Способ получения теплоизоляционного высокотемпературного материала



Способ получения теплоизоляционного высокотемпературного материала
Способ получения теплоизоляционного высокотемпературного материала
Способ получения теплоизоляционного высокотемпературного материала

 


Владельцы патента RU 2608093:

Акционерное общество "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского (RU)

Заявляемое техническое решение относится к теплоизоляционным материалам и может быть использовано для тепловой защиты печей, а также в агрегатах с повышенными требованиями к механической прочности материала. Способ получения теплоизоляционного высокотемпературного материала включает изготовление пластичной массы путем смешивания порошков на основе оксида циркония и связующей добавки с добавлением воды до вязкого состояния, добавление в пластическую массу выгорающей добавки и перемешивание их, формование, сушку и термическую обработку в диапазоне температур 1550-2000°C в течение 3 часов. Количество порошка на основе оксида циркония обеспечивают в диапазоне от 75 до 87 мас.% от общей массы смеси порошков и выгорающей добавки. В качестве связующей добавки используют высокотемпературную глину, масса которой составляет от 7 до 15 мас.% от общей массы смеси порошков и выгорающей добавки. В качестве выгорающей добавки применяют поролон, масса которой составляет от 6 до 10 мас.% от общей массы смеси порошков и выгорающей добавки. Технический результат - получение теплоизоляционного материала с улучшенными теплоизоляционными свойствами при высоких температурах. 6 пр., 2 табл., 1 ил.

 

Изобретение относится к способу получения теплоизоляционного высокотемпературного материала и может быть использовано при тепловой защите высокотемпературных объектов, для футеровки зон нагрева печей, а также там, где требуются повышенные требования к механической прочности материала.

Известен способ получения теплоизоляционного материала на основе оксида алюминия Al2O3 (шамот) [Патент на изобретение РФ №2145311 от 10.02.2000], который заключается в приготовлении пластичной массы на основе порошка оксида алюминия, связующих добавок и выгорающей добавки, формовании полученной пластичной массы и последующей термической обработке. В качестве связующих добавок используют самораспадающийся феррохромовый шлак и жидкое стекло. Для получения пористости материала используют пенообразователь.

Недостатком данного способа является то, что такой материал обладает низкой термостойкостью, рабочей температурой до 1300°C (1350°C кратковременно), что недостаточно для многих процессов спекания.

Наиболее близким аналогом является способ получения теплоизоляционного высокотемпературного материала на основе оксида циркония, используемого в качестве теплоизоляции печей [JP 4124073, кл. C04B 38/00, опубл. 24.04.1992]. Известный способ включает смешивание частиц оксида циркония в виде порошка, волокон и микросфер с органическим и минеральным связующим, введение выгорающей добавки в количестве 2-20 вес. ч. на 100 вес. ч. оксида циркония, перемешивание, формование, сушку и обжиг при температуре 1500-2000°C. Влажность формовочной массы может быть увеличена добавлением воды. В описания патента описание теплопроводности не приводится. Тем не менее, коэффициент теплопроводности полученной керамики может быть определен по ее пористости. Согласно описанию наиболее близкого аналога максимальная пористость (объемная пористость) данной керамики составляет 85% (что следует из приведенной в этой таблице плотности керамики 0,9 кг/л; измеренная открытая пористость составляет 90%). Согласно нашим исследованиям и литературным данным (см. рисунок 1) такая пористость керамики на основе оксида циркония соответствует теплопроводности λ=0,13 Вт/(м⋅град).

Недостатком известного способа является то, что полученный с его использованием материал имеет относительно высокий коэффициент теплопроводности.

Задача изобретения состоит в исключении указанного недостатка, а именно в снижении коэффициента теплопроводности.

Для решения поставленной задачи в способе получения теплоизоляционного высокотемпературного материала, включающем смешивание порошка на основе оксида циркония и связующей добавки, введение выгорающей добавки, перемешивание, формование, сушку и термическую обработку в диапазоне температур 1550-2000°C ,предлагается:

- пластичную массу изготавливать из смеси порошков на основе оксида циркония и связующей добавки с добавлением воды до вязкого состояния;

- перед формованием в пластичную массу добавить выгорающую добавку, перемешать их, просушить и провести термическую обработку;

- обеспечить отношение массы порошка на основе оксида циркония в диапазоне от 75 до 87 мас.% от массы смеси порошков и выгорающей добавки;

- использовать в качестве связующей добавки высокотемпературную глину, масса которой составляет от 7 до 15 мас.% от общей массы смеси порошков и выгорающей добавки;

- применять в качестве выгорающей добавки поролон, масса которой составляет от 6 до 10 мас.% от общей массы смеси порошков и выгорающей добавки.

Сущность предложенного технического решения состоит в следующем.

Способ получения теплоизоляционного высокотемпературного материала включает изготовление пластичной массы путем смешивания порошков на основе оксида циркония и связующей добавки с добавлением воды до вязкого состояния, добавление в пластическую массу выгорающей добавки и перемешивание их, формование, сушку и термическую обработку в диапазоне температур 1550-2000°C.

В процессе сушки удаляют излишнюю влагу.

Введение выгорающей добавки в пластичную массу на стадии формования способствует получению теплоизоляционного высокотемпературного материала с низкой теплопроводностью материала при термической обработки от 1550°C до 2000°C. Указанный диапазон температур способствует получению теплоизоляционного высокотемпературного материала с низкой теплопроводностью в диапазоне λ от 1,0 до 0,06 Вт/(м⋅град).

Термическая обработка при температуре менее 1550°C недостаточна, поскольку не обеспечивает получение целостного механически прочного материала. Термическая обработка более температуры 2000°C не желательна, поскольку приводит к ухудшению, а при температуре более 2400°C к резкому ухудшению как теплоизоляционных свойств материала, так и качества материала в целом, а также способствует термической перегрузке печи. Эти перегрузки могут привести к выходу из строя печи или отдельных ее частей, а также способствовать уменьшению ресурса работы печи. К тому же требуются специальные высокотемпературные печи, способные выдержать температуру более 2400°C.

Отношение массы порошка на основе оксида циркония обеспечивают в диапазоне от 75 до 87 мас.% от общей массы смеси порошков и выгорающей добавки. Такое отношение обеспечивает термостойкость материала во всем интервале температур. При использовании порошка на основе оксида циркония менее 75 мас.% не обеспечивается термостойкость теплоизоляционного высокотемпературного материала. А при использовании более 87 мас.% порошка на основе оксида циркония не обеспечивается получение теплоизоляционного высокотемпературного материала с низкой теплопроводностью.

В качестве связующей добавки используют высокотемпературную глину. Масса связующей добавки составляет от 7 до 15 мас.% от общей массы смеси порошков и выгорающей добавки. Это обеспечивает прочный каркас при получении и спекание материала, не позволяя рассыпаться материалу и потерять форму в процессе термической обработки во всем диапазоне температур. Масса связующей добавки менее 7 мас.% не достаточна для образования плотной структура материала в процессе его термической обработки. А при массе связующей добавки более 15 мас.% происходит резкое уплотнение материала в процессе термической обработки, которое приводит к ухудшению теплоизоляционных свойств материала, что совершенно нежелательно.

В качестве выгорающей добавки применяют поролон. Выгорающая добавка способствует образованию пористости в объеме материала при термической обработке, что приводит к изменению теплопроводности материала. Масса выгорающей добавки составляет от 6 до 10 мас.% от массы смеси порошков и выгорающей добавки. Это способствует обеспечению пористости в диапазоне от 50 до 90% в объеме материала. При этом получают теплопроводность материала на основе оксида циркония после термической обработки, соответствующую диапазону λ от 1,0 до 0,06 Вт/(м⋅град) (фиг. 1). Поскольку теплопроводность материала зависит от пористости материала, то чем больше пористость материала, тем меньше теплопроводность.

Применение указанных выше выгорающей и связующей добавок позволяет сохранить гомогенную пористую форму материала, не позволяя изделиям рассыпаться, и обеспечивает высокую пористость конечного материала в процессе термической обработки во всем диапазоне температур.

Пример осуществления способа 1

Использовали порошок на основе оксида циркония фракцией от (300 до 500)⋅10-6 м в количестве 87 мас.% и смешали с 7 мас.% связующей высокотемпературной добавкой. Удельная поверхность порошка оксида циркония SБЭТ составляла 3,0 м2/г, а связующей добавки - 19,0 м2/г. Удельную поверхность определяли методом низкотемпературной адсорбции SБЭТ. В качестве связующей добавки использовали высокотемпературную каолиновую глину. На основе полученных компонентов смеси изготовили пластичную массу с добавлением воды до вязкого состояния. В полученную пластичную массу добавили выгорающую добавку в количестве 6 мас.%. В качестве выгорающей добавки использовали поролон с размером ячейки (2,0±0,5)⋅10-3 м. После смешения пластичной массы и выгорающей добавки полученные образцы формовали, просушивали при температуре 140°C до удаления излишней влаги и получения образцов в твердой форме. Термическую обработку образцов проводили при температуре 1550°C в течение 5 часов на воздухе. Полученный образец имел размер (50×25×20)⋅10-3 м.

Проведены исследования спеченного образца. Результаты исследований представлены в таблице 1, пример 1.

Предложенный материал обладает следующими техническими характеристиками: гидростатическая плотность 0,84⋅103 кг/м3, пористость 86%; механическая прочность на сжатие до полного разрушения 6 МПа; максимальная термостойкость - сохранение формы изделия до 2400°C; теплопроводность в интервале температур от 20°C до 250°C составляет 0,12 Вт/(м⋅град).

Пример осуществления способа 2

Использовали порошок на основе оксида циркония фракцией, описанной в примере 1, в количестве 84 мас.%, и смешали с 10 мас.% связующей высокотемпературной добавки. На основе полученных компонентов смеси изготовили пластичную массу с добавлением воды до вязкого состояния. В пластичную массу добавили выгорающую добавку в количестве 6 мас.% от массы смеси порошков. Термическую обработку образцов проводили при температуре 1600°C в течение 3 часов на воздухе. Условия приготовления и характеристики материалов соответствуют значениям, приведенным в примере 1. Результаты исследований представлены в таблице 1, пример 2.

Предложенный материал обладает следующими техническими характеристиками: гидростатическая плотность 0,84⋅103 кг/м3, пористость 87%; механическая прочность на сжатие до полного разрушения 7 МПа; максимальная термостойкость - сохранение формы изделия до 2200°C; теплопроводность в интервале температур от 20°C до 250°C составляет 0,12 Вт/(м⋅град).

Пример осуществления способа 3

Использовали порошок на основе оксида циркония фракцией, описанной в примере 1, в количестве 85 мас.% и смешали с 15 мас.% связующей высокотемпературной добавки. В пластичную массу добавили выгорающую добавку в количестве 10 мас.%. Термическую обработку образцов проводили при температуре 1600°C в течение 3 часов на воздухе. Условия приготовления и характеристики материалов соответствуют значениям, приведенным в примере 1. Результаты исследований представлены в таблице 1, пример 3.

Предложенный материал обладает следующими техническими характеристиками: гидростатическая плотность 0,60⋅103 кг/м3, пористость 90%; максимальная термостойкость - сохранение формы изделия до 2000°C; теплопроводность в интервале температур от 20°C до 250°C составляет 0,06 Вт/(м⋅град).

Пример осуществления способа 4

Использовали порошок на основе оксида циркония фракцией, описанной в примере №1, в количестве 83 мас.% и смешали с 7 мас.% связующей высокотемпературной добавки. В пластичную массу добавили выгорающую добавку в количестве 10 мас.%. Термическую обработку образцов проводили при температуре 1620°C в течение 3 часов на воздухе. Условия приготовления и характеристики материалов соответствуют значениям, приведенным в примере 1. Результаты исследований представлены в таблице 1, пример 4.

Предложенный материал обладает следующими техническими характеристиками: гидростатическая плотность 0,60⋅103 кг/м, пористость 90%; максимальная термостойкость - сохранение формы изделия до 2200°C; теплопроводность в интервале температур от 20°C до 250°C составляет 0,06 Вт/(м⋅град).

Пример осуществления способа 5

Использовали порошок на основе оксида циркония фракцией, описанной в примере №1, в количестве 79 мас.% и смешали с 15 мас.% связующей высокотемпературной добавки. В пластичную массу добавили выгорающую добавку в количестве 6 мас.%. Термическую обработку образцов проводили при температуре 1720°C в течение 3 часов на воздухе. Условия приготовления и характеристики материалов соответствуют значениям, приведенным в примере №1. Результаты исследований представлены в таблице 1, приер 5.

Предложенный материал обладает следующими техническими характеристиками: гидростатическая плотность 0,84⋅103 кг/м3, пористость 86%; механическая прочность на сжатие до полного разрушения 4 МПа; максимальная термостойкость - сохранение формы изделия до 2000°C; теплопроводность в интервале температур от 20°C до 250°C составляет 0,12 Вт/(м⋅град).

Пример осуществления способа 6

Использовали порошок на основе оксида циркония фракцией, описанной в примере №1, в количестве 80 мас.% и смешали с 10 мас.% связующей высокотемпературной добавки. В пластичную массу добавили выгорающую добавку в количестве 10 мас.%. Термическую обработку образцов проводили при температуре 2000°C в течение 1 часа в вакууме. Условия приготовления и характеристики материалов соответствуют значениям, приведенным в примере 1. Результаты исследований представлены в таблице 1, пример 6.

Предложенный материал обладает следующими техническими характеристиками: гидростатическая плотность 0,78⋅103 кг/м3, пористость 87%; максимальная термостойкость - сохранение формы изделия до 2200°C; теплопроводность в интервале температур от 20°C до 250°C составляет 0,10 Вт/(м⋅град).

В результате исследований установлено, что разработанный данным способом теплоизоляционный высокотемпературный материал обладает следующими достоинствами: имеет повышенные теплоизоляционные свойства (пониженный коэффициент теплопроводности от 0,06 до 0,12 Вт/(м⋅град) в сравнение с прототипом - 0,13 Вт/(м⋅град).

В таблице 2 представлены результаты исследований теплоизоляционного высокотемпературного материала (т/из мат-л) на основе ZrO2 и близкого аналога при максимальной пористости.

Технический результат - получение теплоизоляционного материала с улучшенными теплоизоляционными свойствами при относительно высоких температурах.

Способ получения теплоизоляционного высокотемпературного материала, включающий смешивание порошка на основе оксида циркония и связующей добавки, введение выгорающей добавки, перемешивание, формование, сушку и термическую обработку в диапазоне температур 1550-2000°C, отличающийся тем, что пластичную массу изготавливают из смеси порошков на основе оксида циркония и связующей добавки с добавлением воды до вязкого состояния, перед формованием в пластичную массу добавляют выгорающую добавку, перемешивают их, сушат и проводят термическую обработку, обеспечивают отношение массы порошка на основе оксида циркония в диапазоне от 75 до 87 мас.% от общей массы смеси порошков и выгорающей добавки, используют в качестве связующей добавки высокотемпературную глину, масса которой составляет от 7 до 15 мас.% от общей массы смеси порошков и выгорающей добавки, применяют в качестве выгорающей добавки поролон, масса которой составляет от 6 до 10 мас.% от общей массы смеси порошков и выгорающей добавки.



 

Похожие патенты:

Изобретение относится к способам переработки продуктов сгорания и может быть использовано на тепловых электростанциях, работающих на каменноугольных топливах, а также в строительной индустрии, например в производстве различных строительных материалов.

Изобретение относится к технологии строительных материалов, более конкретно к подготовке шихты для производства пористого материала и изделий на его основе для промышленной и строительной индустрии.

Изобретение относится к промышленности строительных материалов, а именно к составам керамических масс для производства кирпича. Керамическая масса для производства кирпича содержит, мас.%: глина 75,0-94,9; кварцевый песок 5,0-20,0; семена зерновых растений, пораженные грибковыми заболеваниями, 0,1-5,0.

Изобретение относится к области керамических материалов для медицины, которые могут быть использованы для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии.

Изобретение относится к производству аглопорита, который может быть использован в качестве теплоизоляционной засыпки, а также в качестве заполнителя в бетоне. Сырьевая смесь для производства аглопорита содержит, мас.%: глину кирпичную 91,0-92,4, мылонафт 4,0-6,0, масло машинное 0,2-1,0, соду каустическую 0,7-3,5, измельченную и просеянную через сито №5 резину 0,5-0,7.

Изобретение относится к производству аглопорита, который может быть использован в качестве теплоизоляционной засыпки, а также в качестве заполнителя в бетоне. Сырьевая смесь для производства аглопорита содержит, мас.%: глину кирпичную 81,7-83,55, мылонафт 0,4-0,6, масло машинное 0,1-0,15, соду каустическую 0,1-0,15, уголь 0,1-0,15, жидкое натриевое стекло 0,4-0,6, пегматит 15,0-17,0.

Изобретение относится к производству искусственных пористых заполнителей бетона, а также теплоизоляционных материалов. Сырьевая смесь для изготовления аглопорита содержит, мас.%: глину огнеупорную 72,0-74,0, сухой торф 2,0-3,0, диаммоний фосфат 4,0-6,0, глинозем технический 2,0-3,0, кварцевый песок 16,0-18,0.

Изобретение относится к производству аглопорита, который может быть использован в качестве теплоизоляционной засыпки, а также в качестве заполнителя в бетоне. Сырьевая смесь для производства аглопорита содержит, мас.%: глину монтмориллонитовую 85,5-87,0, мылонафт 2,0-2,5, соду каустическую 4,0-4,5, уголь 2,0-2,5, фосфорит 4,0-6,0.

Изобретение относится к производству аглопорита, который может быть использован в качестве теплоизоляционной засыпки, а также в качестве заполнителя в бетоне. Сырьевая смесь для производства аглопорита содержит, мас.%: глину кирпичную 91,3-92,4, мылонафт 2,0-3,0, масло машинное 0,1-0,2, соду каустическую 4,0-4,5, уголь 1,0-1,5.

Изобретение относится к производству искусственных пористых заполнителей для бетонов. Шихта для производства заполнителя содержит, мас.%: глину монтмориллонитовую 90,0-99,5, выгорающую добавку - семена зерновых растений - ржи, или ячменя, или овса, или их смесь, пораженные грибковыми заболеваниями, 0,5-10,0.

Изобретение относится к области покрытий керамических материалов, в частности к керамическим покрытиям, и может быть использовано для защиты керамических материалов, применяемых в авиакосмической технике.

Изобретение относится к способам получения наноразмерного порошкообразного стабилизированного диоксида циркония и может быть использовано для изготовления вакуумноплотной наноструктурированной керамики: твердых электролитов, сенсоров полноты сгорания топлива, мембран для твердооксидных топливных элементов; наномодифицированных органических и неорганических материалов; порошковых покрытий на металлах.
Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани.
Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани.

Изобретение относится к способу изготовления плотной керамики для твердого электролита на основе полностью стабилизированного диоксида циркония и может быть использовано в твердооксидных топливных элементах, высокотемпературных электрохимических устройствах в качестве электролитических элементов.

Изобретение относится к получению керамических композитов с нулевым коэффициентом термического линейного расширения, предназначенных для изготовления, в частности, запорных элементов нефтегазового комплекса.

Изобретение относится к производству композиционных материалов, преимущественно конструкционного назначения, и может быть использовано для изготовления теплозащитных слоистых композиционных изделий, предназначенных, например, для эффективной тепловой защиты аэрокосмических летательных аппаратов и их энергетических систем.
Изобретение относится к керамическим композиционным материалам, состоящим из оксида алюминия в качестве керамической матрицы и диспергированного в ней оксида циркония, и может быть использовано в медицинской промышленности для изготовления искусственных протезов, например ортезов и эндопротезов, или для изготовления имплантатов тазобедренных или коленных суставов.

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Предложен способ получения пористого керамического биоматериала на основе диоксида циркония, включающий приготовление термопластичной смеси из дисперсного порошка диоксида циркония, стабилизированного 5 мас.% MgO, порообразователя и пластификатора с последующим формованием изделий и термообработкой.

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония. Разработанные материалы могут быть использованы для получения износостойких изделий, режущего инструмента, керамических подшипников, медицинских нерезорбируемых имплантатов.

Изобретение относится к получению каталитических мембран способом «золь-гель» и может быть использовано в каталитических мембранных реакторах конверсии метана. Способ получения комплекса "золь-гель" по меньшей мере из четырех солей металлов M1, M2, M3, и M4, приемлемых и предназначенных для получения материала типа перовскита, соответствующего общей формуле (I): A(1-x)A'xB(1-y-u)B'yB"uΟ3-δ (I), включает в себя стадии получения водного раствора водорастворимых солей элементов A, A', B, B' и при необходимости В" в стехиометрических соотношениях, необходимых для получения материала, определенного ранее; получения водно-спиртового раствора по меньшей мере одного неионогенного поверхностно-активного вещества (ПАВ) в спирте, выбранном из метанола, этанола, пропанола, изопропанола или бутанола, смешанном с водным раствором аммиака в пропорции, достаточной для обеспечения полной солюбилизации неионогенного ПАВ в водно-спиртовом растворе, причем концентрация неионогенного ПАВ в водно-спиртовом растворе меньше критической мицеллярной концентрации; получения золя из указанных компонентов; сушки золя выпариванием растворителя. Приготовленный комплекс наносят на подложку методом погружения с последующей кристаллизацией или сушат распылением с получением порошка. Пример состава полученного соединения - La(1-х)SrxFe(1-y)СоуО3-δ. Технический результат изобретения – увеличение поверхности обмена и потока кислорода, проходящего через мембрану. 4 н. и 12 з.п. ф-лы, 3 табл., 18 ил.
Наверх