Высокотермостойкий радиопрозрачный неорганический стеклопластик и способ его получения

Изобретение относится к радиопрозрачным композиционным материалам. Технический результат – повышение работоспособности аппретирующей пленки, уменьшение кислотности наносимой на стеклоткань суспензии. Высокотермостойкий радиопрозрачный неорганический стеклопластик выполнен на основе фосфатного связующего и аппретированного волокнистого наполнителя. Предварительно на стеклоткань наносили защитное покрытие. Защитное покрытие – неорганическое покрытие, нанесенное на ткань методом «золь-гель» технологии из насыщенных водных растворов солей алюминия и (или) хрома. В качестве связующего использована водная суспензия, состоящая из фосфатной связки с корундовым микропорошком 5-10%, водного шликера кварцевого стекла с полидисперсным зерновым составом твердой фазы 0,1-100 мкм в количестве 50-55% и щелочной кремнезоли в количестве 35-40%. После формования и отверждения при температуре 300-400°С материал дополнительно упрочняют разовой или многократной (3-5 раз) пропиткой насыщенным водным раствором солей алюминия и (или) хрома с последующей сушкой и термообработкой при температуре 500-700°С. 2 н.п. ф-лы, 1 табл.

 

Изобретение относится к радиопрозрачным композиционным материалам на основе фосфатных связующих и волокнистых наполнителей и способов получения высокотермостойких изделий радиотехнического назначения.

Широко известны радиопрозрачные композиционные материалы - неорганические стеклопластики и способы их получения с применением кварцевой или высококремнеземной стеклоткани и алюмофосфатной или хромалюмофосфатной связок.

В авторском свидетельстве СССР №510457, М. Кл.2 СО4В 39/08, В32В 17/04 от 15.04.76, бюллетень №14, представлен конструкционный материал - неорганический стеклопластик, включающий армирующий стекловолокнистый наполнитель 30-70%, совмещенные кислые фосфаты алюминия и хрома 20-40%, активный глиноземсодержащий наполнитель 10-30%. В качестве глиноземсодержащего наполнителя используют глинозем, каолин, глину и др. Материал получают послойной выкладкой стеклоткани, пропитанной неорганическим связующим, и прессованием при удельном давлении 5-10 кг/см2 при температуре 150-170°С. Недостатком материала является разъедание армирующей стеклоткани кислой связкой, особенно при температурах выше 300°С, что вызывает резкое падение прочности. Кроме того материал имеет плохие диэлектрические свойства в связи с введением глины, каолина, золы и других компонентов.

В патенте РФ №2076086, МПК6 СО4В 35/80, опубл. 27.03.1997 г., предложена композиция для изготовления высокотемпературного электроизоляционного стеклотекстолита, содержащая высококремнеземную стеклоткань с содержанием SiO2 не менее 98% в количестве 19-26%, алюмофосфатное связующее с молярным соотношением P2O5/Al2O3 в пределах 3,0-3,2 в количестве 26-29% и порошок оксида алюминия с содержанием α-Al2O3 не менее 95% и зернистостью М5-М20 38-57%. С целью исключения разъедания тонких нитей ткани кислой фосфатной связкой, ее аппретируют 15% раствором кремнийорганической смолы КМ-9К. Набранный пакет прессуют под давлением 10 кгс/см2 и tmax=270°C. Недостатком материала является ухудшение электротехнических свойств при нагреве, удельное электросопротивление при 500°С снизилось на четыре порядка, а при 900°С - на шесть порядков.

Известен способ получения радиотехнического материала (патент РФ №2220930, МПК СО4В 35/80, СО4В 28/34, опубл. 10.01.2014 г.), включающий смешение хромалюмофосфатного связующего ХАФС-3 с электроплавленным корундом в соотношении 1:1, совмещение полученной композиции с кварцевой или кремнеземной тканью, аппретированной 3-7% спиртовым раствором кремнийорганической смолы КМ-9К и отверждение при удельном давлении 0,95-1,05 МПа и подъеме температуры до 270±5°С со скоростью 17-18 град/ч. Достоинством указанного способа является получение более легкого (ρ=1700-1750 кг/м3) и прочного (σизг=1000-1300 кг/см2) материала. Однако, как и в предыдущем аналоге, в материале при нагреве до температур выше 400°С наблюдается значительное ухудшение радиотехнических свойств.

Наиболее близким по технической сущности является композиция стеклотекстолита и способ его изготовления, описанный в патенте РФ №2211201, МПК СО4В 35/80, СО4В 28/34, опубл. 27.08.2003 г., включающая стеклоткань с содержанием SiO2 не менее 98% - 20-22%, алюмофосфатное связующее - 38-40% и порошок оксида алюминия - 38-40%. Способ изготовления стеклотекстолита включает пропитку стеклоткани 15% раствором кремнийорганической смолы, нанесение на заготовки стеклоткани шликера из суспензии алюмофосфатной связки и порошка, выкладку пакета заготовки заданной толщины и после подсушки при 20-25°С в течение 24 часов производят термопрессование при давлении 7,0-9,0 МПа и конечной температуре 270°С.

Основным недостатком прототипа, как и большинства аналогов, является наличие в структуре материала органической составляющей - аппретирующей пленки из кремнийорганической смолы на поверхности стекловолокна, которая при температурах выше 400°С разлагается с выделением углерода и ухудшает радиотехнические свойства материала, особенно тангенс угла диэлектрических потерь (tgδ). Одновременно падает прочность материала, так как после выгорания аппретирующей пленки усиливается воздействие кислой фосфатной связки на кварцевую стеклоткань и разрушает ее.

Техническим результатом предложенного изобретения является:

- повышение работоспособности аппретирующей пленки, наносимой на стеклоткань путем замены аппрета из органополимера на неорганический высокотермостойкий радиопрозрачный материал;

- уменьшение кислотности наносимой на стеклоткань суспензии (шликера) за счет уменьшения количества фосфатной связки, добавки в суспензию щелочной кремнезоли и водного шликера кварцевого стекла;

- проведение дополнительного уплотнения и упрочнения композиционного материала и изделий из него пропиткой насыщенными растворами солей алюминия и хрома с последующим пиролизом летучих.

Сущность изобретения заключается в том, что:

1. Высокотермостойкий радиопрозрачный неорганический стеклопластик на основе фосфатного связующего и аппретированного волокнистого наполнителя, включающий алюмофосфатную или хромалюмофосфатную связку с микропорошками глинозема, кварцевого стекла и ткань стекловолокна с содержанием SiO2 не менее 98% в пропорции 1:1-3:1, отличающийся тем, что в качестве защитного покрытия применено неорганическое покрытие, нанесенное на ткань методом «золь-гель» технологии из насыщенных водных растворов солей алюминия и (или) хрома. В качестве связующего использована водная суспензия, состоящая из фосфатной связки с корундовым микропорошком 5-10%, водного шликера кварцевого стекла с полидисперсным зерновым составом твердой фазы 0,1-100 мкм в количестве 50-55% и щелочной кремнезоли в количестве 35-40%, а после формования и отверждения при температуре 300-400°С материал дополнительно упрочняют разовой или многократной (3-5 раз) пропиткой насыщенным водным раствором солей алюминия и (или) хрома с последующей сушкой и термообработкой при температуре 500-700°С.

2. Способ получения высокотермостойкого радиопрозрачного неорганического стеклопластика и изделий из него, включающий аппретирование стеклоткани с целью защиты ее от воздействия кислой фосфатной связки, приготовление неорганического связующего и нанесение его на стеклоткань, формование композиционного материала и изделий из него, отверждение материала при вакуумировании, прессование и термообработку, отличающийся тем, что аппретирование осуществляют путем пропитки ткани насыщенным водным раствором солей алюминия и (или) хрома, сушку при температуре 20-60°С, приготовление и нанесение на ткань нейтрального связующего, состоящего из 5-10% алюмо- или хромалюмофосфатной связки, 50-55% водного шликера кварцевого стекла с полидисперсным зерновым составом твердой фазы 0,1-100 мкм и щелочной кремнезоли в количестве 35-40%, а после вакуумирования и термопрессования при температурах 300-400°С материал и изделия пропитывают с подсушкой насыщенным водным раствором солей хрома и (или) алюминия, сушат и термообрабатывают при температуре 500-700°С в течение 1-2 часов.

Нами установлено, что замена органополимерного аппрета на неорганический, полученный методом «золь-гель» технологии из насыщенного водного раствора солей хрома и алюминия, например Al(NO3)3⋅9H2O, CrCl3⋅6H2O, с содержанием основного вещества не менее 98%, а также уменьшение количества кислой фосфатной связки до 5-10% в суспензии связующего и введение в него 50-55% водного шликера кварцевого стекла и 35-40% щелочной кремнезоли, например КЗ-ТМ-30, позволяет сохранить прочностные и диэлектрические характеристики неорганического стеклопластика во всем интервале температур от 20 до 1200°С. При этом материал и изделия из него дополнительно упрочняются разовой и многократной (3-5 раз) пропиткой растворами тех же солей с подсушкой и термообработкой при температуре 500-700°С в течение 1-2 часов.

В таблице 1 приведены сравнительные данные по температурной зависимости прочности при изгибе (σизг), диэлектрической проницаемости (ε) и тангенса диэлектрических потерь (tgδ) на 1010 Гц для стеклопластика ХАФСкв и предложенного в настоящей заявке неорганического стеклопластика с применением одних и тех же материалов: кварцевой стеклоткани ТС 8/3-К-ТО ТУ 6-48-112-94, хромалюмофосфатного связующего ФОСКОН 351 ТУ 2149-150-10964029-01, корундового порошка ТУ 3988-075-00224450-99.

Из таблицы следует, что предложенный материал, имея сопоставимую прочность с известным материалом, значительно превосходит его по стабильности диэлектрических характеристик в широком интервале температур и может найти применение в качестве различных деталей и изделий радиотехнического назначения, работающих в интервале температур от 20 до 1200°С.

Известные отечественные неорганические стеклопластики из стеклотекстолита типа СТАФ, ФОСТ, МСП, ХАФС могут работать в условиях полного прогрева только до температур 600-800°С. Такой же недостаток имеют и неорганические стеклопластики зарубежных фирм. Стеклопластик фирмы Brunswick Corp., разработанный для самолетных антенных обтекателей на основе алюмофосфатной связки и стеклоткани из волокна марки S-994, пропитанного кремнийорганической смолой, имел прочность на растяжение 250 МПа при температуре 18°С, 197 МПа при 288°С, 77 МПа при 538°С, 21 МПа при 593°С, a tgδ при этих температурах имел значение 82⋅10-4 при 20°С и 154⋅10-4 при 593°С.

/Chose V.A., Copeland R.L. Fiber Reinforced Ceramics for Electromagnetic Window Application. "Supplement to iEEE Fransactions on Aerospace". 1965, 3, №2, p. 495-501/.

Способ получения неорганического стеклопластика включает следующие технологические этапы:

- аппретирование стеклоткани методом «золь-гель» технологии из насыщенного раствора водорастворимых солей алюминия и хрома;

- приготовление неорганического связующего из фосфатной связки с порошком Al2O3 в пропорции 1:1, водного шликера кварцевого стекла и щелочной кремнезоли;

- нанесение связующего на стеклоткань и сборка пакета на жесткой оправке, определяющей профиль заготовки, изделия;

- вакуумирование пакета при нагреве 200°С с целью откачки влаги и прессование материала, изделия;

- термообработка материала изделия в области температур 300-400°С в течение 1-2 часов с целью завершения процесса дегидратации и отверждения материала;

- упрочнение материала, изделия разовой или многократной (3-5 раз) пропиткой насыщенным водным раствором солей алюминия и хрома с последующей сушкой и термообработкой при температуре 500-700°С в течение 1-2 часа.

Кварцевую стеклоткань ТС 8/3-К-ТО аппретировали путем окунания на 3-5 минут в насыщенный раствор водорастворимых солей алюминия и (или) хрома. Использовали водные растворы азотнокислых, хлоридных солей, солей алюминия и хрома Al(NO3)3⋅9H2O ГОСТ 3757-75, Cr(NO3)3⋅9H2O ГОСТ 4471-78, CrCl3⋅6H2O ГОСТ 4473-78. Сушка ткани производилась в комнатных условиях или в сушильных шкафах при температуре не выше 20-60°С, т.к. повышение температуры увеличивает жесткость ткани и ухудшается процесс выкладки и набора пакета.

В качестве фосфатной связки использовали хромалюмофосфатное связующее ФОСКОН 351 с корундовым наполнителем в виде микропорошков М5-М20, тщательно перемешанной в шаровой мельнице. Для снижения кислотности связки и обеспечения необходимой вязкости при ее нанесении на стеклоткань, ее смешивали в шаровой мельнице или миксере с водным шликером кварцевого стекла с зерновым составом твердой фазы 0,1-100 мкм и щелочной кремнезолью КЗ-ТМ-30 ТУ 2145-008-61-801-487-2010 в пропорции:

фосфатная связка - 5-10%

водный шликер - 50-55%

кремнезоль - 35-40%

рН композиции находится в пределах 3-5. В зависимости от способа нанесения на стеклоткань: кистью, шпателем, прорезиненным валиком, напылением из пульверизатора - допускается введение или выпаривание дистиллированной воды. Для сложнопрофильных изделий нанесение суспензии связующего осуществляли в процессе сборки пакета.

После набора пакет накрывали резиновым или пленочным мешком и вакуумировали при давлении от - 0,2 до - 0,8 кгс/см2 с одновременным подъемом температуры до 200°С со скоростью 10-20°/час. Затем материал, изделие термообрабатывали при температуре 300-400°С в течение 1-2 часов.

Полученное изделие зашкуривали по наружной и внутренней поверхности, доводили тем самым до требуемых размеров и проводили герметизацию и дополнительное упрочнение за счет пропитки по всей поверхности или с одной, наружной, поверхности насыщенным раствором солей Al и (или) Cr, приготовленным ранее для этапа аппретирования ткани. В зависимости от требований к материалу пропитку осуществляли один раз или многократно (3-5 раз) с промежуточным подсушиванием, а термообработку производили после последней пропитки при температуре 500-700°С в течение 1-2 часов. Как показали дериватографические и рентгеноструктурные исследования в этом интервале температур для выбранных материалов завершаются процессы термодеструкции и образование устойчивых окислов.

По предлагаемому техническому решению были изготовлены плоские панели и конические сложнопрофильные изделия, из которых определялись прочность и диэлектрические характеристики, приведенные в таблице 1.

Образцы и макетные изделия прошли испытание на термоциклирование в интервале от -60 до +300°С, 15 циклов и односторонний кинетический нагрев до температуры 1200°С длительностью 6 мин.

1. Высокотермостойкий радиопрозрачный неорганический стеклопластик на основе фосфатного связующего и аппретированного волокнистого наполнителя, включающий алюмофосфатную или хромалюмофосфатную связку с микропорошками глинозема, кварцевого стекла и ткань стекловолокна с содержанием SiO2 не менее 98% в пропорции 1:1-3:1, отличающийся тем, что в качестве защитного покрытия применено неорганическое покрытие, нанесенное на ткань методом «золь-гель» технологии из насыщенных водных растворов солей алюминия и (или) хрома, в качестве связующего использована водная суспензия, состоящая из фосфатной связки с корундовым микропорошком 5-10%, водного шликера кварцевого стекла с полидисперсным зерновым составом твердой фазы 0,1-100 мкм в количестве 50-55% и щелочной кремнезоли в количестве 35-40%, а после формования и отверждения при температуре 300-400°С материал дополнительно упрочняют разовой или многократной (3-5 раз) пропиткой насыщенным водным раствором солей алюминия и (или) хрома с последующей сушкой и термообработкой при температуре 500-700°С.

2. Способ получения высокотермостойкого радиопрозрачного неорганического стеклопластика, включающий аппретирование стеклоткани с целью защиты ее от воздействия кислой фосфатной связки, приготовление неорганического связующего, нанесение его на стеклоткань, формование композиционного материала, отверждение материала при вакуумировании, прессование и термообработку, отличающийся тем, что аппретирование осуществляют путем пропитки ткани насыщенным водным раствором солей алюминия и (или) хрома, сушку при температуре 20-60°С, приготовление и нанесение на ткань водной суспензии, состоящей из фосфатной связки с корундовым микропорошком 5-10%, водного шликера кварцевого стекла с полидисперсным зерновым составом твердой фазы 0,1-100 мкм в количестве 50-55% и щелочной кремнезоли в количестве 35-40%, а после вакуумирования и термопрессования при температурах 300-400°С материал пропитывают с подсушкой насыщенным водным раствором солей хрома и (или) алюминия, сушат и термообрабатывают при температуре 500-700°С в течение 1-2 часов.



 

Похожие патенты:

Изобретение относится к технологии производства теплоизоляционных материалов и может быть использовано в авиакосмической технике, в приборостроении, машиностроении, строительстве и других областях техники.

Изобретение относится к области получения высокотермостойких радиопрозрачных материалов. Технический результат изобретения заключается в защите стеклоткани от термодеструкции, обеспечении диэлектрических и прочностных характеристик материала в режимах одностороннего нагрева до 1200°C при скорости 100 град./с и выше и возможности получения сложнопрофильных изделий без разрушения армирующей сетки.

Изобретение относится к области высокотемпературных керамических материалов и может быть использовано при разработке конструкционных композитов с хрупкими компонентами.

Изобретение относится к медицине, а именно к ортопедической стоматологии, и предназначено для изготовления безметалловых зубных протезов. Выполняют послойное плазменное напыление на подложку материала, содержащего оксид алюминия.

Настоящее изобретение относится к биорастворимому керамическому волокну. Технический результат изобретения заключается в повышении биоразлагаемости, улучшении способности к волокнообразованию.

Изобретение относится к области конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, и может быть использовано в химико-металлургической промышленности для создания изделий и элементов конструкций, подвергающихся воздействию агрессивных сред.

Группа изобретений относится к области керамических композиционных материалов, армированных дисперсными частицами тугоплавких соединений, а также теплонагруженных изделий из данных материалов, и может быть использована в энергетическом машиностроении и аэрокосмической технике, в частности для деталей горячего тракта газотурбинных двигателей (ГТД).

Изобретение относится к конструкциям, работающим в условиях теплового и механического нагружения в окислительной среде, и может быть использовано при создании ракетно-космической техники, где к изделиям предъявляется требование по герметичности.

Изобретения относятся к области композиционных материалов с карбидкремниевой матрицей, предназначенных для работы под избыточным давлением в условиях высокого теплового нагружения и окислительной среды, и могут быть использованы в химической, нефтяной и металлургической промышленности, а также в авиатехнике.
Изобретение относится к области композиционных материалов состава SiC/C-SiC-Si, предназначенных для работы в условиях окислительной среды и механического нагружения при высоких температурах.

Изобретение относится к области огнеупорных материалов и направлено на создание опорных плит (лещадок) для высокотемпературного обжига керамических изделий, таких как посуда, электроизоляторы и т.п. Для изготовления таких плит создан способ получения двухслойного кремний-углеродного композиционного материала с различным содержанием фазы карбида кремния в слоях. Способ получения опорных плит для обжига керамических изделий включает изготовление слоистой заготовки из углеродного войлока на ленте из углеграфитовой ткани и ее силицирование. Процесс силицирования осуществляют при протягивании полученной заготовки под капиллярным питателем, подающим расплав кремния, с последующей кристаллизацией расплава. Способ обеспечивает получение изделий большой площади и относительно малой толщины, которые могут использоваться как в восстановительных, так и в окислительных средах. Предел прочности изделий на изгиб при температуре 1250°С достигает 420 МПа. 1 пр., 3 ил.

Изобретение относится к области углерод-карбидокремниевых конструкционных материалов на основе объемно-армированных каркасов из углеродного волокна, работающих в условиях высокого теплового нагружения и окислительной среды, и может быть использовано в химической, нефтяной и металлургической промышленности, а также в авиакосмической технике. Углерод-карбидокремниевый композиционный материал имеет объемно-армированную структуру на основе многонаправленных стержневых каркасов (n=3, 4 …, где n - число направлений армирования) из углеродного волокна и комплексную углерод-карбидокремниевую матрицу, получаемую из углеводородов в процессе их карбонизации при атмосферном давлении или изостатически под давлением, насыщения заготовок пироуглеродом, высокотемпературной обработки, предварительного силицирования и последующего повторного силицирования после механической обработки. Силицирование (предварительное и повторное) углерод-углеродной заготовки может проводиться любым известным способом, в том числе смесью кремния и бора или смесью кремния с другими тугоплавкими компонентами, или соединениями на основе кремния при плотности заготовок под силицирование в пределах от 1,60 до 1,95 г/см3 в зависимости от конечного использования материала. Представленный углерод-карбидокремниевый композиционный материал обладает высокой термоэрозионной и окислительной стойкостью, а также достаточными физико-механическими характеристиками, которые повышаются с ростом температуры. 1 з.п. ф-лы, 8 пр., 2 табл., 2 ил.

Изобретение относится к способу обработки нитей из карбида кремния, применяемых для армирования композиционных материалов. Способ включает стадию химической обработки нитей водным раствором кислоты, содержащим фтористоводородную кислоту и азотную кислоту, при температуре 10-30°С для удаления диоксида кремния, который присутствует на поверхности нитей, и для образования слоя микропористого углерода. Указанный водный раствор содержит фтористоводородную кислоту в количестве 0,5-4 моль/л и азотную кислоту в количестве 0,5-5 моль/л, при этом молярное отношение HF/HNO3 составляет менее чем 1,5. Изобретение также относится к способу получения волокнистой заготовки, включающему образование волокнистой структуры, включающей обработанные нити из карбида кремния, и применения указанной заготовки для получения детали, изготовленной из композиционного материала. Технический результат изобретения – улучшение поверхности нитей для последующего связывания с пироуглеродом. 3 н. и 9 з.п. ф-лы, 2 ил., 6 пр.

Изобретение относится к производству теплоизоляционных огнеупорных изделий, содержащих муллитокремнеземистое волокно и предназначенных для изготовления изделий для футеровки высокотемпературных тепловых агрегатов. Техническим результатом является повышение прочности и максимальной температуры эксплуатации (до 1550°С) изделий на основе муллитокремнеземистого волокна. Теплоизоляционное изделие получают из смеси, включающей, мас.%: муллитокремнеземистое волокно 25,0-40,0, пористый фракционированный заполнитель корундового состава 40,0-60,0, огнеупорную глину 10,0-25,0, лигносульфонаты технические 2,0-5,0 на сухое вещество. Указанные материалы смешивают, формуют, сушат и обжигают при температуре 1450-1480°С. Для полученных изделий предел прочности при сжатии составляет 7-9 МПа. 2 табл.

Изобретение относится к способу изготовления изогнутой сотовой структуры (10). Способ включает в себя выполнение следующих операций:- создание растягиваемой волоконной структуры (100) путем многослойной прошивки множества слоев нитей основы и множества слоев нитей утка; создаваемая волоконная структура содержит несоединенные зоны, проходящие по всей глубине волоконной структуры, разделенные друг от друга соединяющими зонами, которые соединяют множество слоев нитей утка. Причем часть соединений смещена на одну или несколько нитей в направлении, параллельном направлению слоев нитей утка, между каждой серией данных плоскостей;- пропитку волоконной структуры (100) смолой, являющейся прекурсором требуемого материала;- растягивание волоконной структуры (100) на зажимном приспособлении (50) для формирования ячеек в волоконной структуре в каждой несвязанной зоне (110). При этом зажимное приспособление (50) имеет форму, соответствующую требуемой изогнутой форме производимой сотовой структуры (10); и осуществляют полимеризацию смолы волоконной структуры для создания изогнутой сотовой структуры с множеством ячеек. Технический результат, достигаемый при использовании способа по изобретению, заключается в том, чтобы создавать системы шумопоглощения, обладающие пониженным весом конструктивных элементах в сборных изделиях многослойных конструкций. 9 з.п. ф-лы, 36 ил.

Изобретение относится к способу изготовления изогнутой сотовой структуры (10). Способ включает в себя выполнение следующих операций:- создание растягиваемой волоконной структуры (100) путем многослойной прошивки множества слоев нитей основы и множества слоев нитей утка; создаваемая волоконная структура содержит несоединенные зоны, проходящие по всей глубине волоконной структуры, разделенные друг от друга соединяющими зонами, которые соединяют множество слоев нитей утка. Причем часть соединений смещена на одну или несколько нитей в направлении, параллельном направлению слоев нитей утка, между каждой серией данных плоскостей;- пропитку волоконной структуры (100) смолой, являющейся прекурсором требуемого материала;- растягивание волоконной структуры (100) на зажимном приспособлении (50) для формирования ячеек в волоконной структуре в каждой несвязанной зоне (110). При этом зажимное приспособление (50) имеет форму, соответствующую требуемой изогнутой форме производимой сотовой структуры (10); и осуществляют полимеризацию смолы волоконной структуры для создания изогнутой сотовой структуры с множеством ячеек. Технический результат, достигаемый при использовании способа по изобретению, заключается в том, чтобы создавать системы шумопоглощения, обладающие пониженным весом конструктивных элементах в сборных изделиях многослойных конструкций. 9 з.п. ф-лы, 36 ил.

Изобретение относится к радиопрозрачным композиционным материалам. Технический результат – повышение работоспособности аппретирующей пленки, уменьшение кислотности наносимой на стеклоткань суспензии. Высокотермостойкий радиопрозрачный неорганический стеклопластик выполнен на основе фосфатного связующего и аппретированного волокнистого наполнителя. Предварительно на стеклоткань наносили защитное покрытие. Защитное покрытие – неорганическое покрытие, нанесенное на ткань методом «золь-гель» технологии из насыщенных водных растворов солей алюминия и хрома. В качестве связующего использована водная суспензия, состоящая из фосфатной связки с корундовым микропорошком 5-10, водного шликера кварцевого стекла с полидисперсным зерновым составом твердой фазы 0,1-100 мкм в количестве 50-55 и щелочной кремнезоли в количестве 35-40. После формования и отверждения при температуре 300-400°С материал дополнительно упрочняют разовой или многократной пропиткой насыщенным водным раствором солей алюминия и хрома с последующей сушкой и термообработкой при температуре 500-700°С. 2 н.п. ф-лы, 1 табл.

Наверх