Способ получения нанокапсул ципрофлоксацина гидрохлорида


 


Владельцы патента RU 2609742:

Кролевец Александр Александрович (RU)

Изобретение относится к способу получения нанокапсул ципрофлоксацина гидрохлорида. Указанный способ характеризуется тем, что в суспензию геллановой камеди в бутаноле и 0,01 г препарата Е472с добавляют порошок ципрофлоксацина гидрохлорида, затем добавляют хлороформ, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро : оболочка в нанокапсулах составляет 1:3, 1:1, 1:5 или 5:1. Изобретение обеспечивает ускорение и упрощение процесса получения нанокапсул ципрофлоксацина гидрохлорида, а также увеличение их выхода по массе. 1 ил., 5 пр.

 

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155, МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055, МПК A61K 9/52, A61K 9/16, A61K 9/10, Российская Федерация, опубликован 10.11.1997, предложен способ получения твердых непористых микросфер, включающий расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.

В пат. 2139046, МПК A61K 9/50, A61K 49/00, A61K 51/00, Российская Федерация, опубликован 10.10.1999, предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и, возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно, выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.

Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.

В пат. 2159037, МПК A01N 25/28, A01N 25/30, Российская Федерация, опубликован 20.11.2000, предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащих твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135, описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°C), термическое разложение его в пиролизной печи (650°C при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°C, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен, высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.

В пат. WO/2010/076360 ES, МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, опубликован 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологи.

Недостатками предложенного способа являются сложность и длительность процесса.

В пат. WO/2010/119041 EP, МПК A23L 1/00, опубликован 21.10.2010, предложен способ получения микрошариков, содержащих активный компонент, инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения и последующее отверждение микрошариков в растворе анионный полисахарид с pH 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале сывороточный протеин является теплоденатурирующим, хотя и другие методы денатурации также применимы, например денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°C до 80°C, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, продукт подлежит фильтрации, которая осуществляется через множество фильтров с постепенным снижением размера пор. В идеале фильтр тонкой очистки имеет субмикронные размеры пор, например от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.

Недостатками данного способа являются применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных денным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.

В пат. WO/2011/003805 EP, МПК B01J 13/18; B65D 83/14; C08G 18/00, опубликован 13.01.2011, описан способ получения микрокапсул, которые подходят для использования в композициях образующих герметики, пены, покрытия или клеи.

Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.

В пат. 20110223314, МПК B05D 7/0020060101, B05D 007/00, B05C 3/0220060101, B05C 003/02; B05C 11/0020060101, B05C 011/00; B05D 1/1820060101, B05D 001/18; B05D 3/0220060101, B05D 003/02; B05D 3/0620060101, B05D 003/06 от 10.03.2011 US, описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.

Недостатками данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.

В пат. WO/2011/150138 US МПК C11D 3/37; B01J 13/08; C11D 17/00 опубликован 01.12.2011 описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.

Недостатками данного способа являются сложность исполнения и длительность процесса.

В пат. WO/2011/104526 GB, МПК B01J 13/00; B01J 13/14; C09B 67/00; C09D 11/02, опубликован 01.09.2011, предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых изделий по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.

Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернил струйной печати, для фармацевтической промышленности данная методика неприменима.

В пат. WO/2011/056935 US, МПК C11D 17/00; A61K 8/11; B01J 13/02; C11D 3/50, опубликован 12.05.2011, описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонатов, полиэфиров, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемым для материала сердечника и материалов в окружающей среде, в которой инкапсулируются агенты. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воски, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

В пат. WO/2011/160733 EP, МПК B01J 13/16, опубликован 29.12.2011, описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (A) и (B) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°C до формирования микрокапсул.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул ципрофлоксациона гидрохлорида в геллановой камеди, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул ципрофлоксацина гидрохлорида, характеризующимся тем, что в качестве оболочки нанокапсул используется геллановая камедь, а также получения нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хлороформа.

Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул антибиотиков геллановой камеди, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хлороформа.

Результатом предлагаемого метода являются получение нанокапсул ципрофлоксацина гидрохлорида в геллановой камеди при 25°C в течение 15 минут. Выход нанокапсул составляет 100%.

ПРИМЕР 1

Получение нанокапсул ципрофлоксацина гидрохлорида, соотношение ядро : оболочка 1:3

В суспензию 1,5 г геллановой камеди в бутаноле и 0,01 г препарата E472c (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества, небольшими порциями добавляют 0,5 г порошка ципрофлоксацина гидрохлорида. Затем по каплям добавляют 10 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 2

Получение нанокапсул ципрофлоксацина гидрохлорида, соотношение ядро : оболочка 1:1

В суспензию 0,5 г геллановой камеди в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества, добавляют 0,5 г порошка ципрофлоксацина гидрохлорида. Затем по каплям добавляют 5 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1 г белого порошка. Выход составил 100%.

ПРИМЕР 3

Получение нанокапсул ципрофлоксацина гидрохлорида, соотношение ядро : оболочка 1:5

В суспензию 1,5 г геллановой камеди в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества, добавляют 0,3 г порошка ципрофлоксацина гидрохлорида. Затем по каплям добавляют 10 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1,8 г белого порошка. Выход составил 100%.

ПРИМЕР 4

Получение нанокапсул ципрофлоксацина гидрохлорида, соотношение ядро : оболочка 5:1

В суспензию 0,5 г геллановой камеди в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества, добавляют 2,5 г порошка ципрофлоксацина гидрохлорида. Затем по каплям добавляют 10 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 3 г белого порошка. Выход составил 100%.

ПРИМЕР 5

Определение размеров нанокапсул методом NTA

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length : Auto, Min Expected Size : Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Способ получения нанокапсул ципрофлоксацина гидрохлорида, характеризующийся тем, что в суспензию геллановой камеди в бутаноле и 0,01 г препарата Е472с, используемого в качестве поверхностно-активного вещества, добавляют порошок ципрофлоксацина гидрохлорида, затем добавляют хлороформ, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро : оболочка в нанокапсулах составляет 1:3, 1:1, 1:5 или 5:1.



 

Похожие патенты:

Изобретение относится к способу получения нанокапсул вакцины «КС» от чумы свиней. Указанный способ характеризуется тем, что вакцину «КС» растворяют в петролейном эфире, затем диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают бутилхлорид, выпавший осадок нанокапсул отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул аминогликозидного антибиотика, выбранного из канамицина, амикацина или сульфата гентамицина. Указанный способ характеризуется тем, что в качестве оболочки нанокапсул используется геллановая камедь, при этом аминогликозидный антибиотик порциями добавляют в суспензию геллановой камеди в бутаноле, содержащую препарат Е472с, при массовом соотношении аминогликозидный антибиотик:геллановая камедь 1:1 или 1:3, смесь перемешивают, затем добавляют метиленхлорид, полученную суспензию нанокапсул отфильтровывают, промывают метиленхлоридом и сушат, процесс осуществляют в течение 15 минут.

Изобретение относится к способу получения нанокапсул резвератрола. Указанный способ характеризуется тем, что резвератрол добавляют в суспензию геллановой камеди в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании 1000 об/мин, далее приливают этилацетат, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение оболочка : ядро в нанокапсулах составляет 3:1 или 1:5.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул унаби. Способ характеризуется тем, что в качестве ядра используется унаби, а качестве оболочки альгинат натрия, при осуществлении способа порошок ягод унаби добавляют в суспензию альгината натрия в петролейном эфире в присутствии Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают 5 мл четыреххлористого углерода в качестве осадителя, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1 или 1:3, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул экстракта зеленого чая. Указанный способ характеризуется тем, что экстракт зеленого чая добавляют в суспензию хитозана в петролейном эфире в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают ацетон, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро/оболочка в нанокапсулах составляет 1:3, 1:1 или 1:5.

Изобретение относится к области нанотехнологий и нанохимии, а точнее к цитратам металлов, и может быть использовано в парфюмерной, пищевой промышленности, в медицине, в сельском хозяйстве, в биологии и в других областях науки, промышленности и экологии.

Изобретение относится к нанотехнологии, а именно к способу получения наноразмерных порошков карбида кремния, покрытых углеродной оболочкой. Способ заключается в том, что смесь прекурсоров: моносилана, аргона и ацетилена, в которую ацетилен вводят в количестве 2,5-15 об.%, при начальном давлении Р0=0,105 МПа и начальной температуре Τ0=170°С подвергают термическому разложению в процессе адиабатического сжатия до образования целевого продукта.

Одноразовый многослойный полимерный предварительно заполненный контейнер для автомобильного топлива включает корпус, горловину с герметичной крышкой и средством для предотвращения повторного заполнения контейнера, устройство для переливания топлива в бак автомобиля.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике, машиностроении и т.д. Способ получения нанокомпозитного металл-керамического покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины включает нанесение ионно-лучевым распылением покрытия с необходимым процентным соотношением металлической и керамической фаз, при этом процентное соотношение металлической и керамической фаз определяют с помощью нейронной сети, для чего наносят покрытия с заданным шагом процентного соотношения фаз металл-керамика, изменяющимся в покрытии от нуля до максимума, определяют значения микротвердости нанесенных покрытий, затем на основании полученных данных создают искусственную нейронную сеть, проводят ее обучение, тестируют полученную нейросетевую модель путем последовательного исключения из статистической выборки, которая использовалась для ее обучения, экспериментально измеренных факторов нейросетевой модели, включающих микротвердость металлического покрытия, микротвердость керамического покрытия, концентрацию металлической фазы в композите и микротвердость нанокомпозитного покрытия в качестве выходного параметра модели, с последующим их определением при помощи полученной нейросетевой модели и сравнения полученных теоретических данных с исходными экспериментальными значениями, затем в искусственную нейронную сеть вводят значения микротвердости металлического и керамического покрытия, их процентное соотношение в получаемом покрытии и при помощи искусственной нейронной сети рассчитывают значение микротвердости металл-керамического нанокомпозитного покрытия при введенном процентном соотношении металлической и керамической фаз.

Изобретение относится к машиностроению и может быть использовано при изготовлении пружин из стали горячей навивкой. Способ включает нагрев заготовки до температуры выше точки АС3, выдержку заготовки при температуре выше точки АС3, навивку заготовки в спираль при температуре выше точки АС3, охлаждение спирали до температуры мартенситного превращения и отпуск.

Изобретение относится к способу получения нанокапсул вакцины «КС» от чумы свиней. Указанный способ характеризуется тем, что вакцину «КС» растворяют в петролейном эфире, затем диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают бутилхлорид, выпавший осадок нанокапсул отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул аминогликозидного антибиотика, выбранного из канамицина, амикацина или сульфата гентамицина. Указанный способ характеризуется тем, что в качестве оболочки нанокапсул используется геллановая камедь, при этом аминогликозидный антибиотик порциями добавляют в суспензию геллановой камеди в бутаноле, содержащую препарат Е472с, при массовом соотношении аминогликозидный антибиотик:геллановая камедь 1:1 или 1:3, смесь перемешивают, затем добавляют метиленхлорид, полученную суспензию нанокапсул отфильтровывают, промывают метиленхлоридом и сушат, процесс осуществляют в течение 15 минут.

Изобретение относится к способу получения нанокапсул резвератрола. Указанный способ характеризуется тем, что резвератрол добавляют в суспензию геллановой камеди в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании 1000 об/мин, далее приливают этилацетат, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение оболочка : ядро в нанокапсулах составляет 3:1 или 1:5.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул унаби. Способ характеризуется тем, что в качестве ядра используется унаби, а качестве оболочки альгинат натрия, при осуществлении способа порошок ягод унаби добавляют в суспензию альгината натрия в петролейном эфире в присутствии Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают 5 мл четыреххлористого углерода в качестве осадителя, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1 или 1:3, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул экстракта зеленого чая. Указанный способ характеризуется тем, что экстракт зеленого чая добавляют в суспензию хитозана в петролейном эфире в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают ацетон, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро/оболочка в нанокапсулах составляет 1:3, 1:1 или 1:5.

Изобретение относится к способу получения нанокапсул аденина. Указанный способ характеризуется тем, что к каррагинану в бензоле добавляют сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества, полученную смесь перемешивают, добавляют порошок аденина, после образования самостоятельной твердой фазы медленно добавляют петролейный эфир, полученную суспензию нанокапсул отфильтровывают, промывают петролейным эфиром и сушат, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:3, 1:1 или 5:1.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул L-аргинина или норвалина.

Группа изобретений относится к области медицины, в частности к онкологии, и описывает биосовместимый наноматериал и способ его получения. Предлагаемый биосовместимый наноматериал представляет собой гибридные ассоциаты коллоидных квантовых точек CdS средними размерами 2-4 нм с катионами метиленового голубого (МВ+) в концентрации 10-1-10-4 (νкрасит/νCdS).

Изобретение относится к способу получения нанокапсул адаптогена. Указанный способ характеризуется тем, что экстракт элеутерококка или женьшеня добавляют в суспензию каррагинана в изопропаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, далее приливают гексан, полученную суспензию нанокапсул отфильтровывают и сушат, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:3 или 5:1.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул сухого экстракта шпината в натрий карбоксиметилцеллюлозе. Способ включает диспергирование сухого экстракта шпината в раствор натрий карбоксиметилцеллюлозы в бензоле в соотношении 1:1-3 в присутствии E472c в качестве поверхностно-активного вещества при перемешивании со скоростью 1000 об/сек.

Изобретение относится к способу получения нанокапсул аминогликозидного антибиотика, выбранного из канамицина, амикацина или сульфата гентамицина. Указанный способ характеризуется тем, что в качестве оболочки нанокапсул используется геллановая камедь, при этом аминогликозидный антибиотик порциями добавляют в суспензию геллановой камеди в бутаноле, содержащую препарат Е472с, при массовом соотношении аминогликозидный антибиотик:геллановая камедь 1:1 или 1:3, смесь перемешивают, затем добавляют метиленхлорид, полученную суспензию нанокапсул отфильтровывают, промывают метиленхлоридом и сушат, процесс осуществляют в течение 15 минут.
Наверх