Способ изоляции газа, поступающего из газовой шапки в нефтяную залежь

Изобретение относится к нефтегазодобывающей промышленности, а именно к изоляции газа, поступающего из газовой шапки в нефтяную часть нефтегазовой залежи, в частности в интервал перфорации нефтяной добывающей скважины. Технический результат – повышение эффективности способа за счет возможности создания газоизоляционного экрана необходимых размеров, а также прочностью и долговечностью, обеспечивающими надежную изоляцию газа. По способу осуществляют глушение скважины. Извлекают внутрискважинное оборудование. Спускают компоновку для радиального бурения. Спуск этой компоновки осуществляют на глубину, равную местоположению газонефтяного контакта. Бурение радиальных каналов из эксплуатационной колонны. Это бурение проводят на уровне газонефтяного контакта по радиусу протяженностью больше радиуса газового конуса, направленного в нефтяную залежь. Извлекают из скважины компоновку для радиального бурения. Спускают в скважину гибкую трубу. Закачивают через эту трубу изолирующую композицию при следующем соотношении компонентов, % масс.: микродур U - 48,5-49,2; полифункциональный модификатор PFM-ISO - 0,8-1,5; суперпластификатор F-10 -1,5; вода - остальное. При этом дополнительную перфорацию эксплуатационной колонны проводят ниже установленного газоизоляционного экрана, радиальные каналы перед закачкой изолирующего состава не обсаживают и обеспечивают возможность растекания изолирующей композиции по приканальным зонам для получения экрана заданной толщины. Изолирующую композицию докрепляют цементным раствором. Оставляют скважину на период ожидания затвердевания цемента. Осваивают скважину и выводят ее на рабочий режим. 5 табл., 4 ил.

 

Изобретение относится к нефтегазодобывающей промышленности, а именно к изоляции газа, поступающего из газовой шапки в нефтяную часть нефтегазовой залежи, в частности в интервал перфорации нефтяной добывающей скважины.

Сложность процесса разработки нефтегазовых залежей обусловливается двухфазной системой, которая при начальных пластовых условиях находится в равновесии. Наиболее распространенными типами ловушек являются пластово-сводовые, в которых над нефтяной частью размещается газовая шапка, а ниже - подошвенная вода. В процессе разработки происходит изменение термобарических параметров нефтегазовой залежи и нарушение равновесия. Общее снижение пластового давления (или снижение его в отдельных частях залежи) приводит к перемещению газонефтяного контакта (ГНК) и прорыву газа в нефтедобывающие скважины, что способствует снижению продуктивности нефтяных скважин [Теория и практика ремонтно-изоляционных работ в нефтяных и газовых скважинах: учебное пособие / И.И. Клещенко, Г.П. Зозуля, А.К. Ягафаров. - Тюмень: ТюмГНГУ, 2010. - 344 с.].

На подвижность ГНК существенно влияет анизотропия пласта. Под анизотропией понимается различие свойств коллектора в вертикальном и горизонтальном направлениях. Искусственно увеличивая анизотропию пласта, например, установкой изоляционного непроницаемого для газа экрана), можно продлить время безгазовой эксплуатации нефтяной скважины. Однако образование газового конуса происходит и после установки изоляционного экрана, но процесс идет сравнительно медленно [Зозуля Г.П. и др. Теория и практика выбора технологий и материалов для ремонтно-изоляционных работ в нефтяных и газовых скважинах: учебное пособие. - Тюмень: ТюмГНГУ, 2002. - С. 20].

Известен способ изоляции и предупреждения образования газового конуса на уровне ГНК, включающий закачивание сжиженных углеводородных газов на глубину до 6 м, а затем на такую же глубину - пластовую нефть, загущенную добавкой от 0,01 до 0,50% нефтерастворимых веществ (например, полутвердый полиэтилен) [Зозуля Г.П. и др. Теория и практика выбора технологий и материалов для ремонтно-изоляционных работ в нефтяных и газовых скважинах: учебное пособие. - Тюмень: ТюмГНГУ, 2002. - С. 38].

Недостатком этого способа является недостаточный радиус создаваемого газоизоляционного экрана, за пределами которого газ обойдет созданный газоизоляционный экран.

Известен способ предупреждения прорыва газа вокруг ствола скважины, включающий установку изоляционного непроницаемого экрана путем закачивания измельченного пластического наполнителя - синтетический каучук или синтетические пластмассы (для закупоривания пор пласта) [Зозуля Г.П. и др. Теория и практика выбора технологий и материалов для ремонтно-изоляционных работ в нефтяных и газовых скважинах: учебное пособие. - Тюмень: ТюмГНГУ, 2002. - С. 39].

Недостатком этого способа является недостаточный радиус создаваемого газоизоляционного экрана, за пределами которого газ обойдет газоизоляционный экран.

Определенный интерес представляют методы, основанные на создании в пласте на уровне ГНК протяженного радиального изолирующего экрана. Наиболее эффективным по ограничению газопритоков в нефтяные скважины оказались ремонтно-изоляционные работы (РИР), где в качестве газоизолирующих композиций применялись вязкоупругие составы (ВУС) на основе высокомолекулярных водорастворимых полимеров. Такие составы в пластовых условиях в широком диапазоне температур вступают в реакцию гидролитической поликонденсации с образованием геля элементоорганических полимеров, которые селективно закупоривают поры горной породы. Применение ВУС на основе высокомолекулярных водорастворимых полимеров в качестве газоизолирующей композиции опробовано, например, на многих скважинах Лянторского месторождения. Изоляция достигается в результате адсорбции и механического удержания молекул полимера в пористой среде путем создания вязкоупругой структуры, обеспечивающей блокирование зон фильтрации газа [Зозуля Г.П. и др. Теория и практика выбора технологий и материалов для ремонтно-изоляционных работ в нефтяных и газовых скважинах: учебное пособие. - Тюмень: ТюмГНГУ, 2002. - С. 39].

Задача, стоящая при создании изобретения, состоит в повышении эффективности изоляции поступления газа из газовой шапки в скважину с сохранением нефтенасыщенной толщины пласта.

Достигаемый технический результат, который получается в результате создания изобретения, состоит в создании газоизоляционного экрана с большим радиусом изолируемой зоны и достаточно прочного и долговечного экрана для изоляции газа.

Поставленная задача и технический результат достигаются тем, что изоляцию газа, поступающего из газовой шапки в интервал перфорации нефтяной добывающей скважины, проводят путем глушения скважины, извлечения внутрискважинного оборудования, спуска компоновки для радиального бурения, бурения радиальных каналов из эксплуатационной колонны, подъема и извлечения из скважины компоновки для радиального бурения, спуска в скважину гибкой трубы, закачивания через нее изолирующей композиции и докрепления ее цементным раствором, оставления скважины на период ожидания затвердевания цемента, проведения дополнительной перфорации эксплуатационной колонны, освоения скважины и вывода ее на рабочий режим, в отличие от прототипа спуск компоновки для радиального бурения проводится на глубину, равную местоположению газонефтяного контакта, бурение радиальных каналов из эксплуатационной колонны проводится на уровне газонефтяного контакта по радиусу протяженностью больше радиуса газового конуса, направленного в нефтяную залежь, проведение дополнительной перфорации эксплуатационной колонны проводится ниже установленного газоизоляционного экрана. При этом в качестве изолирующей композиции используют изолирующий состав на основе микродура марки U с добавлением полифункционального модификатора PFM-ISO, суперпластификатора F-10 при следующем соотношении компонентов, % масс.: микродур U 48,5-49,2; полифункциональный модификатор PFM-ISO 0,8-1,5; суперпластификатор F-10 0,8-1,5; вода - остальное.

На фиг. 1 представлена схема разработки нефтегазовой залежи в момент поступления газа из газовой шапки в нефтяную часть нефтегазовой залежи, на фиг. 2 – то же в момент бурения радиальных каналов в нефтегазовой залежи на уровне газонефтяного контакта; на фиг. 3 - то же в момент закачивания в радиальные каналы водоизолирующей композиции; на фиг. 4 - то же в момент докрепления водоизолирующей композиции цементным раствором и создания газоизоляционного экрана.

Способ реализуется следующим образом.

Скважину, в которой газ из газовой шапки 1 прорвался в нефтяную часть нефтегазовой залежи 2 через имеющиеся верхние перфорационные отверстия 3 (фиг. 1), останавливают. Скважину глушат. Из скважины, из ее эксплуатационной колонны 4, извлекают внутрискважинное оборудование (не показано). В скважину спускают компоновку для радиального бурения (не показано).

На уровне текущего ГНК 5 проводят бурение радиальных каналов 6 по радиусу необходимой длины, равной или несколько превышающей имеющийся радиус газового конуса, направленного в нефтяную залежь, на 1-2 м выше и ниже ГВК (фиг. 2). Это позволяет предотвратить возможный прорыв газа из газовой шапки в нефтяную часть нефтегазовой залежь, минуя или огибая изоляционный экран.

После этого осуществляют закачивание под давлением через гибкую трубу (не показано) изолирующего состава на основе микродура марки U с добавлением в него полифункционального модификатора PFM-ISO и суперпластификатора F-10 (при следующем соотношении компонентов, % масс.: микродур U 48,5-49,2; полифункциональный модификатор PFM-ISO 0,8-1,5; суперпластификатор F-10 0,8-1,5; вода - остальное) 7 (фиг. 3), что обеспечивает получение прочного и долговечного изоляционного для газа экрана.

Проводят закачивание докрепляющей композиции - цементного раствора 8, тем самым создавая прочный газоизоляционный, непроницаемый для газа, экран по радиусу 9 (фиг. 4), что не позволяет водоизоляционной композиции обратного движения в основной ствол скважины (в эксплуатационную колонну), но позволяет растекаться по приканальной зоне, так как она не обсажена, и создавать более толстый (по толщине), а значит более прочный экран, нежели ограниченный стенками радиального канала.

Оставляют скважину на технологическую выстойку на период ожидания затвердевания цемента.

Проводят дополнительную перфорацию эксплуатационной колонны, например, гидропескоструйную (при необходимости) с образованием новых дополнительных перфорационных отверстий 10, ниже установленного газоизоляционного экрана 9.

Далее осуществляют освоение скважины снижением уровня и плотности жидкости глушения либо с помощью струйного насоса. После чего выводят скважину на рабочий режим.

Наличие в заявленном способе новых материалов свидетельствует об изобретательском уровне, а создание протяженного изолирующего непроницаемого для газа экрана в сочетании с новыми составами направлено на достижение единой задачи - повышения эффективности изоляции газа, поступающего из газовой шапки, в нефтяную часть нефтегазовой залежи и снижающего продуктивность добывающих нефтяных скважин.

Микродур - это особо тонкое минеральное вяжущее вещество с гарантированно плавным изменением гранулометрического состава. Микродур марки U имеет большие прочные характеристики, нежели другие марки, и более тонкодисперсный, так как его гранулометрический состав может изменяться под воздействием дополнительных добавок, введенных в основной состав.

Полифункциональный модификатор «PFM-ISO» - это комплексный продукт на основе полиметилененнафталинсульфонатов натрия, стабилизирующих веществ с гидрофобизирующими компонентами, обеспечивающий повышенные характеристики по прочности и долговечности, получающегося цементного (микродурного) камня. Не содержит веществ, вызывающих коррозию оборудования, то есть экологически безопасен.

Гидрофобизирующий полифункциональный модификатор «PFM-ISO» повышает пластичность цементного (микродурного) камня без снижения его прочностных характеристик (показателей), то есть обладает большей растекаемостью, а значит более долговечен. Гидрофобизирующий полифункциональный модификатор «PFM-ISO» разработан и выпускается кампанией «Штайнберг».

Технические характеристики гидрофобизирующего полифункционального модификатора «PFM-ISO» представлены в таблице 1.

Суперпластификатор «F-10» - это продукт на основе конденсации нафталин-сульфокислоты и формальдегида, не содержит веществ, вызывающих коррозию, обладает стабилизирующим действием, стабилизирует прочностные характеристики и способствует изоляционным свойствам. Он позволяет получать при оптимальных дозировках высокопластифицированные растворы, при минимальном значении вода/цемент, позволяя значительно долго сохранить подвижность и однородность бетонных смесей. Повышенная степень гидратации цемента при меньшем В/Ц за счет диспергирующего действия позволяет достигать значительные значения ранней прочности, повышая прочность конечную (марочную). Суперпластификатор «F-10» разработан и выпускается компанией «Штайнберг».

Технические характеристики «F-10» представлены в таблице 2.

Наличие в изолирующей композиции новых элементов позволяет получить новую функциональную способность, что свидетельствует об изобретательском уровне заявленного способа.

Лабораторные исследования заключались в определении возможности использования данных реагентов для получения твердого, закупоривающего поровое пространство коллектора, материала и его, коллектора, закрепления.

Исследования проводили в три этапа. Первый этап включал определение времени образования и качества изолирующего материала. Результаты сведены в таблицу 3.

Вторым этапом работ являлось исследование кинематической вязкости и статического напряжения сдвига тампонажных растворов.

Результаты исследований представлены в таблице 4.

Третьим этапом работ являлось исследование образовавшегося тампонажного камня на сжатие через 2, 7, 28 суток твердения.

Результаты исследований представлены в таблице 5.

Способ изоляции газа, поступающего из газовой шапки в интервал перфорации нефтяной добывающей скважины, включающий глушение скважины, извлечение внутрискважинного оборудования, спуск компоновки для радиального бурения, бурение радиальных каналов из эксплуатационной колонны, подъем и извлечение из скважины компоновки для радиального бурения, спуск в скважину гибкой трубы, закачивание через нее изолирующей композиции и докрепление ее цементным раствором, оставление скважины на период ожидания затвердевания цемента, проведение дополнительной перфорации эксплуатационной колонны, освоение скважины и вывод ее на рабочий режим, отличающийся тем, что спуск компоновки для радиального бурения проводят на глубину, равную местоположению газонефтяного контакта, бурение радиальных каналов из эксплуатационной колонны проводят на уровне газонефтяного контакта по радиусу протяженностью больше радиуса газового конуса, направленного в нефтяную залежь, дополнительную перфорацию эксплуатационной колонны проводят ниже установленного газоизоляционного экрана, радиальные каналы перед закачкой изолирующего состава не обсаживают и обеспечивают возможность растекания изолирующей композиции по приканальным зонам для получения экрана заданной толщины, в качестве изолирующей используют композицию при следующем соотношении компонентов, % масс.:

микродур U - 48,5-49,2;

полифункциональный модификатор PFM-ISO - 0,8-1,5;

суперпластификатор F-10 - 0,8-1,5;

вода - остальное.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности и, в частности, к разработке месторождений с контактными переходными зонами вода-нефть - ВНК. Технический результат - повышение эффективности использования технологии нефтяного конуса для увеличения добычи безводной нефти.

Изобретение относится к области нефтегазодобывающей промышленности и может найти применение при разработке нефтегазоконденсатных месторождений. Технический результат - повышение нефтеотдачи месторождений за счет продления срока эксплуатации нефтяных скважин в подгазовых зонах.

Изобретение относится к нефтяной промышленности и может найти применение в добывающих и нагнетательных скважинах, в которых происходит приток или поглощение жидкости в выше- или нижележащие горизонты.

Изобретение относится к нефтяной промышленности и может найти применение при разработке неоднородных слоистых коллекторов. Технический результат - повышение равномерности выработки запасов нефти, увеличение коэффициентов охвата и нефтеизвлечения слоистых нефтяных залежей.

Изобретение относится к нефтяной промышленности и может найти применение при разработке антиклинальных залежей нефти с водонефтяными зонами и терригенным типом коллектора.

Изобретение относится к нефтегазодобывающей промышленности, в частности к области эксплуатации и ремонта скважин и изоляции притока пластовых вод в горизонтальные скважины.
Изобретение относится к нефтедобывающей отрасли и может быть использовано при разработке нефтяных залежей с подошвенной водой. Технический результат - повышение эффективности изоляции водопритока.
Изобретение относится к нефтедобывающей промышленности и может быть использовано при строительстве и эксплуатации добывающих горизонтальных скважин на нефтяных залежах с подошвенной водой.

Изобретение относится к нефтедобывающей промышленности, в частности к изоляции притока подошвенной воды в нефтяной скважине. Технический результат от реализации изобретения заключается в увеличении радиуса и прочности водоизоляционного экрана и увеличении времени начала обводнения скважины.

Группа изобретений относится к нефтедобывающей промышленности, в частности к способу и системе проведения водоизоляционных работ в скважине. Для этого применяется способ, содержащий этапы, на которых: подготавливают изолирующий состав в объеме, превышающем внутренний объем скважины от забоя до верхней границы интервала перфорации.

Изобретение относится к производству проппантов - расклинивающих гранул, применяемых при добыче нефти и газа методом гидравлического разрыва пласта. Технический результат - уменьшение плотности проппанта и использование техногенных отходов при производстве проппантов.

Изобретение относится к усовершенствованным композициям поверхностно-активных веществ. Описана композиция поверхностно-активного вещества, содержащая молекулы алкиларилсульфоната, причем более 30 масс.

Изобретение относится к газодобывающей промышленности, в частности к способам разработки запасов газа из залежей природных гидратов. Технический результат - увеличение скорости выделения метана из гидратов и степени конверсии гидратного метана в свободный газ.
Изобретение относится к области интенсификации добычи сланцевого газа и сланцевой нефти методом гидроразрыва пласта - ГРП, в частности к способам получения расклинивающих агентов, используемых в составе рабочей жидкости ГРП.

Группа изобретений относится к установке для обезвреживания высокоминерализованных отходов бурения, содержащих нефтепродукты, тяжелые металлы, синтетические поверхностно-активные вещества и другие загрязнители, основанной на введении отверждающего состава, и способу, осуществляемому с ее использованием.

Группа изобретений относится к добыче нефти и газа. Технический результат - высокая способность к гидролизу при низкой температуре реагента жидкости, применяемой при бурении и обработке пласта.

Изобретение относится к композиции водного понизителя температуры застывания в виде дисперсии для улучшения текучести сырой нефти при низких температурах. Композиция содержит сополимер этилена-винилацетата, диспергатор, воду и необязательно водный понизитель температуры застывания.

Изобретение относится к способу получения композиции водного понизителя температуры застывания в виде дисперсии для улучшения текучести сырой нефти при низких температурах.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при освоении скважин. Технологическая жидкость содержит водоудерживающий и загущающий компонент - крахмал марки МК-Ф, ингибитор набухания глинистых минералов - калий углекислый, гидрофобизирующий агент ГФ-1 марки К, кальцинированную соду и воду при следующем соотношении ингредиентов, мас.%: кальцинированная сода 0,1-0,2, крахмал марки МК-Ф 1,8-2,5, калий углекислый 5-25, ГФ-1 марки К 0,1-0,25, вода - остальное.

Изобретение относится к области бурения нефтяных и газовых скважин, в частности к реагентам для химической обработки буровых растворов. Технический результат - получение феррохромлигносульфонатого реагента, обеспечивающего получение комплексных соединений с повышенным разжижающим эффектом и термостойкостью, а также снижение содержания токсичного хрома в составе реагента.

Изобретение относится к нефтедобывающей промышленности, в частности к изменению фильтрационных характеристик неоднородных пластов, увеличению нефтеотдачи пластов и снижению обводненности добывающих скважин с получением максимального эффекта на поздней стадии разработки нефтяной залежи. Технический результат - повышение эффективности добычи нефти за счет увеличения охвата пласта воздействием и снижения обводненности добывающих скважин, расширение технологических возможностей способа. В способе разработки неоднородного нефтяного пласта, включающем закачку в скважину водной суспензии древесной муки и полимера, предварительно определяют начальную удельную приемистость скважины, в качестве дисперсной фазы используют смесь древесной муки и полимера, в качестве дисперсионной среды используют закачиваемую воду с минерализацией от 0,15 до 300 г/л, в качестве полимера используют высоковязкую оксиэтилцеллюлозу - ОЭЦ, осуществляют закачку указанной водной суспензии древесной муки и ОЭЦ двумя оторочками, первую оторочку указанной водной суспензии закачивают до снижения удельной приемистости скважины на 15-30% от начальной удельной приемистости скважины при следующем содержании компонентов, мас. %: древесная мука 0,3-1,5, ОЭЦ 0,001-0,5, закачиваемая вода с минерализацией от 0,15 до 300 г/л остальное, затем осуществляют закачку второй оторочки указанной водной суспензии до снижения удельной приемистости на 5-10% от начальной удельной приемистости скважины при следующем содержании компонентов, мас. %.: древесная мука 0,001-0,5, ОЭЦ 0,005-1,0, закачиваемая вода с минерализацией от 0,15 до 300 г/л остальное, причем указанные оторочки закачивают в объемном соотношении 1:(1-7). 3 табл., 2 пр.
Наверх