительного нагрева и/или преобразования в пар углеводородсодержащего загружаемого материала расположен на более холодном конце зоны конвекции, а по меньшей мере один теплообменник для нагревания и/или преобразования в пар питательной воды котла расположен в зоне более высокой температуры дымового газа. Предлагаемый способ позволяет оптимизировать работу печи и оптимизировать термический общий кпд для изменяющихся углеводородных загружаемых материалов. 4 з.п. ф-лы, 6 ил.
Наверх