Редукционный радиально-упорный подшипник первого типа

Изобретение относится к области машино-, приборо-, самолето-, автомобиле-, корабле- и ракетостроения и может быть использовано во всех отраслях промышленности и транспорта. Редукционный радиально-упорный подшипник первого типа содержит наружное кольцо (1) и внутреннее кольцо (2) с дорожками качения, размещенные между ними тела качения, выполненные в виде установленных в гнезда сепаратора двухступенчатых конических роликов, ступени большего диаметра (3) которых обкатывают дорожку качения внутреннего кольца (2) подшипника, а ступени меньшего диаметра (4) обкатывают дорожку его наружного кольца (1). Диаметры оснований ступеней ролика находятся в пропорциональной зависимости от расстояния от оснований до точки вершины конуса подшипника. Формулы диаметров оснований ступеней ролика: Dr/dr=k; Dr1=Dr/cosα; Dr2=Dr1*(⎪OB⎪-Н)/⎪ОВ⎪; dr1=dr2*(⎪OB⎪+h)/⎪OB⎪; dr2=dr/cosα; dr3=dr2*(⎪OB⎪-H)/⎪OB⎪; dr4=dr2*(⎪OB⎪-H-h)/⎪OB⎪, где Dr - диаметр большей ступени ролика редукционного радиального подшипника первого типа, служащего базой (базового подшипника) для построения и исчисления редукционного радиально-упорного подшипника первого типа; dr - диаметр меньшей ступени ролика базового подшипника; k - коэффициент редукции базового цилиндрического и конического ролика; Dr1, Dr2 - диаметры оснований большей ступени ролика редукционного радиально-упорного подшипника; dr1, dr2, dr3, dr4 - диаметры оснований выступов меньшей ступени ролика редукционного радиально-упорного подшипника; α - угол между векторами силы Fr радиальной нагрузки на подшипник и вектором суммы векторов силы Fr и силы Fi осевой нагрузки; |ОВ| - отрезок, соединяющий точку фокуса линий наружной и внутренней дорожек, линий большей и меньшей ступеней ролика и центр основания ролика радиусом Dr1; Н - ширина большей ступени ролика; h - ширина выступов меньшей ступени ролика. Технический результат: повышение частоты вращения внутреннего кольца относительно неподвижного наружного кольца в разы без повышения частоты вращения роликов, снижение затрат горючего или электроэнергии в приводе подшипника, многократное повышение ресурса работы подшипника, вращающегося с частотой сравниваемого стандартного подшипника с пониженным уровнем шума. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к области машино-, приборо-, самолето-, автомобиле-, корабле- и ракетостроения и может быть использовано во всех отраслях промышленности и транспорта.

Известен подшипник качения со ступенчатыми роликами, содержащий наружное и внутреннее кольца с дорожками качения, установленные между ними тела качения, выполненные в виде установленных в гнезда сепаратора двухступенчатых роликов, ступени большего диаметра которых контактируют с дорожкой качения внутреннего кольца подшипника, а ступени меньшего диаметра контактируют с дорожкой качения его наружного кольца, диаметры дорожек качения наружного и внутреннего колец и диаметры большей и меньшей ступеней ролика находятся в пропорциональной зависимости d1/d2=k и равны любому числу в пределах допустимого, при этом диаметры ступеней роликов подшипника определяют из формул d2=(D1-D2)/(k+1) и d1=kd2 (см. RU №2554033, МПК F16C 19/22, F16C 33/36, опубликовано 20.06.2015 г.).

Наиболее близким аналогом является подшипник качения, содержащий внутреннее и наружное кольца с дорожками качения, размещенные между ними тела качения, выполненные в виде роликов, установленных в гнездах сепаратора, тела качения - ролики выполнены двухступенчатыми, больший диаметр ступени, имеющий один участок, контактирует только с дорожкой качения наружного кольца подшипника, а меньший диаметр ступени, выполненный с двумя участками, контактирует только с дорожками качения его внутреннего кольца с постоянной и одинаковой частотой вращения, при этом должно выполняться условие сборки подшипника d1m/Dwm1=D1m/Dwm2=Const (см. RU №2232926, МПК F16C 19/22, F16C 33/34, модель фигуры 7, опубликовано 20.07.2004).

Недостатком известного технического решения является то, что в формуле отношений взяты диаметры ступеней из сечений в разных местах конусов двухступенчатых роликов для каждого частного, поэтому они не равны между собой. В аналоге указана модель вращения внутреннего кольца относительно неподвижного наружного, что приведет к увеличению частоты вращения ролика вместо заявленного автором аналога уменьшения для модели на его чертеже. В аналоге отсутствует метод исчисления размеров роликов вообще и с заданными характеристиками движения подшипника в частности, без которого невозможно осуществить изобретение.

Для редукционного радиально-упорного подшипника с моделью вращения внутреннего кольца относительно неподвижного наружного кольца поставлена задача: в несколько раз повысить предельную частоту вращения внутреннего кольца относительно наружного, чтобы частота вращения роликов при этом оставалась на уровне стандартного радиально-упорного подшипника, внутреннее кольцо которого вращается с прежней пониженной частотой; вывести математические формулы исчисления диаметров оснований усеченных конических ступеней роликов и коэффициента редукции подшипника, исключить трение скольжения тел качения по дорожкам, присущее всем шариковым подшипникам.

Поставленная задача решается тем, что в редукционном радиально-упорном подшипнике первого типа, содержащем наружное и внутреннее кольца с коническими дорожками качения, установленные между ними тела качения, выполненные в виде установленных в гнезда сепаратора конических двухступенчатых роликов, ступени большего диаметра которых обкатывают дорожку внутреннего кольца подшипника, а ступени меньшего диаметра обкатывают дорожку его наружного кольца, угол между осью вращения каждого ролика и центральной осью подшипника зависит от отношения осевой нагрузки на подшипник к радиальной нагрузке, отношение диаметров большей и меньшей ступеней ролика, находящихся в одной плоскости сечения, перпендикулярной оси вращения ролика, зависит от коэффициента редукции ролика k, выбираемого пользователем подшипника, равного отношению k=Dr/dr; Dr1=Dr/cosα, Dr2=Dr1*(|ΟΒ|-H)/|OB|, dr1=dr2*(|OB|+h)/|OB|, dr2=dr/cosα, dr3=dr2*(|OB|-H)/|OB|, dr4=dr2*(|ОВ|-H-h)/|OB|, где Dr - диаметр большей ступени ролика редукционного радиального подшипника, служащего базой (базового подшипника) для построения и исчисления редукционного радиально-упорного подшипника, dr - диаметр меньшей ступени ролика базового подшипника, Dr1, Dr2 - диаметры оснований большей ступени ролика редукционного радиально-упорного подшипника, dr1, dr2, dr3, dr4 - диаметры оснований выступов меньшей ступени ролика редукционного радиально-упорного подшипника.

Анализ известных технических решений, проведенный по научно-технической и патентной документации, показал, что совокупность существенных признаков заявляемого технического решения не известна из уровня техники, следовательно, он соответствует условиям патентоспособности изобретения - «изобретательский уровень» и «новизна».

Редукционный радиально-упорный подшипник первого типа поясняется чертежами:

Фиг. 1 - Геометрическая схема редукционного радиального подшипника первого типа;

Фиг. 2 - Геометрическая схема для расчета ступеней ролика редукционного радиально-упорного подшипника первого типа по размерам редукционного радиального подшипника;

Фиг. 3 - Редукционный радиально-упорного подшипник первого типа в разрезе.

Редукционный радиально-упорный подшипник первого типа состоит из наружного кольца 1, внутреннего кольца 2, конических ступенчатых роликов с большей ступенью 3 и меньшей ступенью 4, установленных в гнезда сепаратора.

Средний участок ролика с большими диаметрами оснований конуса (большая ступень 3) обкатывает дорожку качения внутреннего кольца 2. Одновременно боковые выступы ролика с меньшими диаметрами оснований конуса (меньшая ступень 4) обкатывают дорожку качения наружного кольца 1, имеющего проточку для свободного прохождения большей ступени ролика.

Для удобства сборки подшипника ступенчатый ролик можно собирать из отдельных ступеней, вставляя меньшую ступень в расположенную на своем месте в подшипнике большую ступень, для этого в большей ступени делается отверстие 5 соответствующего размера для посадки в него меньшей ступени ролика с фиксацией ступеней между собой.

Для приведения размеров редукционного подшипника к размерам стандартного подшипника за основу исчислений берутся наружный и внутренний диаметры стандартного радиально-упорного шарикового или роликового подшипника. Ширина подшипника и роликов рассчитывается с учетом нагрузки на подшипник. По известным радиальной и осевой нагрузкам на подшипник определяется угол конуса осей роликов подшипника - угол α между каждой осью вращения роликов и центральной осью подшипника: берется отношение осевой нагрузки Fi к радиальной нагрузке Fr, равное тангенсу угла между вектором Fr и вектором суммы векторов Fr и Fi, и по тангенсу определяется величина угла: tgα=Fi/Fr.

Для исчисления размеров дорожек колец и ролика редукционного радиально-упорного подшипника сначала исчисляются диаметры двухступенчатого цилиндрического ролика базового подшипника по заданному коэффициенту редукции ролика и диаметрам дорожек качения наружного и внутреннего кольца. Для этого по выбранным наружному и внутреннему диаметрам стандартного подшипника, подлежащего замене на редукционный подшипник, определяются диаметры дорожек качения наружного и внутреннего колец 1 и 2 редукционного радиального подшипника с учетом присутствия между ними двухступенчатых роликов, и по этим диаметрам исчисляются диаметры ступеней 3 и 4 цилиндрического ролика с учетом выбранного коэффициента редукции ролика; толщину внутреннего кольца рассматриваемого подшипника можно сделать меньше, чем у стандартного подшипника, учитывая минимизированный износ дорожки качения внутреннего кольца из-за отсутствия трения скольжения, присущего шариковым подшипникам - для расширения диапазона размеров диаметров колец и приближения их к диаметрам колец стандартного подшипника. Отсутствие трения скольжения между роликами и дорожками колец позволяет сделать ширину редукционного подшипника такой же, как ширина стандартного подшипника с такими же наружным и внутренним диаметрами колец.

По Фиг. 1 исчислили диаметры ступеней ролика с известными D, d и k базового подшипника:

Из Фиг. 1 вывели равенство:

D - диаметр дорожки качения большей ступени 3 ролика;

d - диаметр дорожки качения меньшей ступени 4 ролика;

r1 - радиус большей ступени 3 ролика;

r2 - радиус меньшей ступени 4 ролика.

Для удобства вывода формул еще раз записали и пронумеровали найденное выше соотношение диаметров ступеней роликов:

Используя формулу (2), выразили Dr через dr:

Записали формулу (1) с использованием формулы (3)

Из формулы (4) нашли dr:

По формуле (3) исчислили диаметр Dr.

Построили на чертеже полученный базовый подшипник, как это показано на Фиг. 2, с продленной центральной осью подшипника. Из точки А на оси подшипника подняли перпендикуляр АЕ. Ось ролика продлили до пересечения с перпендикуляром в точке В. Через точку В провели линию СВ под углом α к перпендикуляру, определенному из формулы tgα=Fi/Fr при известных осевой и радиальной нагрузках на подшипник. От редукционного радиального подшипника провели линии, параллельные оси подшипника, по линиям диаметра наружного и внутреннего колец и их дорожек качения, по линиям большей и меньшей ступеней ролика, все - до пересечения с линией СВ. Линии наружного и внутреннего диаметров подшипника сделали длинней, чтобы определить, как впишется по размерам в габариты подшипника построенный конический ролик. На ось подшипника нанесли точку О фокуса линий наружной и внутренней дорожек и линий большей и меньшей ступеней ролика, линии оси ролика. Длина отрезков АВ, OA, OB равна:

Соединили точку О с точками пересечения линии СВ и линий диаметров дорожек колец и ступеней ролика, оси ролика; продолжили линии из точки О за линию СВ меньшей ступени ролика и его оси. На линии оси ОВ влево от точки В отложили точку ширины большей ступени ролика и от отложенной точки ширины отложили точку ширины выступающей части меньшей ступени ролика. Вправо от точки В на линии оси ролика отложили точку ширины выступающей части меньшей ступени ролика. Можно ширину ступеней ролика оставить, как у редукционного радиального подшипника, послужившего базой для построения редукционного радиально-упорного подшипника. Через точки ширины ступеней ролика на оси ОВ провели перпендикуляры к оси до пересечения их с соответствующими линиями, проведенными из точки О к линии СВ. Полученные точки соединили, как на Фиг. 2, и получили чертеж конического двухступенчатого ролика.

Расчет диаметров оснований большей и меньшей ступеней конического ролика с учетом равенства ширины большей ступени Н, ширины выступов меньшей ступени h.

Диаметр большей ступени ролика Dr1 равен:

Диаметр большей ступени ролика Dr2 равен:

Диаметр меньшей ступени ролика dr2 равен:

Диаметр меньшей ступени ролика dr1 равен:

Диаметр меньшей ступени ролика dr3 равен

Диаметр меньшей ступени ролика dr4 равен:

Для исчисления коэффициента редукции редукционного радиально-упорного подшипника первого типа использовали диаметры дорожек качения и ступеней ролика в плоскости сечения, проходящей через линию СВ перпендикулярно чертежу.

Диаметр конического ролика в стандартном подшипнике равен

Частота вращения редукционного конического ролика относительно центральной оси подшипника, связанная с увеличением диаметра ролика (его большей ступени), понизилась в z раз по сравнению со стандартным коническим роликом:

Полная частота вращения ступенчатого ролика относительно центральной оси подшипника понизилась в s раз:

s - коэффициент редукции подшипника.

На Фиг. 2 убрали косвенные построения, по чертежу ролика и оси подшипника сделали чертеж наружного и внутреннего кольца подшипника, как на Фиг. 3, и сняли необходимые размеры дорожек качения с чертежа.

Для примера выбрали расчет подшипника с диаметром внутренней дорожки в точке Vd=68 и диаметром наружной дорожки в точке ND=116; с выбранными коэффициентом редукции ролика k=5, шириной большей ступени ролика H=20, шириной выступа меньшей ступени ролика h=10; с радиальной и осевой нагрузками Fr=100Н и Fi=50Н.

По формулам (3), (5) рассчитали диаметры большей и меньшей ступени, радиуса большей ступени ролика базового подшипника:

dr=(116-68)/(1+5)=8; Dr=5*8=40, откуда r1=Dr/2=20

Угол α между осью роликов и центральной осью, косинус α в соответствии с таблицей равны:

tgα=Fi/Fr=50/100=1/2; α=26°30'; cosα=0,8949

По формуле (6) исчислили |ОВ|:

|АВ|=d/2+r1=68/2+20=54;

|ОА|=54* 100/50=108;

По формуле (7) диаметр большей ступени ролика Dr1 равен:

Dr1=40/0,8949=44,7

По формуле (8) диаметр большей ступени ролика Dr2 равен:

Dr2=44,7*(120,75-20)/120,75=37,3

По формуле (9) диаметр меньшей ступени ролика dr2 равен:

dr2=8/0,8949=8,94

По формуле (10) диаметр меньшей ступени ролика dr1 равен:

dr1=8,94*(120,75+10)/120,75=9,68

По формуле (11) диаметр меньшей ступени ролика dr3 равен:

dr3=8,94*(120,75-20)/120,75=7,46

По формуле (12) диаметр меньшей ступени ролика dr4 равен:

dr4=8,94*(120,75-20-10)/120,75=6,72

Исчисление коэффициента редукции подшипника. По формуле (13) диаметр конического ролика в стандартном радиально-упорном подшипнике в плоскости сечения, проведенной по линии СВ перпендикулярно чертежу, при известных D и d равен

dst.r=(116-68)/(2*0,8949)=26,82

По формуле (14) исчислили коэффициент понижения частоты вращения редукционного ролика по сравнению со стандартным, когда редукционный и стандартный подшипники вращаются с одинаковой частотой, связанный с увеличением диаметра редукционного ролика (его большей ступени):

z=44,7/26,82=1,67

По формуле (15) коэффициент редукции подшипника равен:

s=1,67*5=8,35

Замена шариковых радиально-упорных подшипников на редукционные позволит экономить большое количество горючего в транспорте и электроэнергии в промышленности, так как будет исключено хроническое проскальзывание, проворачивание и протаскивание тел качения, как в шариковом подшипнике (статья автора на эту тему находится на рассмотрении в журнале Mechanics Research Communications), на преодоление которых расходуется много работы.

Замена роликовых подшипников, которые вращают с пониженной, чем у шариковых подшипников, частотой, так как они при вращении с большой частотой выходят из строя, на редукционные поможет повысить частоту вращения подшипника в разы (в 8,35 раза в примере), частота вращения ступенчатых роликов останется на уровне частоты вращения роликов стандартного подшипника, вращающегося с прежней пониженной частотой, что расширит диапазон применения роликовых подшипников и снизит затраты горючего или электроэнергии в приводах на лишнее вращение тел качения.

Применение редукционных подшипников в самолето-, автомобиле-, корабле- и ракетостроении позволит повысить в разы частоту вращения винтов, турбин, других движителей и составляющих механизма.

Редукционный подшипник, работающий не на рассчитанном пределе вращения (частота вращения меньше рассчитанной максимальной, но больше частоты вращения стандартного подшипника) будет в разы и десятки раз дольше работать с минимизированным износом дорожек качения колец и роликов.

Из-за пониженной в разы частоты вращения тел качения при вращении подшипника с прежней частотой значительно снизится шум.

Заявляемое техническое решение обеспечивает повышение частоты вращения внутреннего кольца подшипника относительно статичного наружного кольца в разы без повышения частоты вращения роликов относительно оси подшипника. Диаметры ступеней ролика представленного подшипника и его коэффициент редукции исчисляются по выведенным формулам. У роликов отсутствует их скольжение по дорожкам, как у шариков. Таким образом, технический результат достигнут.

Редукционный подшипник первого типа может быть изготовлен на стандартном оборудовании с использованием современных материалов и технологий.

1. Редукционный радиально-упорный подшипник первого типа, содержащий наружное и внутреннее кольца с дорожками качения, установленные между ними тела качения, выполненные в виде установленных в гнезда сепаратора двухступенчатых конических роликов, отличающийся тем, что большая ступень ролика обкатывает дорожку внутреннего кольца подшипника, а меньшая ступень ролика обкатывает дорожку его наружного кольца;

2. Подшипник по п. 1, отличающийся тем, что диаметры дорожек качения наружного и внутреннего колец и диаметры большей и меньшей ступеней ролика находятся в пропорциональной зависимости: Dr/dr=k; Dr1=Dr/cosα; Dr2=Dr1*(⎪OB⎪-Н)/⎪ОВ⎪; dr1=dr2*(⎪OB⎪+h)/⎪OB⎪; dr2=dr/cosα; dr3=dr2*(⎪OB⎪-H)/⎪OB⎪; dr4=dr2*(⎪OB⎪-H-h)/⎪OB⎪, где

Dr - диаметр большей ступени ролика редукционного радиального подшипника первого типа, служащего базой (базового подшипника) для построения и исчисления редукционного радиально-упорного подшипника первого типа;

dr - диаметр меньшей ступени ролика базового подшипника;

k - коэффициент редукции базового цилиндрического и конического ролика;

Dr1, Dr2 - диаметры оснований большей ступени ролика редукционного радиально-упорного подшипника;

dr1, dr2, dr3, dr4 - диаметры оснований выступов меньшей ступени ролика редукционного радиально-упорного подшипника;

α - угол между векторами силы Fr радиальной нагрузки на подшипник и вектором суммы векторов силы Fr и силы Fi осевой нагрузки;

|ОВ| - отрезок, соединяющий точку фокуса линий наружной и внутренней дорожек, линий большей и меньшей ступеней ролика и центр основания ролика радиусом Dr1;

Н - ширина большей ступени ролика;

h - ширина выступов меньшей ступени ролика.

3. Подшипник по п. 1, отличающийся тем, что для удобства сборки меньшая ступень ролика вставляется в большую ступень на любой стадии сборки подшипника.



 

Похожие патенты:

Изобретение относится к области машино-, приборо-, самолето-, автомобиле-, корабле- и ракетостроения и может быть использовано во всех отраслях промышленности и транспорта.

Изобретение относится к области машиностроения и может быть использовано во всех областях промышленности. Подшипник качения содержит однобортовое наружное и двухбортовое внутреннее кольца с дорожками качения и размещенные между ними тела качения, выполненные в виде роликов двухступенчатого типа, и большим диаметром ступени контактирует только с дорожкой качения наружного кольца подшипника, а меньшим диаметром ступени - только с дорожкой качения его внутреннего кольца, наружное кольцо установлено на тела качения с предварительным натягом.

Изобретение относится к двухрядным коническим роликовым упорным подшипникам. Двухрядный конический роликовый упорный подшипник (10) содержит нижнюю пластину (11), имеющую внутреннюю и внешнюю конические дорожки (12, 13) качения; верхнюю пластину (14), имеющую плоскую дорожку (15) качения, соответствующие ряды внутренних и внешних роликов (16, 17), в которых наибольший диаметр внутренних роликов (16) не меньше, чем наибольший диаметр внешних роликов (17).

Изобретение относится к области машиностроения и приборостроения и может быть использовано во всех отраслях промышленности. Редукционный подшипник второго типа содержит наружное кольцо (1) и внутреннее кольцо (2) с дорожками качения, размещенные между ними тела качения, выполненные в виде установленных в гнездах сепаратора двухступенчатых роликов.

Изобретение относится к коническому роликовому подшипнику для опоры с возможностью вращения первой машинной части относительно второй машинной части, в частности, для опоры с возможностью вращения роторного вала ветросиловой установки.

Изобретение относится к коническому роликовому подшипнику с наружным кольцом (17, 27), с внутренним кольцом (24, 42) и с коническими роликами (13, 23), которые введены в обойму (41, 51) и которые могут кататься по внутренней дорожке качения наружного кольца (17, 27) и по внешней дорожке качения внутреннего кольца (24, 42).

Изобретение относится к подшипникам качения с многоопорными роликами. Подшипник качения включает внутреннее и наружное кольца, многоопорные ролики.

Изобретение относится к области машиностроения и приборостроения и может быть использовано во всех отраслях промышленности. Подшипник качения со ступенчатыми роликами содержит наружное кольцо (1) и внутреннее кольцо (2) с дорожками качения, размещенные между ними тела качения, выполненные в виде установленных в гнездах сепаратора двухступенчатых роликов, диаметр большей ступени (3) которых контактирует с дорожкой качения внутреннего кольца (2) подшипника, а диаметр меньшей ступени (4) контактирует с дорожкой качения его наружного кольца (1).

Изобретение относится к области машиностроения и приборостроения и может быть использовано во всех отраслях промышленности. Подшипник качения со ступенчатыми роликами содержит наружное кольцо (1) и внутреннее кольцо (2) с дорожками качения, размещенные между ними тела качения, выполненные в виде установленных в гнездах сепаратора двухступенчатых роликов, диаметр большей ступени (3) которых контактирует с дорожкой качения кольца (1), а диаметр меньшей ступени (4) контактирует с дорожкой качения его кольца (2).

Изобретение относится к области машиностроения, в частности к подшипникам качения. Подшипник содержит наружное разрезное кольцо (1) с торообразными дорожками качения, выполненными на каждой его половине, внутреннее кольцо (2) со сферической дорожкой качения, тела качения в виде роликов (3) с вогнутым профилем, который сопряжен с дорожками качения колец (1, 2) и сепараторы для разделения роликов (3).

Изобретение относится к области машино-, приборо-, самолето-, автомобиле-, корабле- и ракетостроения и может быть использовано во всех отраслях промышленности и транспорта.

Подшипник // 2604907
Изобретение относится к машиностроению, а именно к опорам качения и скольжения различных механизмов и машин, а также к отдельным деталям машин - валикам, роликам, втулкам, осям и другим деталям.

Изобретение относится к машиностроению, в частности к опорно-поворотным устройствам, воспринимающим радиальную и осевые нагрузки, а также опрокидывающий момент. Опорно-поворотный подшипник содержит расположенные концентрично друг к другу опорные кольца (1, 2), при этом кольцо (1) выполнено составным с кольцевыми взаимно перпендикулярно расположенными дорожками качения (3, 4), и взаимодействующие с ними тела качения в виде роликов-катков.

Изобретение относится к области машиностроения, конкретно к подшипникам качения. Роликовый подшипник качения содержит внутреннее кольцо (1) и наружное кольцо (6), каждое с дорожкой качения, и расположенные между дорожками качения тела качения в виде цилиндрических роликов (10).

Изобретение относится к области машиностроения, конкретно к подшипникам качения. Наиболее эффективно применение разработанного подшипника в качестве игольчатого роликоподшипника.

Изобретение относится к машиностроению, а именно к упорно-радиальным подшипникам, преимущественно используемым в верхней опоре передних стоек автомобилей. Подшипник содержит верхний и нижний пластмассовые кожухи, образующие по внутреннему и наружному диаметрам защитные соединения, с закрепленными в них металлическими кольцами, между которыми размещены шарики.

Изобретение относится к машиностроению, в частности к подшипниковым узлам, воспринимающим повышенные радиальные нагрузки, и может быть использовано при подготовке к эксплуатации радиально-упорных конических роликовых подшипников качения.

Изобретение относится к области машиностроения и может быть использовано во всех отраслях промышленности. .

Изобретение относится к области машиностроения и может быть использовано во всех отраслях промышленности. .

Изобретение относится к области машиностроения и может быть использовано во всех отраслях промышленности. .

Изобретение относится к области машино-, приборо-, самолето-, автомобиле-, корабле- и ракетостроения и может быть использовано во всех отраслях промышленности и транспорта.
Наверх