Способ моделирования взаимодействия строительных материалов со средой, вызывающей биологические повреждения строительных изделий и конструкций

Изобретение относится к методам испытаний строительных материалов в условиях лабораторий заводов - изготовителей. Способ заключается в погружении образцов строительных материалов в слабоагрессивную среду. В качестве такой среды используют смесь органических кислот: уксусной, лимонной и щавелевой кислот. Далее выдерживают образцы в этой среде, причем выдержку проводят, изменяя температуру в диапазоне ±15 градусов относительно комнатной температуры. Достигается повышение точности моделирования указанной среды за счет учета температурного фактора. 6 з.п. ф-лы.

 

Изобретение относится к методам испытаний строительных материалов в условиях лабораторий заводов - изготовителей.

Проблема биоповреждений актуальна для строительных материалов, так как биологические повреждения - явление, присущее естественной среде и приводящее к снижению прочностных характеристик материалов, изменению их формы и внешнего вида, а также к изменению состава окружающей среды (микроклимата) в зданиях и сооружениях.

Известен способ испытаний строительных материалов на биостойкость, при котором осуществляют моделирование взаимодействия строительных материалов со средой, вызывающей биологические повреждения строительных изделий и конструкций, путем погружения образцов строительных материалов в слабоагрессивную среду, в качестве которой используют смесь органических кислот: уксусной, лимонной и щавелевой кислот, и последующей выдержки образцов в этой среде (патент RU 2471188, МПК G01N 33/38, дата публикации 27.12.2012).

Реализация данного способа не требует воспроизведения среды с микроорганизмами, отсутствует необходимость использования специальных установок. Такой способ испытания образцов строительных материалов может быть применен в условиях лаборатории заводов-изготовителей строительных материалов без специального разрешения органов санитарно-эпидемиологического надзора и без вреда для здоровья человека, ввиду отсутствия контакта с патогенными микроорганизмами.

Недостаток способа состоит в том, что не учитывается воздействие температуры как фактора, реально существующего при воздействии среды с микроорганизмами и обуславливающего различные результаты.

Задача заключается в усовершенствовании моделирования взаимодействия строительных материалов со средой, вызывающей биологические повреждения строительных изделий и конструкций, использующегося при испытании строительных материалов.

Технический результат, достигаемый при решении указанной задачи, заключается в повышении точности моделирования указанной среды за счет учета температурного фактора.

Технический результат достигается тем, что в способе моделирования взаимодействия строительных материалов со средой, вызывающей биологические повреждения строительных изделий и конструкций, заключающийся в погружении образцов строительных материалов в слабоагрессивную среду, в качестве которой используют смесь органических кислот: уксусной, лимонной и щавелевой кислот, и последующей выдержке образцов в этой среде, выдержку образцов строительных материалов проводят, изменяя температуру в диапазоне±15 градусов относительно комнатной температуры.

Состояния среды, вызывающей биологические повреждения строительных изделий и конструкций, имитируют, варьируя факторы, моделирующие эту среду: концентрации и соотношения органических кислот, значения температуры, при которых проводят выдержку, по плану полного факторного эксперимента.

При этом используют смесь органических кислот следующих концентраций: уксусная кислота 0,9-1,1%, лимонная кислота 0,9-1,1%, щавелевая кислота 0,09-0,12%, и в соотношении 1,8:2,7:0,8-2,1:3,1:1,2.

При имитации состояния среды, вызывающей биологические повреждения строительных изделий и конструкций, используют минимальные и максимальные значения диапазонов концентраций и соотношений органических кислот.

Выдержку образцов строительных материалов проводят, используя заданные значения температуры в указанном диапазоне.

Предлагаемые усовершенствования позволяют расширить спектр моделируемых биосред, в том числе сократить пребывание испытуемых образцов в слабоагрессивной среде (например, четверо суток при повышенной температуре, в то время как при пониженной температуре это время превышает 28 суток).

Предложенный способ может быть проиллюстрирован примером матрицы планирования (МП) многофакторного эксперимента, где в качестве варьируемых факторов выбраны процентные уровни (концентрации) органических кислот (x1 - уксусной, х2 - лимонной, х3-щавелевой). В качестве уровней варьирования указанных факторов выбраны: минимальный (-) соответственно - 0,9; 0,9 и 0,04; и максимальный (+) соответственно - 1,1; 1,1 и 0,12 при соблюдении соотношений компонентов в композиции.

Введенный четвертый фактор (х4) - температура варьировалась на уровнях ±15°С относительно комнатной («-» - нижний уровень температуры, «+» - верхний уровень), где комнатная температура составляет от +15 до +25 градусов С согласно определению, которое представляет XII Государственная фармакопея Российской Федерации часть 1. Выдержку образцов строительных материалов проводят, выбирая крайние значения температуры в указанном диапазоне. Конкретные значения температуры выбирают согласно матрице планирования. Контролируемым параметром (Пк) является также продолжительность пребывания в слабоагрессивной среде, вызывающая повреждение.

Контроль осуществляется как визуально, так и путем измерения прочности образцов, подверженных воздействию слабоагрессивной среды.

МП для исследования сформирована традиционно для реализации полного факторного эксперимента (24) при четырех факторах. Средняя продолжительность пребывания образцов в слабоагрессивной среде показала идентичность повреждений при повышенной и пониженной температурах при нахождении всех факторов на нижнем уровне (увеличение времени экспозиции) и верхнем уровне (уменьшение времени экспозиции) при разных продолжительностях экспозиции.

Предложенный способ позволяет выбирать ту комбинацию варьируемых факторов, которая больше устраивает производителя строительных материалов, включая важный фактор эксплуатационной среды - температуру, и отражающий специфику биосреды, в которой применяются строительные материалы.

При разных составах сырья и добавок возможны изменения продолжительности экспозиции при разных сочетаниях факторов, что определит выбор изготовителя окончательной совокупности воздействий при моделировании процессов биоповреждений. Учитывая, что биостойкость строительных материалов - один из признаков качества, подтверждение должно происходить на этапе изготовления продукции, а выбор моделирующей композиции (совокупность факторов) - на этапе подготовки производства и отработки технологии изготовления строительных материалов

1. Способ моделирования взаимодействия строительных материалов со средой, вызывающей биологические повреждения строительных изделий и конструкций, заключающийся в погружении образцов строительных материалов в слабоагрессивную среду, в качестве которой используют смесь органических кислот: уксусной, лимонной и щавелевой кислот, и последующей выдержке образцов в этой среде, отличающийся тем, что выдержку образцов строительных материалов проводят, изменяя температуру в диапазоне ±15°С относительно комнатной температуры.

2. Способ по п. 1, отличающийся тем, что состояния среды, вызывающей биологические повреждения строительных изделий и конструкций, имитируют, варьируя факторы, моделирующие эту среду: концентрации и соотношения органических кислот, значения температуры и интервалы времени, в течение которых проводят выдержку, по плану полного факторного эксперимента.

3. Способ по п. 2, отличающийся тем, что используют смесь органических кислот следующих концентраций:

уксусная кислота 0,9-1,1%,
лимонная кислота 0,9-1,1%,
щавелевая кислота 0,09-0,12%.

4. Способ по п. 2, отличающийся тем, что используют смесь уксусной, лимонной и щавелевой кислот, в соотношении 1,8:2,7:0,8-2,1:3,1:1,2.

5. Способ по п. 3, отличающийся тем, что при имитации состояния, вызывающего биологические повреждения строительных изделий и конструкций, используют сочетания минимальных и максимальных значений диапазонов концентраций органических кислот.

6. Способ по п. 4, отличающийся тем, что при имитации состояния, вызывающего биологические повреждения строительных изделий и конструкций используют сочетания минимальных и максимальных значений диапазонов соотношений органических кислот.

7. Способ по п. 1, отличающийся тем, что выдержку образцов строительных материалов проводят, варьируя ряд заданных значений температуры в указанном диапазоне.



 

Похожие патенты:

Изобретение относится к устройству, системе и способу для измерения влажности в конструкциях зданий. Трубчатый корпус (100) может быть внедрен в материал во время его отливки.

Изобретение относится к производству строительных материалов. Способ включает подготовку пресс-порошка, прессование образца, фиксацию изменений деформаций при сжатии, построение компрессионных кривых и проведение испытания, причем прессование осуществляют одностадийно и непрерывно, с переменными значениями давления прессования и формовочной влажности пресс-порошка, при этом требуемое оптимальное соотношение влажности и давления прессования определяют положением оптимальной точки на компрессионной кривой, лежащей на ее пересечении с отрезком, перпендикулярным хорде, соединяющей начальное и конечное значения интервала давления прессования на кривой, и проходящим через точку пересечения касательных к кривой в области заданного интервала давления прессования.

Изобретение относится к изготовлению или получению изделий из стекла или стеклокерамики. Изобретение основано на том, чтобы обеспечить получение изделий из стекла или стеклокерамики, имеющих точно охарактеризованные термомеханические свойства.

Изобретение относится к литейному производству и может быть использовано для изготовления образцов из дорожно-строительных материалов. Форма содержит корпус, расположенный на подставках, и верхние и нижние вкладыши.

Группа изобретений относится к области строительной индустрии и предназначена для испытания гипсового вяжущего в заводских, строительных и научно-исследовательских лабораториях для оценки эффективности применения этого вяжущего в рецептурах штукатурных смесей.

Группа изобретений относится к области строительной индустрии и предназначена для испытания гипсового вяжущего для оценки эффективности применения этого вяжущего в рецептурах сухих строительных смесей, а именно напольных.

Группа изобретений относится к области строительства, в частности к испытаниям бетона монолитных вертикальных строительных конструкций методом отрыва со скалыванием.

Изобретение относится к способу лабораторного анализа характеристик строительных материалов, а именно к определению энергии напряжения и линейного расширения бетона, приготовленного на основе расширяющегося цемента.

Изобретение относится к области пожарной безопасности при реконструкции и надстройках зданий, в частности оно может быть использовано для классификации кирпичных столбов с железобетонной обоймой по показателям сопротивления их воздействию пожара. Сущность изобретения: испытание кирпичных столбов с железобетонной обоймой проводят без разрушения по комплексу единичных показателей качества, оценивая величину фактического предела огнестойкости по потере несущей способности. Для этого определяют геометрические размеры кирпичных столбов и железобетонной обоймы, условия обогрева столбов, коэффициент продольного изгиба, классы бетона и арматурной стали, их сопротивление на сжатие, показатели термодиффузии материалов бетона обоймы и кирпичной кладки; величину нормативной нагрузки при испытании на огнестойкость, степень напряжения опасных сечений железобетонной обоймы и кирпичной кладки. Предел огнестойкости кирпичных столбов с железобетонной обоймой определяют по полипараметрическим зависимостям, описывающим процесс сопротивления каменной конструкции огневому воздействию.

Изобретение относится к области пожарной безопасности зданий, в частности оно может быть использовано для классификации каменных столбов, простенков и стен со стальными обоймами по показателям сопротивления их воздействию пожара.

Изобретение относится к экспрессному контролю объемной концентрации цементного раствора в грунтоцементной пульпе при создании подземных строительных конструкций струйной цементацией. Способ включает отбор проб исследуемого материала и определение рентгенофлуоресцентным методом количественного содержания химического элемента в отобранных пробах, причем перед струйной цементацией выбирают химический элемент для закачки его в грунт совместно с цементным раствором при струйной цементации, приготавливают цементный раствор замешиванием цемента в воде и при приготовлении цементного раствора вводят выбранный химический элемент в цементный раствор, отбирают пробу цементного раствора, закачивают цементный раствор под давлением в грунт для образования в грунте строительной конструкции и выделения из грунта грунтоцементной пульпы, при проведении струйной цементации отбирают пробу грунтоцементной пульпы, рентгенофлуоресцентным методом производят измерение весовой концентрации химического элемента в пробах и плотности материалов проб, вычисляют объемную концентрацию цементного раствора в грунтоцементной пульпе. Достигается возможность экспресс-определения объемной концентрации цементного раствора в грунтоцементной пульпе с достаточной точностью для контроля, своевременной корректировки процесса цементации и повышения качества подземных конструкций. 8 з.п. ф-лы, 3 пр.

Изобретение относится к испытательной технике и может быть использовано в строительстве при расчете ограждающих конструкций зданий. Способ заключается в том, что в исследуемом месте ограждающей конструкции на всю глубину кирпичной кладки отбирают два керна, первый керн отбирают по центру ложковой стороны наружного ряда кирпичей, второй керн отбирают так, чтобы слой раствора находился в центре керна. Каждый из полученных кернов разрезают на цилиндры, каждый из цилиндров испытывают на прочность ударно-импульсным методом, при этом для цилиндров первого керна удары производят только по поверхности кирпича, а для цилиндров второго керна удары производят только по поверхности раствора. После проведения испытаний цилиндры с помощью раствора укладывают в места их отбора в ограждающей конструкции. По измеренным значениям прочности рассчитывают сопротивление сжатию кирпичной кладки в каждом слое конструкции, соответствующем расположению цилиндров. Достигается повышение точности расчета прочностных характеристик ограждающей конструкции из кирпичной кладки путем обеспечения возможности определения прочности во всех ее слоях по всему сечению конструкции за счет измерения прочности образцов, взятых на всю глубину кладки, и без потери прочности конструкции. 1 табл., 1 ил.

Изобретение относится к способам экспрессного контроля объемной концентрации цементного раствора в грунтоцементной пульпе при создании подземных строительных конструкций струйной цементацией. При осуществлении способа отбирают пробу исследуемого материала, перед струйной цементацией выбирают химические элементы для закачки их в грунт совместно с цементным раствором при струйной цементации из условия непревышения весового содержания каждого из них 0,1% в грунте и возможности его количественного определения рентгенофлуоресцентным методом, приготавливают цементный раствор замешиванием цемента в воде и при приготовлении цементного раствора вводят два или более химических элемента, рентгенофлуоресцентным методом производят измерение весовой концентрации каждого химического элемента в пробах и плотности материалов проб, по каждому химическому элементу определяют объемную концентрацию цементного раствора в грунтоцементной пульпе, и за результат принимают среднеарифметическое значение определенных по каждому элементу объемных концентраций. При этом по крайней мере один химический элемент или вещество, содержащее этот элемент, находится в другом агрегатном состоянии, чем остальные. Достигается повышение точности определения. 1 з.п. ф-лы, 1 пр.

Изобретение относится к определению механических параметров цементной системы как функции от времени и как функции от тонкости помола цементной системы, давления и/или температуры, являющихся репрезентативными для пластовых условий, имеющих место в стволе скважины. Исходный состав цементной системы, ее тонкость помола Φ и скорость волн сжатия как функция времени Vp(t) являются единственными входными данными в указанном способе. Указанный способ включает: стадию (А), на которой определяют степень гидратации цементной системы как функцию времени α(t) из Vp(t) при давлении P1 и температуре T1; стадию (В), на которой определяют степень гидратации α(t) как функцию желаемых значений тонкости помола Фn цементной системы, давления Pn и/или температуры Tn; стадию (C), на которой определяют состав цементной системы как функцию времени C(t) и как функцию желаемых значений тонкости помола Фn цементной системы, давления Pn и/или температуры Tn из α(t), определенной на стадии (В); и стадию (D), на которой определяют по меньшей мере один механический параметр цементной системы как функцию времени и как функцию желаемых значений тонкости помола Фn цементной системы, давления Pn и/или температуры Tn из C(t), определенного на стадии (C). Достигается повышение точности и надежности определения. 13 з.п. ф-лы, 8 табл., 13 ил.

Изобретение относится к способам оценки состояний теплоизоляции стен зданий и сооружений с учетом степени их увлажнения, которая изменяется в процессе эксплуатации зданий и сооружений. Способ заключается в том, что измеряют температуру стены, причем в качестве температуры стены измеряют температуру наружной поверхности стены, температуру внутренней поверхности стены и температуру между слоями материалов, образующих стену, и дополнительно измеряют среднюю температуру наружного воздуха для периода с отрицательной среднемесячной температурой и температуру внутри помещения, после этого строят ломаную линию изменения температуры по толщине стены, после чего сравнивают значение температуры на границах в каждом из слоев стены с температурой в плоскости максимального увлажнения для каждого слоя материала стены путем построения графика изменения температуры по толщине слоя материала и графика температуры в плоскости максимального увлажнения по толщине слоя материала, представляющего горизонтальную линию постоянной температуры по толщине стены, и если линия температуры в плоскости максимального увлажнения пересекается с линией изменения температуры по толщине стены, то устанавливают, что плоскость максимального увлажнения слоя материала стены проходит вдоль стены через точку пересечения указанных выше линий, если в двух соседних слоях отсутствует плоскость максимального увлажнения и при этом в наружном слое материала стены линия максимального увлажнения лежит выше линии изменения температуры в этом слое, во внутреннем слое линия температуры в плоскости максимального увлажнения лежит ниже линии изменения температуры во внутреннем слое, то устанавливают, что плоскость максимального увлажнения стены лежит в плоскости стыка двух слоев данной стены, а если плоскость максимального увлажнения в соответствии с двумя вышеизложенными вариантами не определена, то устанавливают, что она расположена вдоль наружной поверхности наружного слоя стены. Достигается упрощение прогнозирования защиты от переувлажнения. 4 ил.

Изобретение относится к оперативному определению количества содержания цемента в грунтоцементной конструкции, созданной струйной цементацией. При проведении струйной цементации из количества цемента, необходимого для создания подземной строительной конструкции, замешивают цементный раствор с добавлением в него химического элемента, содержание которого в грунте не превышает 0,1% и в количестве, определяемом рентгенофлуоресцентным анализом, производят бурение лидерной скважины до проектной отметки и в процессе обратного хода в буровую колонну под высоким давлением подают цементный раствор для образования в грунте строительной конструкции, при этом из грунта выделяется грунтоцементная пульпа, отбирают пробу цементного раствора и грунтоцементной пульпы, рентгенофлуоресцентным методом производят измерение весовой концентрации химического элемента в пробах и плотности материалов проб, производят замер верхней части возведенной конструкции, вычисляют ее площадь, а затем количество цемента (в сухом состоянии), содержащееся в 1 м3 подземной конструкции, рассчитывают из заданного соотношения. Достигается возможность оперативно определять количества содержания цемента в грунтоцементной конструкции, созданной струйной цементацией.

Изобретение относится к области исследования процессов твердения цементов и может быть использовано для контроля качества бетонных и железобетонных изделий. Образец исходного сухого цемента затворяют водой и подвергают твердению в воздушно-влажных условиях. В разные промежутки времени процесса твердения цемента, через 3, 14, 28 суток, регистрируют спектры электронного спинового резонанса и рассчитывают концентрацию спиновых центров. Концентрацию спиновых центров исследуемого образца цемента определяют путем сравнения со спектром предварительно протестированного рубинового стержня. Аналогично исследуемому образцу определяют концентрацию спиновых центров контрольного образца. За контрольный образец принимают исходный сухой цемент. Затем определяют показатель изменения концентрации спиновых центров твердения цемента и показатель изменения степени гидратации. Степень гидратации СГi исследуемого цемента в i-й промежуток времени твердения составляет СГi=ƒМi, где ƒ - золотой коэффициент пропорции, равный 0,618034; Mi - показатель изменения степени гидратации. Достигается возможность определения степени гидратации цемента на любой стадии процесса его твердения. 2 табл.

Изобретение относится к методам испытаний строительных материалов в условиях лабораторий заводов - изготовителей. Способ заключается в погружении образцов строительных материалов в слабоагрессивную среду. В качестве такой среды используют смесь органических кислот: уксусной, лимонной и щавелевой кислот. Далее выдерживают образцы в этой среде, причем выдержку проводят, изменяя температуру в диапазоне ±15 градусов относительно комнатной температуры. Достигается повышение точности моделирования указанной среды за счет учета температурного фактора. 6 з.п. ф-лы.

Наверх