Модификатор для сварочных материалов

Изобретение может быть использовано в составе порошковых проволок, покрытых электродов и флюсов для сварки и наплавки. Модификатор содержит нанопорошок тугоплавкого соединения, выбранного из группы, включающей карбид, нитрид, оксид, карбонитрид, оксикарбонитрид металла, в качестве инокулятора и протектор. В качестве протектора использован флюс, состоящий из смеси фторидов и хлоридов металлов, выбранных из группы, включающей натрий, кальций, калий, барий, литий и магний, а также связующего в виде силикатов металлов этой группы в количестве 7-13% от массы инокулятора. Модификатор содержит компоненты в следующем соотношении, мас.%: нанопорошок тугоплавкого соединения 30-50, флюс – остальное. Технический результат заключается в повышении механических и эксплуатационных свойств металла сварных швов и наплавленного металла за счет увеличения металлургической эффективности модификатора. 2 ил., 2 табл., 1 пр.

 

Изобретение относится к сварочным материалам, в частности к модификаторам для металла сварных швов и наплавленного металла, и предназначено для использования в составе порошковых проволок, покрытых электродов и керамических флюсов для сварки и наплавки.

Известен керамический флюс (пат. №2471601 РФ, B23K 35/362, опубл. 10.01.2013) для механизированной наплавки и сварки низкоуглеродистых и низколегированных сталей, содержащий следующие компоненты, мас.%:

карбонат кальция 20-25
плавиковый шпат 50-60
глинозем 10-20
полевой шпат 3-6
ферромарганец до 1
магнезит 1-3
комплексная лигатура 3-15

При этом комплексная лигатура содержит следующие компоненты, мас.%:

никель 50-70
наноразмерные тугоплавкие компоненты 30-50

Причем в качестве тугоплавких компонентов используют элементы переходных металлов IV, V и VI групп, а также их тугоплавких химических соединений с углеродом, или азотом, или бором.

В данном изобретении комплексная лигатура, по сути, является модификатором наплавленного металла. Недостатком изобретения является использование в качестве протектора и материала, транспортирующего наноразмерные тугоплавкие компоненты, порошка никеля, который увеличивает стоимость модификатора и может оказывать отрицательное влияние на структуру и механические свойства некоторых типов наплавленного металла. Также никель может способствовать образованию горячих трещин, т.к. в сочетании с серой он образует легкоплавкие эвтектики Ni-NiS и Ni-NiS2 с температурами плавления 644°С и 787°С соответственно.

Также известен модификатор для улучшения эксплуатационных свойств отливок из жаропрочных сплавов (пат. №2434965 РФ, С22С 35/00, С21С 7/00, опубл. 27.11.2011), содержащий дисперсные (менее 1-3 мкм) частицы карбида бора, диборида титана и хром при следующем соотношении, мас.%: карбид бора 50-70, диборид титана 20-40, хром - остальное.

Недостатком модификатора является использование тугоплавких соединений с бором, который приводит к значительному охрупчиванию некоторых типов сплавов, а также применение в качестве вещества-протектора хрома, повышенное содержание которого в металле может оказывать отрицательное влияние на его механические свойства.

Известен способ сварки материалов (пат. №2404887 РФ, B23K 33/00, B23K 9/235, B23K 26/42, B23K 10/02, B23K 15/00, В82В 3/00, опубл. 27.11.2010), при котором сварку ведут с одновременным добавлением в зону плавления модификаторов в виде нанопорошковых материалов, выбранных из числа тугоплавких соединений, например нитридов, карбонитридов, оксидов, причем нанопорошковые материалы в зону сварки могут быть нанесены в виде суспензии, а их концентрация составляет менее 0,1% по массе сварочной ванны. В частности, в качестве нанопорошковых материалов предложено использовать наночастицы TiN, Y2O3, TiC, плакированные соответствующим металлом (хромом, никелем, титаном и др.).

Недостатком модификатора являются высокие себестоимость плакированных металлами нанопорошков и трудоемкость их изготовления с использованием планетарных мельниц, а также необходимость применения модификатора в сварочных материалах в виде суспензии, что нетехнологично либо невозможно.

Наиболее близким техническим решением к предлагаемому изобретению является модификатор для стали и сплава (пат. №2443794 РФ, С22С 35/00, опубл. 27.02.2012), содержащий нанопорошок из группы тугоплавких соединений, включающей карбид, нитрид, оксид, карбонитрид, оксикарбонитрид, в качестве инокулятора и порошок металла модифицируемых стали или сплава или порошок стали или сплава, близкого по химическому составу, в качестве протектора при следующем соотношении компонентов, мас.%:

нанопорошок тугоплавкого соединения из группы, включающей карбид, нитрид, оксид, карбонитрид, оксикарбонитрид 5-30
порошок модифицируемых стали или сплава или стали или сплава, близких по химическому составу остальное

Данный модификатор предназначен для повышения механических свойств отливок, но может быть использован и в составе сварочных материалов. Однако его применение требует предварительной трудоемкой операции изготовления протектора из порошка стали или сплава, аналогичного или близкого по химическому составу наплавляемому металлу. С учетом большой номенклатуры материалов для сварки и наплавки износостойких, термостойких, жаропрочных, хладостойких, коррозионно-стойких и других типов сплавов с различными основами и системами легирования это существенно ограничивает универсальность модификатора и усложняет технологию его производства. Использование в качестве протектора сравнительно тугоплавких материалов не позволяет эффективно защитить наночастицы тугоплавких соединений от окисления на стадии нагрева и плавления сварочных материалов.

Сравнительно небольшое (5-30 мас.%) содержание нанопорошка тугоплавких соединений в составе модификатора требует его введения в состав сварочных материалов в повышенных количествах, что нерационально.

Использование модификатора в литейном процессе предусматривает необходимость его компактирования в брикеты, которые невозможно использовать в процессах сварки. Применение же его в сварочных материалах в виде механической смеси микро- и наноразмерных порошков неэффективно, поскольку может приводить к их сепарации, самопроизвольному возгоранию ультрадисперсной фракции и повышает биологическую опасность модификатора.

Технический результат заключается в повышении механических и эксплуатационных свойств металла сварных швов и наплавленного металла за счет увеличения металлургической эффективности модификатора для сварочных материалов, а также повышении универсальности модификатора.

Технический результат достигается за счет того, что в модификаторе для сварочных материалов, содержащем нанопорошок тугоплавкого соединения из группы, включающей карбид, нитрид, оксид, карбонитрид, оксикарбонитрид, в качестве инокулятора и протектор, в качестве протектора используют флюс, состоящий из смеси фторидов и хлоридов металлов из группы, включающей натрий, кальций, калий, барий, литий и магний, а также силикатов металлов этой группы в количестве 7-13% от массы инокулятора, при следующем соотношении компонентов, мас.%:

нанопорошок тугоплавкого соединения из группы, включающей карбид, нитрид, оксид, карбонитрид, оксикарбонитрид 30-50
флюс остальное

Сравнительно низкая температура плавления флюса, химическая инертность и хорошая смачиваемость образующимся шлаком наночастиц тугоплавких соединений способствуют снижению интенсивности их окисления в процессах нагрева модификатора при его изготовлении, а также при сварке за счет формирования вокруг наночастиц защитной оболочки из шлакового расплава. При этом, варьируя соотношениями между содержанием различных фторидов и хлоридов металлов во флюсе, можно в широких пределах управлять температурой плавления протектора. Это обеспечивает оптимальный уровень защиты наночастиц как от расплавления, так и от окисления, что повышает металлургическую эффективность модификатора и обеспечивает высокие механические и эксплуатационные свойства наплавленного с его использованием металла. Низкая плотность шлака и нерастворимость в металлических расплавах обусловливают гарантированное его выведение из реакционной зоны сварки на поверхность сварочной ванны, что обеспечивает отсутствие шлаковых включений в наплавленном металле.

Использование в качестве протектора флюса, состоящего из фторидов и хлоридов натрия, кальция, калий, бария, лития и магния, а также малых количеств силикатов металлов этой группы, практически не оказывает влияния на структуру и свойства металла сварных швов и наплавленного металла, что позволяет разработать универсальный состав модификатора для сварки и наплавки широкого круга сталей и сплавов.

Указанный диапазон (30-50 мас.%) содержания нанопорошка тугоплавкого соединения в модификаторе позволяет получить при его изготовлении однородное распределение ультрадисперсных частиц в объеме гранул протектора, а также создает условия для повышения эффективности модифицирования металла и обеспечивает высокий уровень его механических и эксплуатационных свойств. При увеличении содержания нанопорошка выше указанного предела модификатор отличается высокой неоднородностью распределения в нем тугоплавких наночастиц, которые невозможно равномерно распределить по объему сварочных материалов. При содержании нанопорошка меньше нижнего предела для достижения требуемого эффекта модифицирования наплавленного металла требуется существенно увеличивать количество вводимого в сварочные материалы модификатора, что нерационально и ведет к снижению технологических свойств металла.

Применение в качестве связующего компонента модификатора силикатов натрия, кальция, калия, бария, лития или магния в количестве 7-13% от массы инокулятора позволяет обеспечить качественную грануляцию тугоплавких наночастиц, что повышает технологичность и безопасность последующих операций изготовления модификатора. При содержании связующего компонента менее 7 масс. % невозможно выполнить грануляцию, т.к. гранулы не формируются, а при увеличении связующего более 13 масс. % формирование гранул нарушается по причине их склеивания, кроме того в металле увеличивается содержание силикатов, что снижает его технологическую прочность.

Наличие в составе модификатора элементов с низким потенциалом ионизации (натрий, кальций, калий и др.) способствует повышению стабильности существования электрической дуги при сварке и наплавке, что повышает сварочно-технологические свойства материалов, содержащих модификатор. В случае применения в составе модификатора фторидов (в частности, CaF2) достигается снижение содержания водорода в наплавленном металле за счет протекания реакций образования фтороводорода HF, нерастворимого в сварочной ванне. Это снижает вероятность возникновения пор в металле, повышает его пластические свойства и стойкость к холодным трещинам.

На фиг. 1 показана микроструктура металла 400Х12М2НТР, наплавленного порошковой проволокой, содержащей 0,6 масс. % ультрадисперсных частиц TiN, введенных в составе модификатора, (а) и без использования модификатора (б); на фиг. 2 показан химический анализ упрочняющих фаз в металле, наплавленном проволокой с модификатором.

Пример

Изготавливали модификатор, в котором в качестве инокулятора использовали полученный плазмохимическим синтезом порошок, состоящий из нано- и микрочастиц нитрида титана TiN, а в качестве протектора использовали флюс, состоящий из фторидов натрия NaF и кальция CaF2, хлорида бария BaCl2 и калиевого-натриевого силиката K2SiO3-Na2SiO3. Для изготовления модификатора-прототипа предварительно получали микропорошок сплава 400Х12М2НТР, который механически смешивали с ультрадисперсным порошком TiN в планетарной шаровой мельнице в инертной среде. Составы предлагаемого модификатора с различным количеством инокулятора, а также состав модификатора-прототипа приведены в таблице 1.

Изготовленные образцы модификатора вводили в состав наполнителя порошковых проволок диаметром 3 мм, с использованием которых выполняли дуговую наплавку в аргоноуглекислотной газовой смеси износостойкого сплава 400Х12М2НТР на пластины из стали 20. Количество модификатора всех составов в проволоке рассчитывали исходя из получения в ней 0,6 мас.% ультрадисперсного порошка TiN. Основные параметры режима наплавки: сварочный ток (постоянный, полярность обратная) - 280…300 А, напряжение на дуге - 26…27 В, скорость наплавки - 22…23 м/ч, вылет электрода - 30…35 мм, расход защитного газа - 15…18 л/мин. Наплавку выполняли в четыре прохода.

Эффективность предлагаемого модификатора оценивали по нескольким критериям: величина износостойкости наплавленного металла; равномерность распределения твердости по поверхности наплавленного валика; однородность распределения частиц TiN в модификаторе.

Стойкость металла к изнашиванию закрепленным абразивом при нормальной температуре определяли путем трения об истирающую поверхность в виде диска со шлифовальной бумагой зернистостью Р100. Стойкость металла к абразивному изнашиванию при температуре 500°С определяли путем трения образцов о стальное кольцо в присутствии абразива в виде порошка железной окалины и корунда. Износостойкость оценивали по потере массы образцов с точностью 0,1 мг.

Результаты сравнительных испытаний образцов металла, наплавленного с использованием модификаторов различных составов, представлены в таблице 2.

Анализ представленных данных показывает, что наиболее высокими характеристиками обладает металл, полученный наплавкой порошковой проволокой с модификаторами составов 2-4. При содержании компонентов в модификаторе в заявляемых пределах его частицы не сепарируют на фракции и обеспечивается высокая однородность распределения частиц TiN по объему гранул, что подтверждается данными, полученными с помощью электронной микроскопии. При этом получен высокий коэффициент перехода частиц TiN из проволоки в наплавленный металл за счет эффективной защиты инокулятора шлаковой фазой от окисления и диссоциации как на стадии нагрева проволоки проходящим через нее током, так и на стадии формирования капли на ее торце. Использование модификатора оптимального состава обусловило диспергирование и повышение микротвердости карбоборидов (Fe,Cr)7(C,B)3, расположенных в эвтектической матрице наплавленного металла, а также инициировало выделение мелких (1…3 мкм) карбидов (Ti, Mo)C1-x, которые сформировались на наночастицах TiN (фиг. 1 и 2). При этом шлаковых включений, пор, трещин в металле не обнаружено. Структурные изменения в наплавленном металле обеспечивали увеличение его твердости и стойкости к абразивному изнашиванию.

Модификатор-прототип и модификаторы с соотношениями компонентов, выходящими за предлагаемые границы, показали пониженные значения износостойкости наплавленного с их использованием металла и повышенный разброс значений твердости по его объему, а также низкую технологичность при изготовлении и применении в составе порошковых проволок. Низкий уровень свойств наплавленного металла обусловлен неоднородностью распределения частиц TiN по объему модификатора и наполнителя проволоки, большими потерями наиболее мелкой фракции порошка инокулятора вследствие окисления и диссоциации.

Таким образом, предлагаемый универсальный модификатор для сварочных материалов за счет высокой металлургической эффективности обеспечивает повышение механических и эксплуатационных свойств наплавленного с его использованием металла.

Модификатор для сварочных материалов, содержащий нанопорошок тугоплавкого соединения, выбранного из группы, включающей карбид, нитрид, оксид, карбонитрид и оксикарбонитрид металла, в качестве инокулятора и протектор, отличающийся тем, что в качестве протектора использован флюс, состоящий из смеси фторидов и хлоридов металлов, выбранных из группы, включающей натрий, кальций, калий, барий, литий и магний, а также связующего в виде силикатов металлов этой группы в количестве 7-13% от массы инокулятора, при следующем соотношении компонентов, мас.%:

нанопорошок тугоплавкого соединения 30-50
флюс остальное



 

Похожие патенты:

Изобретение относится к области специальной металлургии, в частности к получению литых шихтовых заготовок электродов из высоколегированных сплавов на основе алюминидов никеля, и может быть использовано для центробежной атомизации материала электродов и получения гранул для применения в аддитивных 3D-технологиях с целью получения сложнопрофильных изделий из жаропрочных металлических материалов.

Изобретение относится к области металлургии и может быть использовано для получения композиционных литых материалов для деталей транспортных средств, машин и оборудования.

Изобретение относится к порошковой металлургии с использованием технологии быстрой кристаллизации, в частности к получению заготовок из алюминиевых сплавов. Предложенный способ включает приготовление алюминиевого расплава, центробежное литье гранул, их охлаждение и последующую ступенчатую вакуумную дегазацию в герметичных технологических капсулах, затем ведут компактирование гранул в герметичных технологических капсулах без дополнительного нагрева в контейнере пресса, нагретом до температуры не менее 400°C, и механическую обточку скомпактированных брикетов с получением компактных заготовок.

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас.

Изобретение относится к области металлургии, в частности к технологии приготовления модифицирующих лигатур алюминий-титан, которые применяются при приготовлении алюминиевых сплавов для измельчения структуры отливаемых из них изделий.

Группа изобретений относится к горному делу и может быть применена для разрушаемого скважинного инструмента. Разрушающаяся трубная заанкеривающая система содержит элемент в форме конической призмы; втулку по меньшей мере с одной первой поверхностью, радиально изменяющейся в ответ на продольное перемещение элемента в форме конической призмы относительно втулки, причем первая поверхность может взаимодействовать со стенкой конструкции; уплотнение по меньшей мере с одной второй радиально изменяющейся поверхностью и гнездо, имеющее контактную площадку, взаимодействующую с уплотнением со съемной пробкой, спускаемой на нее враспор.

Группа изобретений относится к горному делу и может быть применена для разрушаемого скважинного инструмента. Элемент в форме конической призмы включает в себя металлический композит, который имеет сотовую наноматрицу, содержащую материал наноматрицы с металлическими свойствами; металлическую матрицу, размещенную в сотовой наноматрице; и первый участок в форме конической призмы.

Изобретение относится к области электротехники и нанотехнологии, в частности к нанокомпозитному материалу на основе меди (Cu) для производства силовых разрывных электрических контактов в переключателях мощных электрических сетей и вакуумных дугогасительных камерах и способу его получения.

Изобретение относится к области металлургии, а именно к материалу на основе объемных металлических стекол на основе циркония, и может быть использовано для производства деталей микромашин и механизмов с требованиями высокой износостойкости и прочности.

Изобретение относится к области металлургии и может быть использовано при получении магнитотвердого материала на основе системы редкоземельный металл-железо-кобальт-бор, который используют при изготовлении магнитов для создания навигационных приборов.

Изобретение относится к области измерения магнитных полей и касается оптического магнитометра. Магнитометр включает генератор низкой частоты, конденсатор, по меньшей мере одну катушку электромагнита, активный материал виде кристалла карбида кремния, содержащий по меньшей мере один спиновый центр на основе вакансия кремния с основным квадрупольным состоянием, помещенный внутрь катушки, источник постоянного тока, синхронный детектор, блок управления, оптическую систему из полупрозрачного зеркала, зеркала, светофильтра, линзы и объектива, лазер, излучающий в ближней инфракрасной области, и фотоприемник.

Группа изобретений относится к области фармацевтической промышленности, а именно к системе доставки малорастворимых и нерастворимых в воде биологически активных веществ (БАВ) с контролируемой кинетикой высвобождения, которая представляет собой сферические наночастицы, содержащие плотное гидрофобное ядро, образованное биосовместимыми и биоразлагаемыми гидрофобными полимерами, такими как полигидроксибутират, полилактид, полигликолид, полидиоксанон, поли-ε-капралактон, полигидроксивалерат, сополимер молочной и гликолевой кислот, в которое включено малорастворимое или нерастворимое в воде БАВ, при этом гидрофобное ядро окружено гидрофильными фрагментами амфифильных полимеров, состоящих из одного фрагмента водорастворимого карбоцепного полимера с молекулярным весом Mn=1000-30000 Да и одной концевой гидрофобной группы, включающей один алифатический радикал с числом атомов углерода в углеродной цепи 9÷20, а также к способу получения такой системы доставки.

Изобретение относится к коллоидной химии и нанотехнологии и может быть использовано в производстве люминесцентных материалов, сверхминиатюрных светодиодов, источников белого света, одноэлектронных транзисторов, нелинейно-оптических устройств, фоточувствительных и фотогальванических устройств.

Изобретение относится к нанотехнологии. Способ получения эндоэдральных наноструктур включает внедрение ускоренных ионов, например ионов металла, в полиэдральные наноструктуры, например в молекулы фуллерена.

Изобретение относится к области биомедицинской техники. Описан способ получения наноструктурированного композиционного электропроводящего покрытия, включающий нанесение ультрадисперсионной суспензии из карбоксиметилцеллюлозы и углеродных нанотрубок на подложку, затем суспензию облучают лазером до полного высыхания в непрерывном режиме длиной волны генерации 0,81-1,06 мкм, интенсивностью облучения 0,1-2 Вт/см2, время облучения 10-100 с, и высохший материал подвергают термообработке путем его отжига в воздухе при температурах 40-150°С в течение 30 мин.
Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок.

Изобретение относится к процессу подготовки нефти и подтоварной воды. Предложен способ разделения водонефтяной эмульсии путём введения в неё углеродных нанотрубок, содержащих металлы, выбранные из ряда: железо, кобальт, никель.

Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов и может быть использовано при производстве валов и дисков, работающих при высоких температурах с повышенным ресурсом в газотурбинных двигателях летательных аппаратов и газоперекачивающих станциях.

Изобретение относится к областям микро- и наноэлектроники, физики поверхности и может быть использовано для исследования информационных характеристик поверхности наноструктурированных и самоорганизующихся твердотельных материалов.

Изобретение относится к технологии новых оптических стеклообразных кварцоидных материалов, обладающих люминесценцией в широком спектральном диапазоне, и может быть использовано в производстве волоконных световодов с лазерной генерацией в инфракрасном спектральном диапазоне и различных устройств на их основе для оптимизации элементов волоконно-оптических линий связи.
Изобретение может быть использовано при нанесении лазерной наплавкой на детали покрытий в качестве защитных слоев. Порошкообразная шихта для наплавки содержит дисперсный металлический порошок и армирующий порошок.
Наверх