Оптико-электронный датчик тока и напряжения

Изобретение относится к электротехнике, а именно к датчикам тока и напряжения. Предложен оптико-электронный датчик тока и напряжения, в котором имеется первичный преобразователь, кодирующий блок, канал связи между стороной высокого напряжения и потенциалом земли, приемный блок и блок питания в виде канала передачи энергии со стороны потенциала земли, состоящий из батареи светоизлучателей, силовых оптических каналов, батареи фотоприемников и стабилизатора напряжения. Дополнительно, в качестве первичного преобразователя для тока используется шунт, включенный в рассечку линии электропередачи. Для напряжения используют резистивный делитель напряжения, состоящий из низкоомного резистора, одним концом подключенного к проводу линии электропередачи, а другим - к группе последовательно соединенных высокоомных резисторов. Последний из которых прикреплен к траверсе линии электропередачи, кодирующий блок выполнен в виде двух аналого-цифровых преобразователей (АЦП), вход первого АЦП подключен к шунту, вход второго АЦП подключен к низкоомному резистору, общей точкой подключения АЦП является точка соединения шунта и низкоомного резистора. Выходы АЦП подключены ко входам преобразователей параллельного цифрового кода в последовательный, к которым подключены излучающие светодиоды, подающие световые сигналы в волоконно-оптические каналы связи, другие их концы подключены к соответствующим приемным блокам. Техническим результатом является уменьшение погрешности измеряемых величин тока и напряжения, возможность передачи измеряемого сигнала в диспетчерский пункт, а также получение возможности снимать сигнал со спектром частот, имеющихся в сети в том числе высоких, что с традиционными электромагнитными трансформаторами сделать невозможно. Это достигается путем преобразования и передачи сигнала одновременно тока и напряжения с повышенной точностью с большим количеством выборок на период и получения сигналов о частичных разрядах от каждого изолятора воздушной линий электропередачи для их диагностики. 1 ил.

 

Изобретение относится к электротехнике, а именно к датчикам тока и напряжения.

Известен оптико-электронный датчик тока на линиях электропередачи, за счет преобразования электрического сигнала в световой и передачи его по волоконно-оптической линии (Трансформаторы тока. В.В. Афанасьев, Н.М. Адоньев, В.М. Кибель, И.М. Сирота, Б.С. Стогний и др. Л.: Энергоатомиздат, 1989. - 416 с., стр. 343).

Однако использование различных видов модуляции (амплитудной, амплитудно-частотной, частотной и др.) не позволяет сделать высокую точность сигнала с требуемым быстродействием. К тому же отсутствует возможность преобразовывать и передавать сигнал напряжения.

Наиболее близким к предлагаемому является устройство (Патент №2365922 РФ, от 27.08.2009), содержащее первичный преобразователь, кодирующий блок, канал связи между стороной высокого напряжения и потенциалом земли, приемный блок и блок питания.

Недостатком данного датчика является отсутствие возможности измерения напряжения.

Задачей изобретения является уменьшение погрешности измеряемых величин тока и напряжения, возможность передачи измеряемого сигнала в диспетчерский пункт, а также получение возможности снимать сигнал со спектром частот, имеющихся в сети в том числе высоких, что с традиционными электромагнитными трансформаторами сделать невозможно.

Технический результат изобретения состоит в:

- преобразовании и передачи сигнала одновременно тока и напряжения с повышенной точностью с большим количеством выборок на период;

- преобразовании и передачи сигнала тока и сигнала о частичных разрядах от каждого изолятора воздушной линий электропередачи для их диагностики и передачи этого сигнала на подстанцию.

Данный технический результат достигается тем, что в оптико-электронном датчике тока и напряжения, в котором имеется первичный преобразователь, кодирующий блок, канал связи между стороной высокого напряжения и потенциалом земли, приемный блок и блок питания в виде канала передачи энергии со стороны потенциала земли, состоящий из батареи светоизлучателей, силовых оптических каналов, батареи фотоприемников и стабилизатора напряжения, дополнительно в качестве первичного преобразователя для тока используется шунт, включенный в рассечку линии электропередачи, а для напряжения - резистивный делитель напряжения, состоящий из низкоомного резистора одним концом подключенный к проводу линии электропередачи, а другим - к группе последовательно соединенных высокоомных резисторов, последний из которых прикреплен к траверсе линии электропередачи, кодирующий блок выполнен в виде двух аналого-цифровых преобразователей (АЦП), вход первого АЦП подключен к шунту, вход второго АЦП подключен к низкоомному резистору, общей точкой подключения АЦП является точка соединения шунта и низкоомного резистора, а выходы АЦП подключены ко входам преобразователей параллельного цифрового кода в последовательный, к которым подключены излучающие светодиоды, подающие световые сигналы в волоконно-оптические каналы связи, другие их концы подключены к соответствующим приемным блокам.

На фиг. 1 показана структурная схема оптико-электронного датчика тока и напряжения.

Оптико-электронный датчик тока и напряжения содержит траверсу линии электропередачи 1, высокоомные резисторы делителя напряжения 2, провод линии электропередачи 3, низкоомный резистор 4, шунт 5, АЦП 6, преобразователь параллельного цифрового кода в последовательный 7, излучающие светодиоды 8, волоконно-оптический канал связи 9, приемные блоки 10, батарея фотоприемников и стабилизатора напряжения 11, батарея светоизлучателей 12.

Основной принцип работы оптико-электронного датчика тока и напряжения заключается в следующем.

При протекании измеряемого тока линии электропередачи через шунт 5 на нем появляется падение напряжения пропорциональное измеряемому току, которое подается на вход первого АЦП 6. Аналогично через соединенные резисторы 2 и 4 протекает ток, которые на резисторе 4 создают падение напряжения пропорциональное измеряемому напряжению линии электропередачи, которое подается на вход второго АЦП 6. На выходах АЦП появляются сигналы в параллельном цифровом коде, которые поступают в преобразователь параллельного цифрового кода в последовательный 7. Эти сигналы в с помощью излучающих светодиодов 8, через волоконно-оптический канал связи 9 поступает в приемник 10.

Блок питания 12 имеют батареи светоизлучателей, которые преобразуют электрическую энергию в энергетический световой поток. По дополнительным оптическим каналам связи 9, которые также обеспечивают основную изоляцию и гальваническую развязку между высоким напряжением цепи с измеряемым током и потенциалом земли, энергетический световой поток направляется в батарею фотоэлементов 11. Батарея фотоэлементов 11 преобразует энергетический световой поток в электрическую энергию. Блок питания 12 служит также для питания приемного блока 10.

Таким образом, разработанный датчик обеспечивает измерение величины тока и напряжения с повышенной точностью за счет малых погрешностей и безинерционных резистивных шунтов и делителей, способных передавать пропорционально высокочастотные частичные разряды без искажения формы сигналов.

Технико-экономическая эффективность заключается в экономии материальных ресурсов, а именно меди и проката черных металлов, необходимых для производства трансформаторов тока и напряжения, а также возможность отслеживания текущего состояния каждого изолятора линии электропередачи, через соединенные резисторы 2 и 4 протекает ток, которые на резисторе 4 создают падение напряжения пропорциональное измеряемому напряжению линии электропередачи, которое подается на вход второго АЦП 6. На выходах АЦП появляется сигналы в параллельном цифровом коде, которые поступают в преобразователь параллельного цифрового кода в последовательный 7. Эти сигналы с помощью излучающих светодиодов 8 через волоконно-оптический канал связи 9 поступают в приемник 10.

Блок питания 12 имеют батареи светоизлучателей, которые преобразуют электрическую энергию в энергетический световой поток. По дополнительным оптическим каналам связи 9, которые также обеспечивают основную изоляцию и гальваническую развязку между высоким напряжением цепи с измеряемым током и потенциалом земли, энергетический световой поток направляется в батарею фотоэлементов 11. Батарея фотоэлементов 11 преобразует энергетический световой поток в электрическую энергию. Блок питания 12 служит также для питания приемного блока 10.

Оптико-электронный датчик тока и напряжения, в котором в качестве первичного преобразователя для тока используют шунт, включенный в рассечку линии электропередачи, а для напряжения - низкоомного резистора делителя напряжения, подключенный между изолятором, прикрепленного к траверсе, и проводом линии электропередачи, кодирующий блок выполнен в виде АЦП, входы которого подключены к шунту и низкоомному резистору делителя напряжения, а выход АЦП подключен ко входу преобразователя параллельного цифрового кода в последовательный, к которому подключен излучающий светодиод, подающий световой сигнал в волоконно-оптический канал связи, другой его конец подключен к приемному блоку работает следующим образом.

При протекании токов утечек через высоковольтные изоляторы линии электропередачи 13 на резисторе 4 создает падение напряжения пропорциональное этим токам. Как известно, токи утечки пропорциональны частичным разрядам, возникаемым в диэлектриках. Поэтому по сути на резисторе снимается сигнал о частичных разрядах данного высоковольтного изолятора линии электропередачи 13. Этот сигнал подается на вход первого АЦП 6. На его выходе появляется сигнал в параллельном цифровом коде, который поступают в преобразователь параллельного цифрового кода в последовательный 7. Этот сигнал с помощью излучающих светодиодов 8, через волоконно-оптический канал связи 9 поступает в приемник 10. Этот приемник может располагаться на подстанции, и, принимая такие сигналы от каждого высоковольтного изолятора линии электропередачи, можно судить о состоянии изоляции всей линии электропередачи.

Таким образом, разработанный датчик обеспечивает измерение величины тока, напряжения и состояние изоляции по токам утечек с повышенной точностью за счет малых погрешностей и безинерционных резистивных шунтов и делителей, способных передавать пропорционально высокочастотные частичные разряды без искажения формы сигналов.

Технико-экономическая эффективность заключается в экономии материальных ресурсов, а именно меди и проката черных металлов, необходимых для производства трансформаторов тока и напряжения, а также возможность отслеживания текущего состояния каждого изолятора линии электропередачи.

Оптико-электронный датчик тока, содержащий первичный преобразователь, кодирующий блок, канал связи между стороной высокого напряжения и потенциалом земли, приемный блок и блок питания в виде канала передачи энергии со стороны потенциала земли, состоящий из батареи светоизлучателей, силовых оптических каналов, батареи фотоприемников и стабилизатора напряжения, отличающийся тем, что в качестве первичного преобразователя для тока используется шунт, включенный в рассечку линии электропередачи, а для напряжения - резистивный делитель напряжения, состоящий из низкоомного резистора одним концом подключенного к проводу линии электропередачи, а другим - к группе последовательно соединенных высокоомных резисторов, последний из которых прикреплен к траверсе линии электропередачи, кодирующий блок выполнен в виде двух аналого-цифровых преобразователей, вход первого аналого-цифрового преобразователя подключен к шунту, вход второго аналого-цифрового преобразователя подключен к низкоомному резистору, общей точкой подключения аналого-цифровых преобразователей является точка соединения шунта и низкоомного резистора, а выходы аналого-цифровых преобразователей подключены ко входам преобразователей параллельного цифрового кода в последовательный, к которым подключены излучающие светодиоды, подающие световые сигналы в волоконно-оптические каналы связи, другие их конецы подключены к соответствующим приемным блокам.



 

Похожие патенты:

Настоящее изобретение относится к области измерительной техники, в частности к электрическим приборам, которые могут быть использованы для измерения высоких напряжений, в том числе в однопроводных линиях переменного высокого напряжения и в жидких средах.

Изобретение относится к области информационно-измерительной и вычислительной техники и предназначено для вычисления и индикации усредненных значений потерь мощности, напряжения сети и тока нагрузки, а также может найти применение в качестве регистратора этих величин за длительный период.

Изобретение относится к области электромеханики. Устройство для измерения намагничивающего тока трансформатора с переменным коэффициентом трансформации, работающего под нагрузкой, состоящее из шунтов, включенных в цепи первичной и вторичной обмоток трансформатора.

Изобретение относится к метрологии. Датчик размещен в корпусе из изолирующего материала, ширина которого равна ширине защитного устройства, а высота позволяет устанавливать датчик в стандартную реечную монтажную панель.

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия. Технический результат - повышение точности контроля токораспределения.

Изобретение относится к области электрорадиоизмерений и может быть использовано при построении цифровых измерителей среднеквадратического, средневыпрямленного и амплитудного значений синусоидальных сигналов.

Изобретение относится к электротехнике и электроэнергетике, а именно к приборам для измерения токов и может быть использовано для контроля и определения формы тока, протекающего в цепях высоковольтных линий передачи.

Изобретение относится к области электроизмерительной техники. Способ может быть применен в средствах измерений пассивных и активных, в том числе комплексных, величин переменного тока, например, в мостах и компенсаторах переменного тока или в измерителях (анализаторах) параметров электрических цепей, а также в векторных вольтметрах и спектроанализаторах.

Изобретение относится к области электротехники и информационно-измерительной, вычислительной техники. Устройство содержит микроконтроллер, радиомодем, питающий трансформатор тока, первичной обмоткой которого является прямолинейный фазный провод высоковольтной линии электропередач, который вторичной обмоткой соединен с диодным выпрямительным мостом, стабилитроном, диодом и ионистором.

Изобретение относится к линиям электроснабжения электрифицированного железнодорожного транспорта, а именно к способу определения сопротивления контактной и рельсовой сетей.

Изобретение относится к измерительной технике, в частности к измерению поверхностных токов на цилиндрических и других сложных по форме поверхностях из немагнитных проводящих материалов. Технический результат - повышение уровня полезного сигнала, снимаемого с элемента Холла, и увеличение площади фрагмента с поверхностным током, контролируемым измерителем. Измеритель поверхностного тока содержит сенсорный модуль с элементом Холла, усилитель, вход которого подключен к выходу элемента Холла, а выход - к индикатору, два концентратора магнитного поля. Заостренные части концентраторов расположены рядом с чувствительной зоной элемента Холла и направлены на нее и навстречу друг другу. Концентраторы магнитного поля выполнены из листового гибкого материала, обеспечивающего плотное прилегание их к поверхности фрагмента с поверхностным током сложной формы, причем геометрические размеры концентраторов магнитного поля соизмеримы с геометрическими размерами контролируемого фрагмента с поверхностным током и значительно превышают геометрические размеры элемента Холла. 1 ил.
Наверх