Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин

Изобретение относится к технике испытаний газотурбинных и турбореактивных двигателей и может быть использовано при исследовании процессов в проточной части турбомашин. Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин снабжено источником давления газа, подключенным к смесительному ресиверу через регулятор расхода газовой смеси, и емкостью с поглотителем, подключенной к источнику давления газа через дозатор, а проточный подогреватель газовой смеси снабжен керамическим нагревательным элементом, выполненным в виде цилиндрического полого теплоизолированного корпуса с двумя электродами, разнесенными по длине корпуса, и имеющим завихритель потока, установленный во входной части полости корпуса нагревательного элемента, и рассекатель потока, установленный на выходе из полости корпуса последнего. Техническим результатом данного изобретения является обеспечение точного регулирования химического состава и физических параметров газовой смеси, подаваемой в испытательную камеру. 4 з.п. ф-лы, 4 ил.

 

Изобретение относится к технике испытаний газотурбинных и турбореактивных двигателей и может быть использовано при исследовании процессов в проточной части турбомашин.

Рабочие процессы современных газотурбинных двигателей характеризуются высокими значениями температуры в камерах сгорания и других проточных элементах двигателя, что приводит к снижению прочностных характеристик элементов двигателей, уменьшению их моторесурса и ухудшению безопасности эксплуатации двигателей при использовании на транспортных средствах, в энергетике и в других областях техники. Поэтому при проведении исследований и проектировании новых двигателей с повышенными требованиями к организации рабочего процесса и обеспечению термостойкости проточных элементов двигателя необходимо очень точно воссоздавать условия работы проточных элементов двигателя, моделируя характер течения, температуру и состав рабочей среды, контролируя содержание поглощающих примесей в продуктах сгорания, и проводить доводку и испытание моделей элементов двигателей в условиях, наиболее приближенных к реальным.

Известно устройство для проведения высокотемпературных газодинамических испытаний летательных аппаратов, содержащее испытательную камеру с подводящим и отводящим трубопроводами и средствами измерения температуры, источник давления воздуха, подключенный трубопроводом с регулятором расхода к регулируемому проточному подогревателю, выполненному электродуговым, в виде цилиндрического полого теплоизолированного корпуса с двумя электродами, и подключенного выходом к подводящему трубопроводу испытательной камеры, выполненному соплообразным (патент US 3029635).

Известное устройство не имеет средств для моделирования процессов, связанных со сгоранием топлива в силовой установке летательного аппарата, т.к. предназначено для моделирования внешних высотных условий обтекания корпуса летательного аппарата, которые характеризуются такими параметрами, как скорость потока и его температура. Поэтому оно не может быть использовано при исследовании процессов в проточной части турбомашин.

Известно устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин, содержащее испытательную камеру с подводящим и отводящим трубопроводами и средствами измерения температуры, источник давления воздуха, подключенный трубопроводом с регулятором расхода к смесительному ресиверу, и регулируемый проточный подогреватель рабочей среды, подключенный входом к смесительному ресиверу, а выходом - к подводящему трубопроводу испытательной камеры (патент ЕР 1990623).

В известном устройстве моделируется как внешний поток рабочей среды, позволяющий проводить исследование процесса обтекания корпуса испытуемого объекта, так и поток рабочей среды в проточной части двигателя, при этом регулирование подачи рабочей среды осуществляется, по меньшей мере, по одному из двух параметров - по температуре или по скорости подачи рабочей среды.

Недостатком известного устройства является отсутствие в нем средств, позволяющих регулировать состав подаваемой среды в проточные элементы исследуемых турбомашин, что существенно снижает функциональные возможности известного устройства и практически исключает возможность проведения исследований процесса работы турбомашины на всех возможных режимах и на разных видах топлива.

Кроме того, к недостаткам известного устройства следует отнести отсутствие в нем предварительного подогрева рабочей среды, осуществляемого перед подачей ее в проточный подогреватель, что существенно снижает возможность с достаточной точностью регулировать температуру рабочей среды, подаваемой в испытательную камеру, с учетом того, что температура в камере сгорания современных газотурбинных двигателей достигает значений порядка 2000°С.

Наиболее близким техническим решением является устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин, содержащее испытательную камеру с подводящим и отводящим трубопроводами и средствами измерения температуры и парциального давления газовой смеси, источник давления воздуха, подключенный трубопроводом с регулятором расхода к смесительному ресиверу, предварительный подогреватель воздуха, установленный в трубопроводе подачи воздуха в смесительный ресивер, и регулируемый проточный подогреватель газовой смеси, подключенный входом к смесительному ресиверу, а выходом - к подводящему трубопроводу испытательной камеры (патент US 2004216535).

В известном устройстве в качестве смесительного ресивера и регулируемого проточного подогревателя газовой смеси используется камера сгорания, что обеспечивает возможность проводить исследование проточных элементов турбомашин в условиях, приближенных к реальным температурным режимам силовых установок летательных аппаратов. Однако такое выполнение проточного подогревателя в известном устройстве ограничивает возможности моделирования в нем реальных процессов взаимодействия рабочей среды с проточными элементами только для турбомашин определенного типа, работающих на определенном виде топлива, т.к. конструкция камеры сгорания однозначно привязана к виду используемого топлива.

Кроме того, недостатком известного устройства является невозможность точного регулирования состава рабочей среды, подаваемой в испытательную камеру, который является необходимым параметром для моделирования рабочего процесса при проведении исследований перспективных типов турбомашин.

Задачей изобретения является расширение функциональных возможностей устройства для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин путем моделирования реальных процессов воздействия газовой среды на материал проточных элементов турбомашин.

Техническим результатом данного изобретения является обеспечение точного регулирования химического состава и физических параметров газовой смеси, подаваемой в испытательную камеру.

Технический результат достигается тем, что устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин содержит испытательную камеру с подводящим и отводящим трубопроводами и средствами измерения температуры и парциального давления газовой смеси, источник давления воздуха, подключенный трубопроводом с регулятором расхода воздуха к смесительному ресиверу, предварительный подогреватель воздуха, установленный в трубопроводе подачи воздуха в смесительный ресивер, и регулируемый проточный подогреватель газовой смеси, подключенный входом к смесительному ресиверу, а выходом - к подводящему трубопроводу испытательной камеры, выполненному соплообразным.

Новым в изобретении является то, что устройство снабжено источником давления газа, подключенным к смесительному ресиверу через дополнительный регулятор расхода, и емкостью с поглотителем, подключенной к источнику давления газа через дозатор, а проточный подогреватель газовой смеси снабжен керамическим нагревательным элементом, выполненным в виде цилиндрического полого теплоизолированного корпуса с двумя электродами, разнесенными по длине корпуса, и имеющим завихритель потока, установленный во входной части полости корпуса нагревательного элемента, и рассекатель потока, установленный на выходе из полости корпуса последнего.

В качестве поглотителя могут быть использованы продукты сгорания топлива. Завихритель потока может быть выполнен в виде перегородки с пазами и отверстиями, расположенными тангенциально относительно оси корпуса нагревательного элемента, а рассекатель потока - в виде перфорированной перегородки с калиброванными аксиальными отверстиями. Источник давления воздуха может быть подключен к испытательной камере через дополнительный регулятор расхода воздуха.

Технический результат изобретения достигается за счет всей совокупности существенных признаков устройства, характеризующих взаимосвязи отдельных элементов устройства между собой, их расположение и конструктивное выполнение.

Сущность изобретения поясняется чертежами, где

на фиг.1 показана общая схема устройства для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин;

на фиг.2 - общий вид проточного подогревателя;

на фиг.3 - общий вид завихрителя;

на фиг 4. - общий вид рассекателя.

Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин содержит испытательную камеру 1 с подводящим трубопроводом 2, выполненным в виде сопла, и отводящим трубопроводом 3, в котором размещены средства для оптического измерения температуры 4, а также датчики измерения парциального давления поглотителя 5, полного и статического давления газовой смеси 6 и 7. Для подачи рабочей среды в испытательную камеру 1 устройство имеет источник давления воздуха 8, подключенный трубопроводом 9 с регулятором расхода воздуха 10 к смесительному ресиверу 11.

Для подогрева воздуха перед подачей его в смесительный ресивер 11 в трубопроводе 9 установлен предварительный подогреватель воздуха 12. К смесительному ресиверу 11 через регулятор расхода газовой смеси 13 подключен источник давления газа 14, к которому через дозатор 15 подключена емкость с поглотителем 16. В качестве поглотителя используют продукты сгорания того вида топлива, которое используется в исследуемом двигателе.

В смесительном ресивере 11 установлен газоанализатор 17, а к выходу ресивера 11 подключен регулируемый проточный подогреватель газовой смеси 18, выполненный в виде керамического нагревательного элемента 19 с цилиндрическим полым теплоизолированным корпусом 20 и двумя электродами 21, разнесенными по длине корпуса 20, и имеющий завихритель потока 22, установленный во входной части полости 23 корпуса 20, и рассекатель потока 24, установленный на выходе из полости 23 корпуса 20.

Завихритель потока 22 может быть выполнен в виде перегородки 25 с пазами 26 и отверстиями 27, расположенными тангенциально относительно оси корпуса 20 нагревательного элемента 19, а рассекатель потока 24 - в виде перфорированной перегородки 28 с калиброванными аксиальными отверстиями 29. На выходе регулируемого проточного подогревателя газовой смеси 18 установлена термопара 30 для измерения температуры газовой смеси.

В качестве керамического нагревательного элемента 19 может быть использован высокотемпературный керамический нагревательный элемент ЛАНТЕРМ, изготовленный из керамического материала на основе тугоплавкого электропроводного оксидного соединения - хромита лантана LаСrO3, который позволяет осуществлять резистивный нагрев газовой смеси до температуры 1800°С.

Регулируемый проточный подогреватель газовой смеси 18 выходом подключен к подводящему трубопроводу 2 испытательной камеры 1, выполненному в виде сопла и предназначенному для придания заданной скорости потоку газовой смеси, подаваемой в испытательную камеру 1. Для более точного регулирования скорости потока газовой смеси сопло может быть выполнено регулируемым.

Источник давления воздуха 8 может быть подключен к испытательной камере 1 через дополнительный регулятор расхода воздуха 31 для подмешивания его в испытательной камере 1 в газовую смесь или подачи его к обтекаемым частям исследуемых проточных элементов 32, например, для их охлаждения.

Сигналы от всех измерительных средств (датчиков давления, температуры, газоанализаторов) поступают в блок обработки информации 33, связанный с блоком управления 34, который осуществляет управление исполнительными механизмами 35 устройства в соответствии с программой испытаний.

Работа устройства рассмотрена на примере испытания на долговечность в качестве исследуемого проточного элемента 32 модели жаровой трубы камеры сгорания газотурбинного двигателя.

Перед испытаниями емкость 16 заполняют поглотителем, например дымом с частицами сажи, и подают поглотитель через дозатор 15 в источник давления газа 14, например в баллон с углекислым газом.

При проведении испытаний сжатый воздух от источника давления воздуха 8 через трубопровод 9 с регулятором расхода воздуха 10 и предварительный подогреватель воздуха 12 подается в смесительный ресивер 11, в котором смешивается с газовой смесью, подаваемой под давлением из источника давления газа 14 в смесительный ресивер 11 через регулятор расхода газовой смеси 13. Состав газовой смеси в смесительном ресивере 11 контролируется газоанализатором 17 и может регулироваться по химическому составу в соответствии с программой испытаний с помощью дозатора 15 и регулятора расхода газовой смеси 13.

Из смесительного ресивера 11 газовая смесь поступает в полость 23 корпуса 20 регулируемого проточного подогревателя газовой смеси 18, где поток газовой смеси для повышения эффективности нагрева турбулизируется с помощью завихрителя потока 22 и нагревается до температуры, соответствующей реальным значениям температуры в камере сгорания газотурбинного двигателя. Температура газовой смеси на выходе регулируемого проточного подогревателя газовой смеси 18 контролируется с помощью термопары 30, сигнал от которой подается в блок обработки информации 33, и может регулироваться в соответствии с программой испытаний по сигналу блока управления 34.

Нагретый поток газовой смеси через рассекатель потока 24 направляется в подводящий трубопровод 2 испытательной камеры 1, выполненный в виде сопла, в котором поток ускоряется до требуемых параметров и поступает в полость испытуемой жаровой трубы, установленной в испытательной камере 1. Для моделирования условий работы жаровой трубы в реальном двигателе в условиях полета сжатый воздух от источника давления воздуха 8 подается через дополнительный регулятор расхода воздуха 31 в испытательную камеру 1, омывая наружную поверхность жаровой трубы и частично смешиваясь с потоком газовой смеси в полости жаровой трубы.

Средством оптического измерения температуры 4 через оптическое окно измеряют распределение температуры рабочей среды в испытательной камере 1, а датчиками 5, 6 и 7, установленными в отводящем трубопроводе 3, измеряют распределение парциального и полного давлений, а также статическое давление газа на выходе из жаровой трубы для сравнения этих параметров моделируемого процесса с распределением параметров на выходе из реальной жаровой трубы камеры сгорания турбореактивного двигателя. По результатам обработки этой информации с помощью блока управления 34 вносится коррекция в работу устройства.

Таким образом, после корректировки на выходе из жаровой трубы получают профили температуры, давления газа и парциального давления поглотителя такие же, как в реальной струе продуктов сгорания на выходе из моделируемой камеры сгорания газотурбинного двигателя. Для проведения испытаний проточных элементов турбомашин другого типа, работающих на иных видах топлива, достаточно подобрать определенный состав газа и поглотителя, не внося изменений в конструкцию устройства.

1. Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин, содержащее испытательную камеру с подводящим и отводящим трубопроводами и средствами измерения температуры и парциального давления газовой смеси, источник давления воздуха, подключенный трубопроводом с регулятором расхода воздуха к смесительному ресиверу, предварительный подогреватель воздуха, установленный в трубопроводе подачи воздуха в смесительный ресивер, и регулируемый проточный подогреватель газовой смеси, подключенный входом к смесительному ресиверу, а выходом - к подводящему трубопроводу испытательной камеры, выполненному соплообразным, отличающееся тем, что устройство снабжено источником давления газа, подключенным к смесительному ресиверу через регулятор расхода газовой смеси, и емкостью с поглотителем, подключенной к источнику давления газа через дозатор, а проточный подогреватель газовой смеси снабжен керамическим нагревательным элементом, выполненным в виде цилиндрического полого теплоизолированного корпуса с двумя электродами, разнесенными по длине корпуса, и имеющим завихритель потока, установленный во входной части полости корпуса нагревательного элемента, и рассекатель потока, установленный на выходе из полости корпуса последнего.

2. Устройство по п. 1, отличающееся тем, что в качестве поглотителя используют продукты сгорания топлива.

3. Устройство по п. 1, отличающееся тем, что рассекатель потока выполнен в виде перфорированной перегородки с калиброванными аксиальными отверстиями.

4. Устройство по п. 1, отличающееся тем, что завихритель потока выполнен в виде перегородки с пазами и отверстиями, расположенными тангенциально относительно оси корпуса нагревательного элемента.

5. Устройство по п. 1, отличающееся тем, источник давления воздуха подключен к испытательной камере через дополнительный регулятор расхода воздуха.



 

Похожие патенты:

Изобретение относится к устройствам для диагностики систем топливоподачи двигателей внутреннего сгорания (ДВС). Комплекс и реализуемый посредством него способ диагностики предназначены для быстрой, точной, экологически и пожаробезопасной бортовой диагностики на месте и в движении системы подачи бензина (СПБ) автомобильного ДВС, оснащенного системой впрыска бензина при низком давлении.

Изобретение относится к области авиационного двигателестроения и может быть использовано при сертификационных испытаниях корпуса на непробиваемость при разрушении диска ротора стартера газотурбинного двигателя.

Изобретение относится к области диагностики повреждения деталей машин в процессе их непрерывной эксплуатации и может быть использовано для определения технического состояния машинных агрегатов и обеспечения их безопасной, ресурсосберегающей эксплуатации.

Изобретение может быть использовано в двигателях внутреннего сгорания. Система двигателя (10) внутреннего сгорания содержит датчик (30) давления в цилиндре, датчик (42) угла поворота коленчатого вала, уплотнительный участок и электронный блок управления (40).

Изобретение относится к способу и системе диагностики силовой установки с двумя многоступенчатыми турбокомпрессорами. Способ диагностики силовой установки, оборудованной, по меньшей мере, одним турбокомпрессором (2) низкого давления и, по меньшей мере, одним турбокомпрессором (8) высокого давления, при этом турбокомпрессоры являются многоступенчатыми и питают двигатель внутреннего сгорания, а указанной силовой установкой оборудовано автотранспортное средство, согласно изобретению, содержит следующие этапы, на которых определяют режим работы силовой установки, определяют мощность турбины высокого давления (13) в зависимости от первой совокупности данных и в зависимости от режима работы, определяют мощность турбины высокого давления (13) в зависимости от второй совокупности данных, определяют критерий неисправности как соотношение между мощностью турбины высокого давления (13) в зависимости от первой совокупности данных и мощностью турбины высокого давления (13) в зависимости от второй совокупности данных, и сравнивают критерий неисправности с сохраненными в памяти значениями, чтобы определить, существует ли неисправность.

Изобретение относится к стендовому оборудованию и может быть использовано при испытаниях жидкостного ракетного двигателя (ЖРД) космического назначения, связанных с определением тепловых режимов элементов ЖРД и двигательной установки (ДУ).

Описаны системы и способы оценки эффективности секции паровой турбины. Упомянутые системы и способы включают определение набора данных измерений, получаемых непосредственно от набора датчиков на паровой турбине, определение набора вычисленных данных, связанных с измерениями, которые не могут быть получены непосредственно от упомянутого набора датчиков, и оценку эффективности упомянутой секции с использованием упомянутого набора данных измерений и упомянутого набора вычисленных данных.

Изобретение относится к системам бортовой диагностики для распознавания ухудшения характеристик компонента из-за умышленного повреждения и способу реагирования на состояния, выявленные в бортовом диагностическом блоке моторного транспортного средства, и сигнализирования об ухудшении характеристик компонента моторного транспортного средства.

Изобретение касается способа и системы мониторинга измерительной схемы (3), предназначенной для сбора в течение времени измерений, относящихся к турбореактивному двигателю (13) летательного аппарата, при этом система содержит средства обработки (21), выполненные с возможностью построения индикатора состояния упомянутой измерительной схемы, основанного на подсчете переходов между последовательными словами состояния, определяющими показатель правильности соответствующих последовательных измерений.

Изобретение относится к области турбомашиностроения, а именно к способам оценки стабильности серийного производства газотурбинных двигателей.Технический результат изобретения - возможность оценки стабильности серийного производства газотурбинных двигателей на этапе приемосдаточных испытаний.

Изобретение относится к области стендовой доработки летательных аппаратов. Способ испытания высокоскоростного летательного аппарата на силоизмерительной платформе под заданным углом атаки в испытательной камере, где создают разряжение, продувают испытательную камеру рабочей средой с протоком через отключенный двигатель летательного аппарата. Затем летательный аппарат устанавливают на силоизмерительной платформе в положении, перевернутом на 180°. Продувают испытательную камеру рабочей средой с протоком через работающий двигатель летательного аппарата, измеряют величину газодинамического импульса потока на выходе из двигателя, силу сопротивления летательного аппарата, подъемную силу, величины крутящих моментов и давления на обтекаемых поверхностях. Дополнительно измеряют расход топлива двигателем. Определяют дальность маршевого участка полета летательного аппарата. Изобретение направлено на расширение функциональных возможностей при проведении исследований. 2 ил.

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для вибродиагностики машин. Cпособ диагностики машин по косвенным признакам, преимущественно по вибрации корпуса, включает измерение вибрации в информативной точке корпуса машины, восстановление функции распределения вероятности вибрации, по параметрам которой судят о наличии и уровне неисправностей и/или дефектов машины, запоминают временную реализацию вибрации, преобразуют ее в реализацию, значения которой соответствуют оптимальному для диагностики вибропараметру, восстанавливают функцию распределения вероятности мгновенных значений оптимального для диагностики параметра вибрации в текущем измерении, определяют значение выборочного квантиля параметра вибрации при заданной величине функции распределения вероятности, по которому судят о наличии и уровне неисправностей и/или дефектов машины. Затем строят базу знаний в виде табличной зависимости, связывающей место измерения вибрации, узел диагностируемой машины, класс неисправности, квантиль функции распределения параметра вибрации заданного уровня и его значения для различных оценок уровня развития неисправностей и/или дефектов машины, обусловленных причинно-следственными связями между ними и состоянием машины. Длину временной реализации выбирают в зависимости от требуемой достоверности определения квантиля. Позволяет определить состояние соответствующих узлов и деталей поршневой машины. 11 ил., 2 табл.

Изобретение относится к области испытательной техники, в частности к стендам для испытаний крыльчаток вентиляторов, как центробежных, так и осевых. Стенд содержит электропривод с выходным валом, на котором установлено устройство для крепления крыльчатки, пульт управления и индикации, блок управления, к которому подключены электропривод, датчик угловой скорости вращения вала и датчик силы тока электродвигателя электропривода. При этом выходной вал электропривода с устройством для крепления крыльчатки размещен в установленном в направляющих съемном цилиндрическом кожухе, оснащенном датчиком положения кожуха «установлен - снят», при этом кожух размещен в защитном шкафу, оснащенном датчиком положения дверцы шкафа «открыто - закрыто», и зафиксирован его закрытой дверцей, а датчики положения подключены к блоку управления. Технический результат заключается в повышении безопасности, автоматизации процесса испытаний, повышении эргономических характеристик. 2 з.п. ф-лы, 8 ил., 1 табл.

Изобретение относится к машиностроению и может быть использовано при испытании жидкостных ракетных двигателей (ЖРД) и других энергетических установок. Стенд для испытаний энергетических установок содержит систему подачи компонентов топлива с агрегатами управления и систему подачи технологического газа, при этом на выходе энергетической установки установлен трубопровод, связанный с газгольдером, газгольдер соединен с компрессором, который в свою очередь соединен с системой баллонов высокого давления, газгольдер установлен на подвижной платформе, полость наддува газом расходной емкости с компонентом топлива соединена со входом компрессора, а выход компрессора соединен со входом газа в систему баллонов высокого давления. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к двигателестроению, в частности к устройствам для измерения расхода жидкости и цикловой подачи в многоцилиндровых дизельных двигателях. Изобретение позволяет повысить точность измерения неравномерности подачи топлива путем увеличения быстродействия отрыва плунжера от корпуса измерительного устройства за счет устранения залипания бортика плунжера к корпусу измерительного устройства. Устройство содержит корпус 1 с измерительной камерой 2, образованной сливным электромагнитным клапаном, форсунками 5 и плунжером 6 с возвратной пружиной 7; узел съема сигнала, представляющий собой упругую пластину 10 с наклеенными на ней тензометрическими датчиками 11 и 12, соединенными по мостовой схеме; аналого-цифровой преобразователь 15, подключенный к ЭВМ 13 и через усилитель 14 к узлу съема сигналов; электронный блок 16, подключенный к электромагнитному клапану. Устройство снабжено предохранительным клапаном 3. Корпус 1 устройства снабжен ограничителем 30 перемещения плунжера 6. 1 ил.

Изобретение относится к области двигателестроения, конкретно к способам исследовательских испытаний двигателей внутреннего сгорания с искровым зажиганием по оценке совершенства процессов подготовки и сгорания топлива. Способ включает проведение сравнительных испытаний на моторном стенде двигателя на заданном скоростном и нагрузочном режиме работы при питании двигателя углеводородным топливом и при введении в топливную смесь промотора, например водорода, в количестве 3÷6% по массе от углеводородного топлива. Затем рассчитывают величину определяемого по результатам измерений расхода топлива и промотора и их теплотворных способностей безразмерного коэффициента, представляющего отношение количества тепла, подведенного с топливом и добавкой промотора, к количеству тепла, подведенному только с углеводородным топливом, и при его значении меньше единицы делают вывод о невысоком уровне совершенства процессов подготовки и сгорания смеси. Техническим результатом является вывод о возможности выполнения доводочных работ на выявленных режимах работы по улучшению показателей рабочего процесса двигателя в части совершенствования процессов подготовки и сгорания топливной смеси. 1 ил., 1 табл.

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок. Давление газа измеряют за компрессором, в качестве параметра сравнения используют давление и частоту вращения ротора, измерения производят при постоянной температуре газа за турбиной через промежутки времени 0,2…0,5 с, а сравнивание измерений и определение пороговых отклонений производят, по крайней мере, по двум предшествующим и двум последующим текущим значениям параметров, а остановку двигателя производят при снижении частоты вращения ротора на 0,2…0,5% и давления за компрессором на 1,0…1,5%. Технический результат изобретения – предотвращение развития разрушения газовоздушного тракта двигателя, вызванного различными причинами (неправильная эксплуатация, повреждение рабочих лопаток и т.д.) при эксплуатации газотурбинного двигателя в наземной установке. 1 ил.

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем диагностики осевых турбомашин в авиации и энергомашиностроении. Техническим результатом заявленного способа является повышение надежности турбомашин. Регистрируют пульсации давления воздушного потока при помощи по меньшей мере четырех датчиков, установленных с допустимым отклонением на корпусе турбомашины в поясе осевого размера периферийной части лопаток рабочего колеса, минимум два из которых расположены вдоль продольной оси турбомашины, а минимум три - поперек последней, выделяют резонансные временные отрезки для каждого из датчиков в осциллограмме, определяют моменты прохождения лопаток под датчиками в выделенных резонансных временных отрезках, устанавливают отклонения от теоретического момента прохождения каждой из лопаток под каждым из датчиков в отсутствие колебательных процессов, по которым определяют характер колебаний, диагностируют форму резонансных колебаний путем сравнения полученных данных с эталонными формами колебаний лопаток рабочего колеса турбомашины. 1 з.п. ф-лы, 7 ил.
Изобретение относится к области инерционных испытаний автомобиля и может использоваться для осуществления контроля технического состояния и диагностики двигателей внутреннего сгорания и трансмиссий автотранспортных средств. Способ определения основных характеристик двигателя и трансмиссии автотранспортного средства, в котором суммарный момент внутренних сил сопротивлений в автомобиле, приходящийся на момент инерции беговых барабанов, определяют на выбеге по изменению угловой скорости вращения ведущих колес автомобиля, установленных на беговых барабанах стенда, выступающих в роли присоединенной массы с известным моментом инерции. Суммарный момент инерции автомобиля определяют на выбеге по изменению угловой скорости вращения вывешенных ведущих колес автомобиля, используя полученную характеристику суммарного момента внутренних сил сопротивлений в автомобиле, приходящегося на момент инерции беговых барабанов. Суммарный момент внутренних сил сопротивлений в автомобиле определяют, используя суммарный момент инерции автомобиля и зная угловую скорость вращения вывешенных ведущих колес, тяговый момент на ведущих колесах автомобиля определяют на разгоне по изменению угловой скорости вращения вывешенных ведущих колес автомобиля, используя полученную характеристику суммарного момента инерции автомобиля, и, произведя математическую обработку измеренных и полученных параметров, определяют основные характеристики двигателя и трансмиссии автотранспортного средства. Технический результат: снижение трудоемкости и времени выполнения диагностических работ, повышение производительности труда и точности измерений характеристик двигателя и трансмиссии, расширение номенклатуры получаемых по результатам испытаний характеристик двигателя и трансмиссии.

Изобретение относится к области испытания реактивных двигателей в силоизмерительных системах горизонтальных стендов с имитацией высотных условий при прямой и реверсивной тяге. Платформа с закрепленным на ней двигателем расположена в барокамере. Устройство измерения силы тяги двигателя выполнено в виде блока силоизмерительных датчиков замера прямой и реверсивной тяги двигателя, узла контроля датчика замера прямой силы тяги двигателя и узла контроля датчика замера реверсивной силы тяги двигателя. Блок датчиков закреплен на кронштейне, жестко закрепленном внутри барокамеры. Датчики с одной стороны соединены, каждый одной стороной, между собой анкерной тягой и через кронштейн с барокамерой. С другой стороны датчик замера прямой силы тяги двигателя и датчик замера реверсивной силы тяги двигателя соединены с платформой подвижно с осевым зазором. Технический результат заключается в повышенной точности и стабильности измерений прямых и реверсивных сил тяги двигателя. 2 з.п. ф-лы, 5 ил.
Наверх