Способ получения 1,2-бис-(1, 5, 3-дитиазепан-3-ил)этана, обладающего сорбционной активностью по отношению к палладию(ii) и серебру(i)



Способ получения 1,2-бис-(1, 5, 3-дитиазепан-3-ил)этана, обладающего сорбционной активностью по отношению к палладию(ii) и серебру(i)
Способ получения 1,2-бис-(1, 5, 3-дитиазепан-3-ил)этана, обладающего сорбционной активностью по отношению к палладию(ii) и серебру(i)
Способ получения 1,2-бис-(1, 5, 3-дитиазепан-3-ил)этана, обладающего сорбционной активностью по отношению к палладию(ii) и серебру(i)
Способ получения 1,2-бис-(1, 5, 3-дитиазепан-3-ил)этана, обладающего сорбционной активностью по отношению к палладию(ii) и серебру(i)
Способ получения 1,2-бис-(1, 5, 3-дитиазепан-3-ил)этана, обладающего сорбционной активностью по отношению к палладию(ii) и серебру(i)
Способ получения 1,2-бис-(1, 5, 3-дитиазепан-3-ил)этана, обладающего сорбционной активностью по отношению к палладию(ii) и серебру(i)
Способ получения 1,2-бис-(1, 5, 3-дитиазепан-3-ил)этана, обладающего сорбционной активностью по отношению к палладию(ii) и серебру(i)

 


Владельцы патента RU 2608730:

Федеральное государственное бюджетное учреждение науки Институт нефтехимии и катализа Российской академии наук (RU)

Изобретение относится к 1,2-бис-(1,5,3-дитиазепан-3-ил)этану формулы (1),

обладающему сорбционной активностью по отношению к палладию(II) и серебру(I). Сущность способа заключается во взаимодействии смеси 1,2-этандитиола и формальдегида в воде с 1,2-этилендиамином при мольном соотношении HS(CH2)2SH:СН2O: NH2(CH2)2NH2=2:4:1, комнатной температуре (~20°C) и атмосферном давлении в течение 2-4 ч. 2 н.п. ф-лы, 2 табл., 3 пр.

 

Изобретение относится к области синтеза соединений с сорбционной активностью по отношению к ионам металлов, конкретно, к усовершенствованному способу получения 1,2-бис-(1,5,3-дитиазепан-3-ил)этана формулы (1) на основе трехкомпонентной реакции 1,2-этандитиола, формальдегида и 1,2-этилендиамина.

Насыщенные гетероциклические серо- и азотсодержащие соединения обладают комплексообразующими свойствами по отношению к ионам переходных d-металлов [Муринов Ю.И., Майстренко В.Н., Афзалетдинова Н.Г. Экстракция металлов S,N-органическими соединениями. М.: Наука, 1993. 192 с.; Буслаева Т.М., Громов С.П., Сидоренко Н.И. Комплексообразование палладия(II) с макрогетероциклическими лигандами. Российский хим. журн. (Журн. Рос. хим. об-ва им. Д.И. Менделеева). 2006. Т. 50. №4. С. 26-35]. Они перспективны в качестве селективных сорбентов и экстрагентов благородных металлов [Муринов Ю.И., Майстренко В.Н., Афзалетдинова Н.Г. Экстракция металлов S,N-органическими соединениями. М.: Наука, 1993. 192 с.; Анпилогова Г.Р., Ахмадиев Н.С., Хабибуллина Г.Р., Ахметова В.Р. Сорбционные свойства комплексообразующего сорбента бис-(1,3,5-дитиазинан-5-ил)-этана по отношению к палладию(II), серебру(I) и ртути(II). Журн. приклад, химии. 2011. Т. 84. №5. С. 756-761].

Наиболее близким прототипом соединения (1), обладающим сорбционными свойствами, является бис-(1,3,5-дитиазинан-5-ил)-этан (2) [Анпилогова Г.Р., Ахмадиев Н.С., Хабибуллина Г.Р., Ахметова В.Р. Сорбционные свойства комплексообразующего сорбента бис-(1,3,5-дитиазинан-5-ил)-этана по отношению к палладию(II), серебру(I) и ртути(II). Журн. приклад, химии. 2011. Т. 84. №5. С. 756-761]. Он характеризуется высоким сорбционным сродством по отношению к палладию(II) (величина предельной статической сорбционной емкости ПЕPd=7.8 ммоль/г при кислотности водной фазы 3 M HCl), серебру(I) (ПЕAg=27.4 ммоль/г, 0.1 М HNO3) и ртути (II) (ПЕHg=19.0 ммоль/г, 0.1 М HNO3). Бис-(1,3,5-дитиазинан-5-ил)-этан (2) синтезирован известным способом [Хафизова С.Р., Ахметова В.Р., Коржова Л.Ф., Хакимова Т.В., Надыргулова Г.Р., Кунакова Р.В., Круглов Э.А., Джемилев У.М. Многокомпонентная конденсация алифатических аминов с формальдегидом и сероводородом. Изв. АН. Сер. хим. 2005. №2. С. 423-427] трехкомпонентной конденсации сероводорода с формальдегидом и 1,2-этилендиамином в воде при температуре 80°C с выходом 44% по схеме:

Существенными недостатками известного способа являются необходимость применения токсичного сероводорода, повышенная температура и невысокий выход целевого продукта (2). Данным способом не может быть получен бис-(1,5,3-дитиазепан-3-ил)этан (1).

Известен способ (Джемилев У.М., Рахимова Е.Б., Ефремова Е.А., Сайфутдинов Ш.У., Ибрагимов А.Г. Способ получения α,ω-бис-(1,5,3-дитиазепинан-3-ил)алканов. Пат. РФ 2478634, 2013, Бюл. №10) получения бис-(1,5,3-дитиазепан-3-ил)этана (1) взаимодействием 1,2-этилендиамина с N-трет-бутил-1,5,3-дитиазепаном в хлороформе в присутствии катализатора SmCl3⋅6H2O при мольном соотношении 1,2-этилендиамин: N-трет-бутил-1,5,3-дитиазепан:SmCl3⋅6H2O, равном 10:20:(0.3-0.7), при комнатной (~20°C) температуре в течение 2.5-3.5 ч. Выход соединения (1) составляет 53-71%. Реакция протекает по схеме:

Известен способ (Рахимова Е.Б., Исмагилов Р.А., Зайнуллин Р.А., Галимзянова Н.Ф., Ибрагимов А.Г. Синтез α,ω-бис-1,5,3-дитиазепанов и их фунгицидная активность. Журнал прикл. химии. 2013. Т. 86. Вып. 10, С. 1547-1551) получения бис-(1,5,3-дитиазепан-3-ил)этана (1) взаимодействием 1,2-этандитиола с N,N,Nʹ,Nʹ-тетраметилметандиамином и 1,2-этилендиамином в присутствии катализатора SmCl3⋅6H2O (5 мол. %) в смеси растворителей EtOH-CHCl3 при комнатной температуре (~20°C) в атмосфере аргона с выходом 82% по схеме:

Известные способы позволяют получать соединение (1), но имеют ряд недостатков, связанных с необходимостью применения в качестве растворителя токсичного хлороформа, а также катализатора на основе дорогостоящей соли редкоземельного металла SmCl3⋅6H2O.

Целью изобретения является усовершенствование способа получения бис-(1,5,3-дитиазепан-3-ил)этана формулы (1) с применением доступных реагентов при проведении процесса в экологически выгодных условиях без образования побочных продуктов. Предлагается усовершенствованный способ получения бис-(1,5,3-дитиазепан-3-ил)этана формулы (1), обладающего сорбционной активностью по отношению к палладию(II) и серебру(1), в одну технологическую стадию при комнатной температуре из доступных исходных реагентов.

Сущность способа заключается в предварительном перемешивании 1,2-этандитиола [HS(CH2)2SH] с водным раствором (37%) формальдегида [CH2O] при комнатной температуре (~20°C) в течение 30 мин с последующим добавлением 1,2-этилендиамина [H2N(CH2)2NH2] при мольном соотношении HS(CH2)2SH:CH2O:H2N(CH2)2NH2=2:4:1 и перемешиванием в течение 2-4 ч при температуре ~20°C и атмосферном давлении. Выход бис-(1,5,3-дитиазепан-3-ил)этана (1) составляет 80-85%. Реакция протекает по схеме:

Бис-(1,5,3-дитиазепан-3-ил)этан формулы (1) образуется только с участием 1,2-этандитиола, формальдегида и этилендиамина, взятыми в стехиометрическом соотношении 2:4:1. При другом соотношении исходных реагентов снижается селективность реакции. В присутствии других α,ω-дитиолов (например, 1,3-пропандитиол, 1,4-бутандитиол, 1,5-пентандитиол), других альдегидов (например, алкил-, арилзамещенные альдегиды) целевой продукт (1) не образуется. Реакцию проводили при комнатной температуре (~20°C). При температуре выше 20°C (например, 60°C) увеличиваются энергозатраты, а при температуре ниже 20°C (например, -10°C) снижается скорость реакции. Реакцию проводили в воде, т.к. исходные реагенты хорошо растворяются в воде, а целевой продукт формулы (1) выпадает в осадок и легко отделяется от реакционной массы.

Существенные отличия предлагаемого способа:

В предлагаемом способе для синтеза 1,2-бис-(1,5,3-дитиазепан-3-ил)этана (1) в качестве исходных реагентов применяются коммерчески доступные 1,2-этилендиамин, формалин и 1,2-этандитиол. В известных способах реакция идет с участием в качестве исходных реагентов N-трет-бутил-1,5,3-дитиазепана или N,N,Nʹ,Nʹ-тетраметилметандиамина с применением в качестве растворителя токсичного хлороформа и катализатора SmCl3⋅6H2O.

Способ поясняется следующими примерами:

Пример 1. В стеклянный реактор, установленный на магнитной мешалке, при комнатной температуре (~20°C) помещают 1,2-этандитиол (1.7 мл, 0.02 моль), формалин (37%, 3 мл, 0.04 моль) и воду (5 мл), перемешивают при комнатной температуре (~20°C) в течение 30 мин. Затем добавляют по каплям 0.6 мл 1,2-этилендиамина (0.01 моль) и перемешивают в течение 3 часов при комнатной температуре (20°C). Образовавшийся осадок отфильтровывают, промывают дистиллированной водой 315 мл, высушивают и очищают методом колоночной хроматографии, используя силикагель КСК (50-160 мкм), Rf=0.64 (CH2Cl2-этилацетат=2:1), получают бесцветные кристаллы, выход 1,2-бис-(1,5,3-дитиазепан-3-ил)этана (1) 2.52 г (85%), т.пл. 144-145°C.

Пример 2. Аналогично примеру 1 при перемешивании в течение 2 часов при комнатной температуре (20°C) получают 2.37 г 1,2-бис-(1,5,3-дитиазепан-3-ил)этана (1) с выходом 80%.

Пример 3. Аналогично примеру 1 при перемешивании в течение 4 часов при комнатной температуре (20°C) получают 2.55 г 1,2-бис-(1,5,3-дитиазепан-3-ил)этана (1) с выходом 86%.

Физико-химические характеристики соединения (1).*(* Спектры ЯМР 1Н и 13C регистрировали на спектрометре Bruker Avance-400 с рабочими частотами 400.13 и 100.62 МГц соответственно, растворитель - CDCl3 (стандарты - сигналы остаточных протонов растворителя δН 7.28 м.д. и δС 77.10 м.д.). ИК-спектры зарегистрированы на спектрометре Bruker Vertex 70 v в суспензии в вазелиновом масле. Элементный состав C, H, N и S определяли на приборе KarloErba-1106).

1,2-Бис-(1,5,3-дитиазепан-3-ил)этан (1).

Бесцветные кристаллы, выход 2.52 г (85%), т.пл. 144-145°C. ИК-спектр, см-1: 667 (C-S), 1000 (C-N. Спектр ЯМР 1H (400 МГц, 25°C), δ, м.д.: 2.82 (4Н, с, NCH2CH2); 3.02 (8Н, с, S(CH2)2); 4.15 (8Н, с, NCH2S). Спектр ЯМР 13С (100 МГц), δ, м.д.: 35.8 (S(CH2)2); 47.8 (NCH2CH2); 59.7 (NCH2S). Найдено, %: С 41.01, Н 7.24, N 8.97, S 44.21. C10H20N2S4. Вычислено, %: С 40.50, Н 6.81, N 9.45, S 43.24.

Благодаря наличию в структуре электронодонорных атомов серы тиоэфирных групп и атомов азота третичных аминогрупп соединение (1) потенциально обладает комплексообразующими свойствами по отношению к «мягким» ионам благородных металлов палладия(II), золота(III) и серебра(I), а также ртути(II). Поскольку соединение (1) нерастворимо в воде и незначительно растворимо в водных растворах минеральных кислот в области 0.1-5 М HCl и 0.1-3 M HNO3, то оно может обладать свойствами комплексообразующего сорбента по отношению к ионам данных металлов.

Сорбционные свойства соединения (1) по отношению к палладию(II) и серебру(I) были изучены статическим методом сорбции при комнатной температуре 19±1°C, отношении навески соединения (1) (г) к объему раствора (см3) т:ж=1:100 или 1:300 и интенсивном перемешивании с помощью магнитной мешалки типа ММ-2А в течение 24 ч. Сорбцию палладия(II) изучали из свежеприготовленных солянокислых растворов K2PdCl4, а серебра(I) - из азотнокислых растворов AgNO3 в затемненных стеклянных ячейках. Концентрацию палладия(II) в растворах определяли спектрофотометрическим методом с хлоридом олова(II) (Гинзбург Е.Г., Езерская Н.З., Прокофьева С.М., Федоренко Н.В., Шленская В.И., Вельский Н.К. Аналитическая химия платиновых металлов. М.: Химия, 1972, 613 с.) на спектрофотометре Specord М40, концентрацию серебра(I) - титриметрическим методом Фольгарда (Васильев В.П. Аналитическая химия. Ч 1. М.: Высшая школа, 1989. 320 с.).

В табл. 1 представлена зависимость статической сорбционной емкости (Ем) соединения (1) по палладию(II) и серебру(I) от исходной концентрации кислоты в растворе. В табл.2 приведены значения предельной сорбционной емкости (ПЕM) по палладию(II) и серебру(I), определенные при оптимальной кислотности водной фазы по стандартной методике (Салдадзе К.М., Копылова-Валова В.Д. Комплексообразующие иониты (комплекситы). М.: Химия, 1980, 336 с.).

Установлено, что соединение (1) эффективно извлекает палладий(II) из солянокислых растворов в широком диапазоне концентраций HCl (0.1-5 М) с высокими значениями статической сорбционной емкости EPd, степени извлечения R и коэффициентов распределения Kd (табл. 1). При этом значение сорбционной емкости EPd не зависит от кислотности водной фазы и приближается к значению предельной сорбционной емкости ПЕPd (табл. 2). Соединение (1) наиболее эффективно извлекает серебро(I) из растворов 0.1-0.5 М HNO3 (табл. 1) со значениями сорбционной емкости EAg=7.8 ммоль/г, степени извлечения R>99.9% и коэффициентов распределения Kd>105 см3/г. С увеличением концентрации HNO3 до 3 М степень извлечения серебра(I) уменьшается до 87%, значение EAg до 6.8 ммоль/г, Kd до 2⋅103 см3/г. Сорбция палладия(II) и серебра(I) соединением (1) является необратимой.

Соединение (1) характеризуется высокими значениями предельной сорбционной емкости по палладию(II) и серебру(I) (табл.2), что свидетельствует о его высоком сорбционном сродстве по отношению к ионам этих благородных металлов. По величине ПЕAg соединение (1) может быть отнесено к ряду самых эффективных в настоящее время S- и S,N-содержащих комплексообразующих сорбентов серебра(1), таких как полиэтиленмоносульфид (-CH2-CH2-S-)n, средняя молекулярная масса 1000 а.е.м., ПЕAg=14.8-25.0 ммоль/г [Рафиков С.Р., Никитин Ю.Е., Бикбаева Г.Г., Гаврилова А.А., Алеев Р.С. О комплексообразующих свойствах полиэтиленмоносульфида. Докл. АН СССР. 1980. Т. 253. №3. С. 644-647] и 1,2-бис-(1,3,5-дитиазинан-5-ил)этан (2) [Анпилогова Г.Р., Ахмадиев Н.С, Хабибуллина Г.Р., Ахметова В.Р. Сорбционные свойства комплексообразующего сорбента бис-(1,3,5-дитиазинан-5-ил)-этана по отношению к палладию(II), серебру(I) и ртути(II). Журн. приклад, химии. 2011. Т. 84. №5. С. 756-761].

Полученные результаты свидетельствуют о том, что соединение (1) может найти применение в качестве сорбента для извлечения и концентрирования палладия(II) из солянокислых и серебра(I) из азотнокислых растворов в гидрометаллургии благородных металлов.

1. Способ получения 1,2-бис-(1,5,3-дитиазепан-3-ил)этана формулы (1)


отличающийся тем, что предварительно приготовленную при 20°C смесь водного раствора формальдегида и 1,2-этандитиола подвергают взаимодействию с 1,2-этилендиамином в воде при мольном соотношении 1,2-этандитиол:формальдегид:1,2-этилендиамин=2:4:1 при температуре ~20°C и атмосферном давлении в течение 2-4 ч.

2. Применение 1,2-бис-(1,5,3-дитиазепан-3-ил)этана в качестве сорбента палладия(II) и серебра(I).



 

Похожие патенты:

Предлагаемое изобретение относится к способу получения новых метил 2-(1,5,3-дитиазепан-3-ил)алканоатов, которые могут найти применение в качестве противомикробных, антигрибковых, антиоксидантных и противовоспалительных агентов.

Предлагаемое изобретение относится к способу получения N-адамантил-1,5,3-дитиазепанов, которые могут найти применение в качестве антиоксидантных, фунгицидных и противомикробных агентов.

Предлагаемое изобретение относится к области органической химии, в частности к способу получения N-циклоалкилзамещенных 1,5,3-дитиазепанов, которые могут найти применение в качестве фунгицидов и селективных комплексообразователей.

Изобретение относится к способу получения N-(1,5,3-дитиазепан-3-ил)карбоновых кислот формулы (1) который заключается в предварительном перемешивании 1,2-этандитиола и формальдегида (мольное соотношение 1:2) в течение 30 мин, затем образующуюся смесь перемешивают с аминокислотой, взятыми в мольном соотношении 1,2-этандитиол:CH2O:аминокислота = 1:2:1 в течение 2.5-3.5 ч при температуре ~20°C и атмосферном давлении в воде в качестве растворителя.

Изобретение относится к способу получения N,N-бис-[(1,5,3-дитиазепан-3-ил)алкил]аминов, которые могут найти применение в качестве фунгицидов и селективных комплексообразователей.

Настоящее изобретение относится к применению соединений формулы II для лечения и/или профилактики заболевания печени, опосредованного IBAT, выбранного из синдрома Алажилля (ALGS), прогрессирующего семейного внутрипеченочого холестаза (PFIC), первичного биллиарного цирроза (РВС), первичного склерозирующего холангита (PSC), неалкогольного жирового стеатогепатита (NASH) и зуда, вызванного холестатической болезнью печени, а также к фармацевтической композиции на их основе и способу лечения указанных выше заболеваний.

Изобретение относится к способу получения 3-(1-адамантил)-1,5,3-дитиазепана формулы (1) Сущность способа заключается во взаимодействии 1-аминоадамантана с 1-окса-3,6-дитиациклогептаном в присутствии катализатора SmCl3·6H2O при мольном соотношении 1-аминоадамантан:1-окса-3,6-дитиациклогептан:SmCl3·6H2O=1:1:(0.03-0.07) при температуре ~20°C и атмосферном давлении в течение 2.5-3.5 ч.

Изобретение относится к области синтеза соединений с биологической активностью, конкретно к способу получения 3-[1-(1-адамантил)этил]-1,5,3-дитиазепана, обладающего фунгицидной активностью против Rhizoctonia solani.

Изобретение относится к способу получения N-циклогексилзамещенных 1,5,3-дитиазепанов общей формулы (1) , заключающемуся во взаимодействии Ν-циклогексилзамещенного амина (циклогексан-амин, тетрагидро-2N-пиран-4-амин, пиперидин-4-амин) с 1-окса-3,6-дитиациклогептаном в присутствии катализатора SmCl3·6H2O в среде растворителей этанол-хлороформ при комнатной температуре в течение 2,5-3,5 ч.

Изобретение относится к способу получения 3- и 4-(1,5,3-дитиазациклоалкан-3-ил)бензамидов, общей формулы (I) заключающемуся во взаимодействии N 1 ,N 1 ,N 6 ,N 6-тетраметил-2,5-дитиагексан-1,6-диамина (N 1 ,N 1 ,N 7 ,N 7-тетраметил-2,6-дитиагептан-1,7-диамина) с 3(4)-аминобензамидами общей формулы 3(4)-H2N-C6H4-C(O)NH2 в присутствии катализатора кристаллогидрата хлорида самария SmCl3•6H2O при мольном соотношении 3(4)-аминобензамид:N 1 ,N 1 ,N 6 ,N 6 -тетраметил-2,5-дитиагексан-1,6-диамин (N 1 ,N 1 ,N 7 ,N 7-тетраметил-2,6-дитиагептан-1,7-диамин):SmCl3•6H2O = 10:10:(0.5-1.5) при температуре 75-80°С и атмосферном давлении в смеси растворителей этиловый спирт - хлороформ в течение 6-10 ч.

Изобретение относится к субстрату для иммобилизации функциональных групп, а также к способам приготовления данного субстрата и картриджу с сорбентом для использования в устройстве диализа.

Изобретение относится к технологии изготовления адсорбента диоксида углерода, предназначенного для использования в средствах защиты органов дыхания. Установка для получения адсорбента диоксида углерода содержит узел дозированной подачи полимерного раствора, содержащего гидроксиды щелочных или щелочноземельных металлов 1, узел подачи подложки из волокнистого материала 2, узел формования 3 и узел сушки 4.

Изобретение относится к получению сорбентов, используемых для разделения органических веществ методом газовой хроматографии. Способ включает формирование на поверхности пористого носителя слоя мезопористого оксида кремния.

Изобретение относится к пленке, которую применяют в составе разнообразных одноразовых изделий, например подгузников, гигиенических салфеток, одежды для взрослых, страдающих недержанием, перевязочного материала и т.д.

Изобретение относится к области сорбционной очистки воды. Способ получения сорбента включает обработку пористого носителя с поверхностно гидроксильными группами раствором хлорида меди, никеля или кобальта, сушку при 180-200°С, обработку ализарином в кислой среде и сушку при 160°С.

Изобретение относится к области адсорбентов медицинского назначения. Описан пористый сорбент с хронотропными свойствами на основе кремнийсодержащего оксида алюминия.
Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, в частности к адсорбентам для улавливания, концентрирования и хранения диоксида углерода Адсорбент изготовлен на основе мезопористой металлорганической каркасной структуры, выбранной из структур IRMOF-3, MOF-177, HKUST-1 (MOF-199), ZIF-8, MIL-100, MOF-200, MOF-210, MIL-101 или MIL-53.

Изобретение относится к анионообменным сорбентам для ионохроматографического определения органических и неорганических анионов. Общая формула заявленного сорбента соответствует формуле (1).

Изобретение может быть использовано при обработке разливов нефти и в производстве бумаги. Для изготовления содержащего карбонат кальция материала с обработанной поверхностью исходный материал приводят в контакт с по меньшей мере одной солью жирной кислоты С5-С28, выбранной из группы, включающей соли первичных алканоламинов одноатомных спиртов, соли полиэтиленимина и их смеси.
Изобретение относится к сорбционной очистке газов. Способ очистки газового потока, содержащего ртуть, включает контакт газового потока с сорбентом до прохождения устройства для сбора твердых частиц.
Наверх