Солнечный модуль с концентратором (варианты)

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, концентратор и приемник излучения, на рабочей поверхности установлена отклоняющая оптическая система, выполненная в виде жалюзи из зеркальных фацет, имеющая поверхности входа и выхода лучей, зеркальные фацеты выполнены в виде цилиндрических зеркальных отражателей с радиусом кривизны R и плоскостью входа лучей шириной d и помещены в оптически прозрачную среду с коэффициентом преломления n, угол выхода лучей β1 для цилиндрических зеркальных отражателей, угол выхода лучей отклоняющей оптической системы β2, угол ϕ0 наклона плоскости входа лучей цилиндрических зеркальных отражателей и их радиус кривизны R при нормальном падении лучей на рабочую поверхность модуля связаны соотношениями, указанными в формуле изобретения, расстояние между цилиндрическими зеркальными отражателями на рабочей поверхности и ширина поверхности входа цилиндрических зеркальных отражателей удовлетворяет соотношению , при котором для любых углов ϕ0 нижняя грань цилиндрического зеркального отражателя и верхняя грань следующего цилиндрического зеркального отражателя находятся в одной вертикальной плоскости. Также имеется второй вариант выполнения солнечного модуля. В результате использования изобретения повышается удельная мощность модуля и снижается его стоимость. 2 н. и 2 з.п. ф-лы, 6 ил.

 

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла.

Известен солнечный модуль с концентратором на основе параболоцилиндрических фоклинов, установленных с двух сторон по краям фотопреобразователей (Solar Tobay, Yuly/August 1997, p. 31).

Недостатком известного модуля является низкий коэффициент концентрации 2-2,5. Другим недостатком является большая высота модуля с концентратором, превышающая размер плоского модуля без концентратора в 4-6 раз.

Наиболее близким по технической сущности к предлагаемому изобретению является солнечный модуль, содержащий концентратор энергии, имеющий рабочую поверхность, на которую падает солнечное излучение, на рабочей поверхности призмы установлены миниатюрные зеркальные экраны, выполненные в виде жалюзи из плоских зеркальных фацет, скоммутированные фотопреобразователи выполнены с двусторонней рабочей поверхностью, концентратор - в виде двух симметрично расположенных призм, имеющих общий фотопреобразователь, а на рабочей поверхности концентратора в зоне одной или обеих призм установлены миниатюрные зеркальные экраны (Патент РФ №2133415. Солнечный фотоэлектрический модуль (варианты) / Безруких П.П., Стребков Д.С., Тверьянович Э.В., Иродионов А.Е. // БИ. 1999. №20).

Недостатками известного солнечного модуля являются большие оптические потери в жалюзи и низкий коэффициент концентрации.

Задачей предлагаемого изобретения является создание солнечного модуля с концентратором, имеющего высокий оптический КПД и высокий коэффициент концентрации солнечного излучения.

В результате использования предлагаемого солнечного модуля повышается удельная мощность модуля и снижается его стоимость.

Вышеуказанный технический результат достигается тем, что в солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, концентратор и приемник излучения, на рабочей поверхности установлена отклоняющая оптическая система, выполненная в виде жалюзи из зеркальных фацет, имеющая поверхности входа и выхода лучей, зеркальные фацеты выполнены в виде цилиндрических зеркальных отражателей с радиусом кривизны R и плоскостью входа лучей шириной d и помещены в оптически прозрачную среду с коэффициентом преломления n, угол выхода лучей β1 для цилиндрических зеркальных отражателей, угол выхода лучей отклоняющей оптической системы β2, угол ϕ0 наклона плоскости входа лучей цилиндрических зеркальных отражателей и их радиус кривизны R при нормальном падении лучей на рабочую поверхность модуля связаны соотношениями:

β1=2ϕ0-2θ при ϕ<ϕ0,

β1=2ϕ0+2θ при ϕ>ϕ0,

β1=2ϕ0, θ=0 при ϕ=ϕ0,

β2=arcsin[(sin β1)⋅n],

где β1 - угол выхода лучей для цилиндрических зеркальных отражателей;

β2 - угол выхода лучей отклоняющей оптической системы;

ϕ0 - угол наклона плоскости входа лучей цилиндрических зеркальных отражателей;

n - коэффициент преломления оптической прозрачной среды;

ϕ - угол наклона касательной плоскости к поверхности цилиндрического зеркального отражателя в точке падения лучей;

θ - угол между плоскостью входа лучей цилиндрического зеркального отражателя и касательной плоскостью к поверхности цилиндрического зеркального отражателя в точке падения лучей;

θ0 - угол между плоскостью входа лучей и касательной плоскостью на краях цилиндрического зеркального отражателя,

углы β1, β2, ϕ и ϕ0 отсчитываются от вертикали к рабочей поверхности против часовой стрелки, расстояние а между цилиндрическими зеркальными отражателями на рабочей поверхности и ширина поверхности входа цилиндрических зеркальных отражателей удовлетворяет соотношению:

a=dsin ϕ0,

при котором для любых углов ϕ0 нижняя грань цилиндрического зеркального отражателя и верхняя грань следующего цилиндрического зеркального отражателя находятся в одной вертикальной плоскости, а концентратор выполнен в виде призмы полного внутреннего отражения с острым углом ψ, который связан с коэффициентом преломления материала призмы n1 и углом выхода лучей β2 соотношением:

где n - коэффициент преломления оптической прозрачной среды;

β2 - угол выхода лучей отклоняющей оптической системы;

n1 - коэффициент преломления материала призмы.

В другом варианте солнечного модуля с концентратором модуль содержит установленные в одной плоскости вторую оптическую отклоняющую систему и второй призменный концентратор с общим двусторонним приемником, а угол между поверхностями входа цилиндрических зеркальных отражателей первой и второй отклоняющих оптических систем равен 2ϕ0.

Вышеуказанный технический результат достигается также тем, что в солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, концентратор и приемник излучения, на рабочей поверхности установлена отклоняющая оптическая система, выполненная в виде жалюзи из зеркальных фацет, имеющая поверхности входа и выхода лучей, зеркальные фацеты выполнены в виде цилиндрических зеркальных отражателей с радиусом кривизны R и плоскостью входа лучей шириной d и помещены в оптически прозрачную среду с коэффициентом преломления n, угол выхода лучей β1 для цилиндрических зеркальных отражателей, угол выхода лучей отклоняющей оптической системы β2, угол ϕ0 наклона плоскости входа лучей цилиндрических зеркальных отражателей и их радиус кривизны R при нормальном падении лучей на рабочую поверхность модуля связаны соотношениями:

β1=2ϕ0-2θ при ϕ<ϕ0,

β1=2ϕ0+2θ при ϕ>ϕ0,

β1=2ϕ0, θ=0 при ϕ=ϕ0,

β2=arcsin[(sin β1)⋅n],

где β1 - угол выхода лучей для цилиндрических зеркальных отражателей;

β2 - угол выхода лучей отклоняющей оптической системы;

ϕ0 - угол наклона плоскости входа лучей цилиндрических зеркальных отражателей;

n - коэффициент преломления оптической прозрачной среды;

ϕ - угол наклона касательной плоскости к поверхности цилиндрического зеркального отражателя в точке падения лучей;

θ - угол между плоскостью входа лучей цилиндрического зеркального отражателя и касательной плоскостью к поверхности цилиндрического зеркального отражателя в точке падения лучей;

θ0 - угол между плоскостью входа лучей и касательной плоскостью на краях цилиндрического зеркального отражателя,

углы β1, β2, ϕ и ϕ0 отсчитываются от вертикали к рабочей поверхности против часовой стрелки, расстояние а между цилиндрическими зеркальными отражателями на рабочей поверхности и ширина поверхности входа цилиндрических зеркальных отражателей удовлетворяет соотношению;

a=dsin ϕ0,

при котором для любых углов ϕ0 нижняя грань цилиндрического зеркального отражателя и верхняя грань следующего цилиндрического зеркального отражателя находятся в одной вертикальной плоскости, а концентратор выполнен в виде полупараболоцилиндрического зеркального отражателя с апертурным углом δ, который связан с углом β2 следующим соотношением:

β2≥90°-2δ.

В другом варианте солнечного модуля с концентратором модуль содержит установленные в одной плоскости вторую оптическую отклоняющую систему и второй полупараболоцилиндрический концентратор с общим двусторонним приемником, а угол между поверхностями входа цилиндрических зеркальных отражателей первой и второй отклоняющих оптических систем равен 2ϕ0.

Солнечный модуль с концентратором иллюстрируется на фиг. 1-6.

На фиг. 1 представлена схема оптической отклоняющей системы с цилиндрическими зеркальными отражателями, которые помещены в оптически прозрачную среду, и ход лучей в ней (двухмерное изображение).

На фиг. 2 представлен ход лучей в солнечном модуле с призменным концентратором с оптической отклоняющей системой в виде жалюзи из миниатюрных цилиндрических отражателей, которые помещены в оптически прозрачную среду.

На фиг. 3 показан общий вид солнечного модуля с одной оптической отклоняющей системой и призменным концентратором.

На фиг. 4 показан солнечный модуль с концентратором, состоящий из первой и второй оптических отклоняющих систем в виде жалюзи из зеркальных цилиндрических отражателей, которые помещены в оптически прозрачную среду, и первого и второго призменного концентратора с общим приемником.

На фиг. 5 показан общий вид солнечного модуля с одной оптической отклоняющей системой и с одним полупараболоцилиндрическим концентратором.

На фиг. 6 представлен солнечный модуль с концентратором, состоящий из первой и второй оптических отклоняющих систем в виде жалюзи из зеркальных цилиндрических отражателей, которые помещены в оптически прозрачную среду, и первого и второго полуцилиндрического концентратора с общим приемником.

Солнечный модуль с концентратором на фиг. 1 содержит зеркальную отклоняющую периодическую оптическую систему 1 высотой h, шириной l и длиной L, состоящую из цилиндрических зеркальных отражателей 2 с радиусом кривизны R и с плоскостью 3 входа лучей шириной d, установленных под углом ϕ0. Солнечный модуль имеет рабочую поверхность 4, на которую падает излучение 5. Цилиндрические зеркальные отражатели 2 установлены друг от друга на расстоянии а под углом ϕ0 к вертикальной плоскости и помещены в оптически прозрачную среду 6 с коэффициентом преломления n.

Количество цилиндрических зеркальных отражателей 2 в отклоняющей оптической системе . Обозначим через β1 угол выхода лучей от цилиндрических зеркальных отражателей 2 в оптической системе 1. Угол β1 отсчитывается от вертикальной плоскости. Угол β1 выбирается из условия максимального отклонения отраженного луча на выходе из системы на расстоянии ОЕ=2а.

Принимая h=1, получим:

На фиг. 2 касательная 7 в точке А и касательная 8 в точке D к цилиндрическому зеркальному отражателю 2 образуют угол θ0 с плоскостью 3 входа лучей. Обозначим через θ угол между плоскостью входа лучей цилиндрического зеркального отражателя 2 и касательной плоскостью к поверхности цилиндрического зеркального отражателя 2 в точке падения лучей. Касательная 9 в точке G параллельна плоскости 3 входа лучей, поэтому в точке G θ=0. Из фиг. 2 следует, что θ0=max θ в точках А и D, в точке G θ=0, на участке AG θ<ϕ0, а на участке GD θ>ϕ0.

Радиус кривизны цилиндрического зеркального отражателя R=АО1 и высоту сегмента FG найдем из Δ O1AF: AF=AO1sinθ0, AO1=R, ,

FG=O1G-O1F, , .

Для лучей, нормальных к рабочей поверхности 4 модуля в точке А: β1=2ϕ-2θ0.

Подставляя β1 из (1), получим для точки А:

В точке В: β1=2ϕ+2θ0.

В точке G: θ=0, β1=2ϕ0=arctg(2tgϕ0).

Для любой точки цилиндрического зеркального отражателя 2:

где ϕ - угол наклона касательной плоскости к поверхности цилиндрического зеркального отражателя 2 в точке падения лучей, углы β1, ϕ и ϕ0 отсчитываются от вертикали к рабочей поверхности 4 против часовой стрелки.

При расчете оптической отклоняющей периодической системы 1 на фиг. 1, 2 принимается, что точки В и D находятся на одной вертикали к поверхности для всех цилиндрических зеркальных отражателей 2 при любом угле ϕ0. Это означает, что при увеличении ϕ0 и постоянной ширине d цилиндрического зеркального отражателя 2 растет расстояние а=tgϕ0, между цилиндрическими зеркальными отражателями.

Из фиг. 2 и формул (6) следует, что угол выхода лучей β1 изменяется при отражении лучей от различных участков цилиндрического зеркального отражателя 2.

- угол выхода лучей при отражении от нижнего края (точка D) цилиндрического зеркального отражателя 2,

- угол выхода лучей при отражении от верхнего края (точка А) цилиндрического зеркального отражателя 2.

Оптическая отклоняющая система 1 из цилиндрических зеркальных отражателей 2 обеспечивает 100%-е переотражение излучения 5, поступающего на рабочую поверхность 4 солнечного модуля с концентратором.

Обозначим через β2 угол выхода лучей из оптической отклоняющей системы 1, которая содержит прозрачную среду 6, с коэффициентом преломления n.

Угол β2 отсчитывается от вертикали против часовой стрелки.

Обозначим

,

На фиг. 2 и 3 призменный концентратор 10 выполнен в виде призмы полного внутреннего отражения с коэффициентом преломления n и с острым углом ψ и отделен от отклоняющей оптической системы 1 с помощью воздушного промежутка 11. Луч, выходящий из оптической отклоняющей системы 1 под углом β2min, поступает на поверхность входа 12 призменного концентратора 10 под углом β32min. Излучение входит в призменный концентратор 10 под углом , поступает на грань переотражения 13 под углом β54+ψ, отражается от грани переотражения 13 и поступает на поверхность входа 12 под углом β64+2ψ, который должен быть больше угла полного внутреннего отражения .

Из (9) получаем соотношение между ψ, β2min и n1:

Все входящие лучи, удовлетворяющие условию (1), (6), (8) и (10), будут поступать на приемник 14.

Коэффициент концентрации к=ctg ψ.

В варианте солнечного модуля с концентратором на фиг. 4 первый 15 и второй 16 призменные концентраторы с острыми углами ψ имеют общий двусторонний приемник 17, рабочую поверхность 18, на которой установлены первая 19 и вторая 20 отклоняющие лучи встречно оптические системы, поверхности входа 21 и 22 лучей призменных концентраторов 15 и 16 находятся в одной плоскости, а угол между плоскостями входа 23 и 24 цилиндрических зеркальных отражателей 25 и 26 составляет 2ϕ0. Призменные концентраторы 15, 16 установлены таким образом, что их отраженные потоки излучения направлены навстречу друг другу и поступают на общий двусторонний приемник излучения 17, установленный на опорном устройстве 27 со слежением за солнцем по одной оси.

Коэффициент концентрации для солнечного модуля с двумя призменными концентраторами 15 и 16 и с двусторонним приемником 17 (фиг. 4) составляет:

к=2ctg ψ.

Солнечный модуль с концентратором на фиг. 5 содержит полупараболоцилиндрический концентратор 28 с параметрическим углом δ, фокальной осью F и вершиной O2 с поверхностью входа 29 лучей, которая параллельна рабочей поверхности 4 солнечного модуля с концентратором. Приемник 30 установлен между фокальной осью F и вершиной O2 полупараболоцилиндрического концентратора 28.

В солнечном модуле с концентратором на фиг. 5 отклоняющая оптическая система шириной L=АС создает на поверхности входа 29 лучей полупараболоцилиндрического концентратора 28 поток лучей с углом β2, .

Коэффициент концентрации солнечного модуля с концентратором при нормальном падении излучения 5 на рабочую поверхность 4 равен:

.

Параметрический угол δ определяется из условия:

,

.

На фиг. 6 солнечный модуль с концентратором содержит первую 31 и вторую 32 отклоняющие лучи встречно оптические системы, у которых угол между поверхностями входа 33 и 34 цилиндрических зеркальных отражателей двух отклоняющих оптических систем составляет 2ϕ0. Солнечный модуль содержит первый 35 и второй 36 полупараболоцилиндрические концентраторы с общей фокальной осью F, общим двухсторонним приемником 37, у которых поверхности входа 38 и 39 находятся в одной плоскости. Линии 40 и 41, которые являются касательными к поверхности полупараболоцилиндрических концентраторов 35 и 36 у поверхностей входа 38 и 39 и внешними границами апертурных углов, образуют между собой угол 180° - 2δ. Коэффициент концентрации солнечного модуля с концентратором на фиг. 6 равен:

.

Примеры выполнения солнечного модуля с концентратором

Пример 1. На фиг. 1, 2, 3 отклоняющая оптическая система 1 состоит из 273 цилиндрических зеркальных отражателей 2 размером плоскости входа d=15 мм. Угол наклона плоскости входа 3 цилиндрических зеркальных отражателей ϕ0=18,5°, расстояние между цилиндрическими зеркальными отражателями а=d⋅sinϕ0=4,76 мм, радиус кривизны R=267,78 мм, высота сегмента 0,104 мм, угол входа лучей β0=0°, θ0=1,605°, углы выхода лучей β1min=35,79°, β1max=40,21°.

Углы выхода лучей из оптической отклоняющей системы с оптической средой из стекла с коэффициентом преломления n=1,51:

,

.

Угол полного внутреннего отражения для стекла:

.

Острый угол в призменном концентраторе 10 из стекла (n1=1,51):

.

Коэффициент концентрации для солнечного модуля с концентратором на фиг. 1, 2, 3:

к=ctgψ=20,15.

Приемник 14 имеет размеры 6,25×1250 мм, состоит из 36 кремниевых солнечных элементов размером 625×31,25 мм. Геометрический коэффициент концентрации к=20,15, оптический КПД 85%, КПД приемника 15%, КПД модуля 12,75%. Размеры модуля 1300×1250 мм. Площадь модуля 1,635 м2. Пиковая электрическая мощность 208,46 Вт при освещенности 1 кВт/м2 и температуре 25°С.

Для солнечного модуля на фиг. 4 коэффициент концентрации к=40,3, размеры модуля 2600×1250 мм, размеры двустороннего приемника 17 625×1250 мм, пиковая электрическая мощность 416,92 Вт.

Пример 2. На фиг. 5 отклоняющая оптическая система 1 состоит из 273 цилиндрических зеркальных отражателей 2 размером плоскости входа d=15 мм. Угол наклона плоскости входа 3 цилиндрических зеркальных отражателей ϕ0=18,5°, расстояние между цилиндрическими зеркальными отражателями а=d⋅sinϕ0=4,76 мм, радиус кривизны R=267,78 мм, высота сегмента 0,104 мм, угол входа лучей β0=0°, θ0=1,605°, углы выхода лучей β1min=35,79°, β1max=40,21°. Углы выхода лучей из оптической отклоняющей системы с оптической средой из стекла n=1,5:

,

.

Апертурный угол полупараболоцилиндрического концентратора 28 δ=14°, зеркальные отражатели концентратора 28 выполнены из полированного алюминия. Геометрический коэффициент концентрации к=17,09, оптический КПД модуля 80%, Приемник 30 имеет размеры 75×1250 мм, состоит из 36 кремниевых солнечных элементов размером 75×31,25 мм. КПД приемника 16%, КПД модуля 12,8%. Размеры модуля 1300×1250 мм. Площадь модуля 1,635 м2. Пиковая электрическая мощность 209,28 Вт при освещенности 1 кВт/м2 и температуре 25°С.

Для солнечного модуля на фиг. 6 коэффициент концентрации к=34,18, размеры модуля 2600×1250 мм, размеры двустороннего приемника 37 675×1250 мм, пиковая электрическая мощность 418,56 Вт.

Солнечный модуль с концентратором работает следующим образом (фиг. 1, 2, 3). Солнечное излучение 5 поступает по нормали на рабочую поверхность 4 солнечного модуля с концентратором, отражается от цилиндрических зеркальных отражателей 2 под углом β1, выходит под углом β2 из отклоняющей оптической системы 1 и через воздушный промежуток 11 поступает под углом β32 на поверхность входа 12 в призменный концентратор 10 и концентрируется на приемнике 14.

В солнечном модуле с концентратором на фиг. 4 солнечное излучение 5 концентрируется на двустороннем приемнике 17.

В солнечном модуле с концентратором на фиг. 5 солнечное излучение поступает по нормали на рабочую поверхность 4 модуля и в оптическую отклоняющую систему 1, отражается от цилиндрических зеркальных отражателей 2 под углом β1, выходит под углом β2 в воздушный промежуток 11, поступает под углом β32 на поверхность входа 29 полупараболоцилиндрического концентратора 28, отражается от полупараболоцилиндрической поверхности концентратора и поступает на приемник 30 при условии: .

Лучи с углами собираются в области, близкой к фокальной оси F полупараболоцилиндрического концентратора 28.

В связи с тем, что лучи, выходящие из оптической отклоняющей системы, не параллельны, а образуют расходящийся поток с углами выхода в диапазоне , излучение будет концентрироваться не в фокальной оси F полупараболоцилиндрического концентратора 28, а равномерно распределяться по всей площади фотоприемника 30, что улучшает условия теплоотвода от поверхности фотоприемника и снижает потери от неравномерного освещения.

В солнечном модуле с концентратором на фиг. 6 солнечное излучение концентрируется с двух сторон на приемнике 37, в результате коэффициент концентрации увеличивается в два раза по сравнению с солнечным модулем с концентратором на фиг. 5.

Основные требования к солнечным модулям с концентраторами из кремния: коэффициент концентрации не более 10-12 из условия воздушного или водяного охлаждения модулей и использование рассеянного излучения в пределах апертурного угла концентратора. Такие солнечные модули с концентраторами могут быть использованы со следящими системами для установки на крышах зданий или на земле. При стоимости зеркальных отражателей 30 долл./м2, концентрации 5, оптическом КПД 0,85 и электрическом КПД 15% стоимость солнечного модуля с концентратором составит 86,58 долл./м2, 0,378 долл./Вт, при этом стоимости концентратора и приемника будут примерно равны и составлять по 50% от стоимости модуля.

По сравнению с прототипом солнечный модуль с концентратором имеет нулевые косинусные потери, большой срок службы и низкую стоимость. Приемники 14, 17 и 30 могут быть выполнены с устройством отвода тепла для получения электроэнергии и горячей воды или горячего воздуха.

1. Солнечный модуль с концентратором, имеющий рабочую поверхность, на которую падает солнечное излучение, концентратор и приемник излучения, на рабочей поверхности установлена отклоняющая оптическая система, выполненная в виде жалюзи из зеркальных фацет, имеющая поверхности входа и выхода лучей, отличающийся тем, что зеркальные фацеты выполнены в виде цилиндрических зеркальных отражателей с радиусом кривизны R и плоскостью входа лучей шириной d и помещены в оптически прозрачную среду с коэффициентом преломления n, угол выхода лучей β1 для цилиндрических зеркальных отражателей, угол выхода лучей отклоняющей оптической системы β2, угол ϕ0 наклона плоскости входа лучей цилиндрических зеркальных отражателей и их радиус кривизны R при нормальном падении лучей на рабочую поверхность модуля связаны соотношениями:

β1=2ϕ0-2θ при ϕ<ϕ0,

β1=2ϕ0+2θ при ϕ>ϕ0,

β1=2ϕ0, θ=0 при ϕ=ϕ0,

β2=arcsin[(sin β1)⋅n],

,

,

где β1 - угол выхода лучей для цилиндрических зеркальных отражателей;

β2 - угол выхода лучей отклоняющей оптической системы;

ϕ0 - угол наклона плоскости входа лучей цилиндрических зеркальных отражателей;

n - коэффициент преломления оптической прозрачной среды;

ϕ - угол наклона касательной плоскости к поверхности цилиндрического зеркального отражателя в точке падения лучей;

θ - угол между плоскостью входа лучей цилиндрического зеркального отражателя и касательной плоскостью к поверхности цилиндрического зеркального отражателя в точке падения лучей;

θ0 - угол между плоскостью входа лучей и касательной плоскостью на краях цилиндрического зеркального отражателя,

углы β1, β2, ϕ и ϕ0 отсчитываются от вертикали к рабочей поверхности против часовой стрелки, расстояние а между цилиндрическими зеркальными отражателями на рабочей поверхности и ширина поверхности входа цилиндрических зеркальных отражателей удовлетворяет соотношению:

a=dsin ϕ0,

при котором для любых углов ϕ0 нижняя грань цилиндрического зеркального отражателя и верхняя грань следующего цилиндрического зеркального отражателя находятся в одной вертикальной плоскости, а концентратор выполнен в виде призмы полного внутреннего отражения с острым углом ψ, который связан с коэффициентом преломления материала призмы n1 и углом выхода лучей β2 соотношением:

,

где n - коэффициент преломления оптической прозрачной среды;

β2 - угол выхода лучей отклоняющей оптической системы;

n1 - коэффициент преломления материала призмы.

2. Солнечный модуль с концентратором по п. 1, отличающийся тем, что модуль содержит установленные в одной плоскости вторую оптическую отклоняющую систему и второй призменный концентратор с общим двусторонним приемником, а угол между поверхностями входа цилиндрических зеркальных отражателей первой и второй отклоняющих оптических систем равен 2ϕ0.

3. Солнечный модуль с концентратором, имеющий рабочую поверхность, на которую падает солнечное излучение, концентратор и приемник излучения, на рабочей поверхности установлена отклоняющая оптическая система, выполненная в виде жалюзи из зеркальных фацет, имеющая поверхности входа и выхода лучей, отличающийся тем, что зеркальные фацеты выполнены в виде цилиндрических зеркальных отражателей с радиусом кривизны R и плоскостью входа лучей шириной d и помещены в оптически прозрачную среду с коэффициентом преломления n, угол выхода лучей β1 для цилиндрических зеркальных отражателей, угол выхода лучей отклоняющей оптической системы β2, угол ϕ0 наклона плоскости входа лучей цилиндрических зеркальных отражателей и их радиус кривизны R при нормальном падении лучей на рабочую поверхность модуля связаны соотношениями:

β1=2ϕ0-2θ при ϕ<ϕ0,

β1=2ϕ0+2θ при ϕ>ϕ0,

β1=2ϕ0, θ=0 при ϕ=ϕ0,

β2=arcsin[(sin β1)⋅n],

,

,

где β1 - угол выхода лучей для цилиндрических зеркальных отражателей;

β2 - угол выхода лучей отклоняющей оптической системы;

ϕ0 - угол наклона плоскости входа лучей цилиндрических зеркальных отражателей;

n - коэффициент преломления оптической прозрачной среды;

ϕ - угол наклона касательной плоскости к поверхности цилиндрического зеркального отражателя в точке падения лучей;

θ - угол между плоскостью входа лучей цилиндрического зеркального отражателя и касательной плоскостью к поверхности цилиндрического зеркального отражателя в точке падения лучей;

θ0 - угол между плоскостью входа лучей и касательной плоскостью на краях цилиндрического зеркального отражателя, углы β1, β2, ϕ и ϕ0 отсчитываются от вертикали к рабочей поверхности против часовой стрелки, расстояние а между цилиндрическими зеркальными отражателями на рабочей поверхности и ширина поверхности входа цилиндрических зеркальных отражателей удовлетворяет соотношению;

a=dsin ϕ0,

при котором для любых углов ϕ0 нижняя грань цилиндрического зеркального отражателя и верхняя грань следующего цилиндрического зеркального отражателя находятся в одной вертикальной плоскости, а концентратор выполнен в виде полупараболоцилиндрического зеркального отражателя с апертурным углом δ, который связан с углом β2 следующим соотношением:

β2≥90°-2δ.

4. Солнечный модуль с концентратором по п. 3, отличающийся тем, что модуль содержит установленные в одной плоскости вторую оптическую отклоняющую систему и второй полупараболоцилиндрический концентратор с общим двусторонним приемником, а угол между поверхностями входа цилиндрических зеркальных отражателей первой и второй отклоняющих оптических систем равен 2ϕ0.



 

Похожие патенты:

Изобретение раскрывает приемник солнечного излучения для преобразования солнечной энергии в тепловую и электрическую энергию. Приемник (2) солнечного излучения (1) для гелиотермальной параболической антенны имеет тепловой двигатель, расположенный в его фокусе, впускной и выпускной коллекторы (9), группу трубок (8), идущих от впускного коллектора к выпускному коллектору, по которым течет нагреваемая при приеме солнечного излучения (1) рабочая текучая среда.

Изобретение относится к системе генерации электроэнергии, использующей экологически чистую энергию - солнечную и внешнюю паровую гибридную систему генерации электроэнергии.

Изобретение относится к альтернативной (солнечной) энергетике и может быть использовано для преобразования энергии солнца в электрическую. Технический результат заключается в увеличении поверхностной плотности солнечной энергии, воздействующей на поверхность солнечных батарей или на спаи термоэлектрического генератора, которая происходит за счет суммарного отражения солнечных лучей от отражающих поверхностей, облучаемых лучевой энергией, проходящей через оптические линзы.

Комплементарная система подачи тепловой энергии с использованием солнечной энергии и биомассы принадлежит к области использования чистой энергии. Система содержит устройство, концентрирующее солнечные лучи, емкость (1) для хранения солнечного тепла, энергоустановку на биомассе, устройство охлаждения и замораживания для охлаждения и систему нагревания воды для центрального нагревания.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле, содержащем концентратор и приемник излучения и имеющем рабочую поверхность, на которую падает солнечное излучение и на которой установлена отклоняющая оптическая система, выполненная в виде жалюзи из зеркальных фацет, имеющая поверхности входа и выхода лучей, согласно изобретению зеркальные фацеты выполнены в виде цилиндрических зеркальных отражателей с радиусом кривизны R и плоскостью входа лучей шириной d, угол выхода лучей β1 для цилиндрических зеркальных отражателей, угол φ0 наклона плоскости входа лучей цилиндрических зеркальных отражателей и их радиус кривизны R при нормальном падении лучей на рабочую поверхность модуля связаны соотношениями, указанными в формуле изобретения.

Изобретение относится к энергетике, а именно к энергетике преобразования солнечного излучения в электричество с помощью тепловых машин, и может быть использовано, в частности, в солнечных электрических станциях башенного типа.
Изобретение относится к гибридным энергетическим системам. Комплексная электростанция на дирижабле с подъемной силой пара состоит из ветреной и солнечной частей.

Изобретение относится к гелиотехнике и может использоваться в системах управления солнечным концентраторным модулем для получения электрической и тепловой энергии.

Фотоэлектрический модуль солнечного концентрированного излучения относится к гелиотехнике и касается создания солнечных модулей с фотоэлектрическими и тепловыми приемниками и концентраторами солнечного излучения в виде параболоцилиндров.

Изобретение относится к области ветроэнергетики и гелиотехники. Система автономного энергообеспечения потребителей электроэнергии башни сетчатой конструкции содержит, по крайней мере, один ветромодуль, связанный с башней сетчатой конструкции, аккумуляторные батареи и систему преобразования и управления электропитанием.

Изобретение относится к энергетике, может использоваться в солнечной электростанции с использованием концентрированного солнечного излучения и может найти применение в других отраслях науки и техники вплоть до разработки плазменно-ракетных двигателей для полетов в космосе и создания плазмы в термоядерном синтезе благодаря полученной высокотемпературной зоне с большой энергией в ограниченном пространстве. Технический результат состоит в обеспечении благоприятного температурного режима, отсеивание инфракрасного излучения от солнечных батарей исключает перегрев, в связи с чем исключается необходимость моделирования системы охлаждения, а концентрирование солнечного излучения позволяет в десятки раз уменьшить площади солнечных батарей и обеспечить выработку максимального коэффициента полезного действия при преобразовании солнечной энергии в тепловую и электрическую. Для этого базовыми составляющими конструкции солнечной электростанции являются собирающие линзы; магистральный световод; рикошетная зеркальная пластина для центровки луча после изменения направления; дисперсионная оптическая призменная конструкция; солнечная батарея и приемник-световод инфракрасного излучения, действующие в качестве единой конструкции солнечной электростанции. 3 з.п. ф-лы, 1 ил.

Система управления платформой концентраторных солнечных модулей содержит платформу (6) с концентраторными каскадными солнечными модулями, оптический солнечный датчик (24), выполненный в виде CMOS матрицы, подсистему (7) азимутального вращения, подсистему (8) зенитального вращения, включающую датчик положения платформы по зенитальному углу, центральный блок (23) управления, содержащий контроллер, блок (26) часов реального времени, датчик (13) числа оборотов первого электродвигателя (12), датчик (19) числа оборотов второго электродвигателя (18). Система обеспечивает увеличение КПД солнечной установки и сводит к минимуму время поиска и точного наведения на солнечный диск на протяжении всего срока службы солнечной установки. 2 ил.

Изобретение относится к ветровым и солнечным энергетическим установкам, объединенным в единую конструкцию. Энергоэффективная солнечно-ветровая энергетическая установка содержит: трехлопастную конусно-шнековую ветроэнергетическую установку с горизонтальным вращающимся валом, которая образована тремя половинками спиральных цилиндров, расположенных относительно друг друга под углом 120°, усеченных криволинейными поверхностями второго порядка; поворотную платформу с вертикальным валом; солнечную энергетическую установку, представляющую собой пленочную солнечную фотоэлектронную батарею, нанесенную на внешнюю поверхность трех лопастей конусно-шнековой ветроэнергетической установки; вертикальную пластину, расположенную под поворотной платформой; монтажные фигурные пластины для крепления к ним примыкающей части половинок спиральных цилиндров, неподвижно соединенные с горизонтальным вращающимся валом; основание, к которому крепятся примыкающие части трех лопастей конусно-шнековой ветроэнергетической установки; переднюю треугольную опорную стойку с подшипниковым узлом; две задние параллельные стойки с подшипниковым узлом, установленным между ними и служащим для крепления задней части горизонтального вращающегося вала; две поперечные планки, прикрепленные к двум задним параллельным стойкам; тихоходный магнитоэлектрический генератор, установленный на двух параллельных стойках и двух поперечных планках; конфузор-диффузор с цилиндрической частью между ними, выполненные из прозрачного поликарбоната, причем трехлопастная конусно-шнековая ветроэнергетическая установка с горизонтальным вращающимся валом, подшипниковыми узлами, передней треугольной стойкой и двумя задними параллельными стойками расположены в цилиндрической части конфузора-диффузора; передний и задний ложементы, служащие для крепления к ним цилиндрической части конфузора-диффузора, прикрепленные к поворотной платформе; двояковыпуклые продольные линзы, встроенные вдоль цилиндрической части конфузора-диффузора; литиевые аккумуляторные батареи; контроллер заряда-разряда литиевых аккумуляторных батарей; инвертор. Изобретение направлено на повышение выработки электроэнергии при слабых скоростях ветра и увеличение КПД выработки электроэнергии пленочными солнечными фотоэлектронными батареями. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области преобразования солнечной энергии в электрическую и тепловую, к конструкции солнечных электростанций с концентраторами. Солнечная электростанция содержит концентраторы, систему слежения и фотоприемники в фокальной области каждого концентратора, установленные в прозрачной для солнечного излучения оболочке и снабженные устройством для отвода теплоты, прозрачная оболочка содержит гомогенизатор концентрированного солнечного излучения из набора плоских тонких пластин из оптически прозрачного материала, размеры поперечного сечения гомогенизатора соизмеримы с размерами рабочей поверхности фотоприемника, ширина каждой пластины равна расстоянию между токоотводами, произведение толщины пластин на их количество определяет размер гомогенизатора вдоль плоскости р-n переходов диодных структур, длина гомогенизатора в 2-10 раз больше размеров рабочей поверхности фотоприемника, плоскости диодных структур параллельны двум из четырех граней гомогенизатора, а устройство отвода тепла выполнено в виде тонких пластин из теплопроводящего материала, присоединенных к токоподводам каждой секции твердотельной матрицы путем пайки или сварки параллельно плоскости р-n переходов диодных структур, размер секций между пластинами теплообменника составляет 4-20 мм, а суммарная их площадь при естественном охлаждении равна площади миделя концентратора. Технический результат заключается в снижении потерь электроэнергии, увеличении КПД и срока службы солнечной электростанции. 4 з.п. ф-лы, 5 ил.

Изобретение относится к устройству кровельных панелей для крыш зданий и сооружений со встроенными солнечными модулями. Гибридная кровельная солнечная панель, установленная на крыше здания, нормаль к поверхности крыши находится в меридиональной плоскости, содержит корпус и защитное покрытие на рабочей поверхности, выполненное в виде оптической отклоняющей системы из набора призм, на которую падает солнечное излучение с углом входа лучей β0, полупараболоцилиндрический зеркальный отражатель и приемник излучения в виде полосы, установленной между фокальной осью и вершиной полупараболоцилиндрического зеркального отражателя, при этом приемник излучения выполнен в виде гибридного когенерационного солнечного фотоэлектрического модуля со вторым защитным покрытием, установленным под углом ≤90° к защитному покрытию гибридной кровельной солнечной панели, второе защитное покрытие и корпус гибридной кровельной солнечной панели образуют герметичную полость, заполненную полисилоксановым гелем, в которой размещен приемник излучения из скоммутированных солнечных элементов, наружная стенка корпуса со стороны герметичной полости содержит каналы, в которых размещены встроенные трубы для прокачки теплоносителя, корпус гибридной кровельной солнечной панели и трубы за пределами корпуса снабжены теплоизоляцией, гибридная кровельная солнечная панель содержит электрические и гидравлические разъемы для соединения с соседними гибридными кровельными солнечными панелями. Изобретение обеспечивает повышение эффективности использования солнечной энергии в кровельной солнечной панели и снижение стоимости получения электрической энергии и теплоты. 19 з.п. ф-лы, 8 ил., 1 табл.

Изобретение относится к системам питания электронных устройств с помощью оптического излучения и может найти применение в измерительных устройствах с гальванической развязкой области измерений и области отображения информации, например в высоковольтных или взрывоопасных устройствах. Оптическая система электропитания электронных устройств содержит регулируемый источник 1 тока лазера 2, оптический тракт, (например, волоконно-оптический) передачи излучения от лазера 2 до фотовольтаического элемента 3, выход которого подключен к входу повышающего преобразователя 4 напряжения, питаемое электронное устройство 5, измеритель 6 напряжения, вход которого подключен к выходу фотовольтаического элемента 3 или к выходу повышающего преобразователя 4 напряжения, а выход измерителя 6 напряжения подключен к входу волоконно-оптической системы 7 передачи информации (ВОСПИ), выход которой подключен к управляющему входу регулируемого источника тока 1. Волоконно-оптическая система 7 передачи информации содержит источник 8 излучения и фотоприемник 9. Вход источника 8 излучения соединен с выходом измерителя 6 напряжения, а выход фотоприемника 9 соединен с управляющим входом регулируемого источника 1 тока. Излучение источника 8 передается на фотоприемник 9 посредством оптического тракта, который может быть выполнен как открытым, так и волоконно-оптическим. Измеритель 6 напряжения может быть выполнен в виде аналого-цифрового преобразователя (АЦП) или преобразователя напряжение - частота. Технический результат, достигаемый при применении предложенной оптической системы электропитания электронных устройств, состоит в уменьшении оптической мощности, необходимой для нормального функционирования питаемого электронного устройства. При этом по сравнению с прототипом повышается КПД системы питания, уменьшается нагрузка на лазер питания и фотовольтаический элемент, что обеспечивает увеличение ресурса работы системы питания. 2 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к солнечной энергетике, в частности касается концентраторов для солнечных батарей. Концентратор солнечных лучей для солнечной батареи выполнен в форме полуцилиндра с веерным расположением зеркальных отражающих электродов и прозрачных полупроводниковых солнечных батарей. Причем концентратор и солнечная батарея являются интегрально единым устройством. Если расположить солнечную батарею таким образом, чтобы ось полуцилиндра была направлена параллельно оси вращения земного шара, то вне зависимости от угла падения солнечных лучей в течение дня излучение будет проходить через все p-n-переходы, причем практически все фотоны будут поглощены и преобразованы в электрический ток. Изобретение должно повысить эффективность солнечной батареи. 1 ил.

Изобретение относится к гелиотехнике и к конструкции солнечных модулей с фотоэлектрическими и тепловыми приемниками солнечного излучения и концентраторами для получения электрической энергии и теплоты. Солнечный модуль с асимметричным параболоцилиндрическим концентратором солнечного излучения состоит из одной ветви параболоцилиндрического концентратора солнечного излучения и линейчатого фотоприемника, расположенного в фокальной области с равномерным распределением концентрированного излучения вдоль параболоцилиндрической оси, концентратор выполнен с зеркальной внутренней поверхностью отражения, форма отражающей поверхности концентратора соответствует условию равномерной, вдоль и перпендикулярно параболоцилиндрической оси, освещенности поверхностей фотоприемника, размещенного перед фокусом и выполненного в виде трех линеек из соединенных последовательно-параллельно фотоэлектрических преобразователей. Фотоприемник имеет трапецеидальную форму в поперечном сечении и устройство протока теплоносителя. Техническим результатом является обеспечение работы теплофотоэлектрического приемника солнечного модуля при средних концентрациях и равномерном освещении, нагрева теплоносителя, например воды, и снижения стоимости вырабатываемой энергии. 2 з.п. ф-лы, 8 ил.

Изобретение относится к области преобразования солнечной энергии в электрическую и тепловую, в первую очередь к конструкции солнечных электростанций с концентраторами. Солнечная электростанция содержит концентраторы, систему слежения и фотоприемники в фокальной области каждого концентратора на основе скоммутированных солнечных элементов с р-n переходами. Каждый фотоприемник выполнен в виде секций твердотельной матрицы из последовательно скоммутированных миниатюрных солнечных элементов с диодными структурами и двухсторонней рабочей поверхностью, плоскости р-n переходов диодных структур параллельны двум из четырех боковых граней и перпендикулярны рабочей поверхности фотоприемника, плоскости миделя и фокальной плоскости концентратора. Фотоприемник установлен в прозрачной для солнечного излучения оболочке и снабжен устройством для отвода теплоты, прозрачная оболочка содержит гомогенизатор концентрированного солнечного излучения в виде стержня прямоугольного сечения из оптически прозрачного материала, размеры поперечного сечения гомогенизатора соизмеримы с размерами рабочей поверхности фотоприемника, а длина стержня в 2-10 раз больше размеров рабочей поверхности фотоприемника. Устройство отвода тепла выполнено в виде тонких пластин из теплопроводящего материала, присоединенных к токоподводам каждой секции твердотельной матрицы путем пайки или сварки параллельно плоскости р-n переходов диодных структур, размер секций между пластинами теплообменника составляет 4-20 мм, а суммарная площадь пластин теплообменника при естественном охлаждении равна площади миделя концентратора. Технический результат заключается в снижении потерь электроэнергии и увеличении КПД и срока службы солнечной электростанции. 4 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам преобразования солнечной энергии в электрическую, в частности к конструкциям солнечных фотоэлектрических станций, размещенных на строительных конструкциях зданий (козырьки или навесы над крыльцом, балконом, террасой и т.д.). Станция состоит из солнечной батареи и опорной конструкции, закрепленной на стене здания. Опорная конструкция выполнена из нескольких дугообразных профилей, по крайней мере двух, причем верхние концы профилей соединены между собой горизонтальным профилем и прикреплены к стене, нижние концы профилей выполнены упирающимися в вертикальные опоры, опорная конструкция по всей площади покрыта гибким кровельным материалом, над каждым профилем на бобышках жестко установлены дугообразные трубы с отверстиями, выполненными с равным шагом, дугообразные трубы являются направляющими для передвижного каркаса солнечной батареи в виде отдельных прямоугольных каркасов для отдельных солнечных модулей, коаксиально на каждую дугообразную трубу установлена с небольшим зазором разрезанная вдоль дугообразная труба, являющаяся частью передвижного каркаса, большего сечения и меньшей длины, с отверстиями того же диаметра, что и на внутренней трубе, и тем же шагом, с возможностью перемещения наружной трубы относительно внутренней и фиксацией ее положения относительно горизонтальной плоскости путем жесткого соединения труб через совпавшие отверстия. Опорная конструкция позволяет регулировать угол наклона солнечной батареи. 2 з.п. ф-лы, 8 ил.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, концентратор и приемник излучения, на рабочей поверхности установлена отклоняющая оптическая система, выполненная в виде жалюзи из зеркальных фацет, имеющая поверхности входа и выхода лучей, зеркальные фацеты выполнены в виде цилиндрических зеркальных отражателей с радиусом кривизны R и плоскостью входа лучей шириной d и помещены в оптически прозрачную среду с коэффициентом преломления n, угол выхода лучей β1 для цилиндрических зеркальных отражателей, угол выхода лучей отклоняющей оптической системы β2, угол ϕ0 наклона плоскости входа лучей цилиндрических зеркальных отражателей и их радиус кривизны R при нормальном падении лучей на рабочую поверхность модуля связаны соотношениями, указанными в формуле изобретения, расстояние между цилиндрическими зеркальными отражателями на рабочей поверхности и ширина поверхности входа цилиндрических зеркальных отражателей удовлетворяет соотношению, при котором для любых углов ϕ0 нижняя грань цилиндрического зеркального отражателя и верхняя грань следующего цилиндрического зеркального отражателя находятся в одной вертикальной плоскости. Также имеется второй вариант выполнения солнечного модуля. В результате использования изобретения повышается удельная мощность модуля и снижается его стоимость. 2 н. и 2 з.п. ф-лы, 6 ил.

Наверх