Литьевой самозатухающий композиционный термопластичный материал

Изобретение относится к области термопластичных композиционных материалов, а именно к разработке размеростабильных термопластичных полимерных композиционных материалов (ПКМ) и технологий их переработки в детали и элементы системы кондиционирования воздуха (СКВ) для использования в авиационной промышленности. Композиционный материал включает термопластичный полимер, наполнитель и модификатор, где в качестве термопластичного полимера содержит полисульфон, являющийся продуктом поликонденсации щелочной соли бисфенола с 4,4'-дихлордифенилсульфоном, в качестве модификатора содержит фенолфталеин, а в качестве наполнителя содержит коаксиальные многослойные углеродные нанотрубки. Технический результат заключается в разработке литьевого композиционного термопластичного материала, позволяющего снизить вес элементов и деталей СКВ по сравнению с элементами из алюминиевых сплавов и обеспечивающего технологичность процесса изготовления деталей, а также их рабочую температуру. 1 з.п. ф-лы, 2 табл.

 

Изобретение относится к области термопластичных композиционных материалов, а именно к разработке размеростабильных термопластичных ПКМ и технологий их переработки в детали и элементы системы кондиционирования воздуха (СКВ) для использования в авиационной промышленности. Такие материалы должны обладать низкой плотностью (ρ≤1500 кг/м3), повышенными антистатическими свойствами, иметь прочность при растяжении σр≥75 МПа, температуру эксплуатации до 180°С, отвечать требованиям АП-25 по горючести; перерабатываться в изделия литьем под давлением, детали из них должны сохранять при эксплуатации свои размеры.

Известен аналог - полисульфон марки Udel Ρ-1700 фирмы «Solvay Advanced Polymers»: конструкционный аморфный материал, обладающий повышенной термостойкостью, хорошими электрическими и механическими свойствами (прочность при растяжении равна σр=72 МПа, модуль упругости при растяжении составляет 2400 МПа), способный работать длительно при температурах до 160°С, с температурой стеклования, равной 192°С, стойкий к действию спиртов, масел, смазок, алифатических углеводородов, растворов солей, минеральных кислот и щелочей, растворяется в амидных растворителях и хлорированных углеводородах. Полисульфон Udel Ρ-1700 применяется для производства электротехнических изделий, изделий медицинского назначения, комплектующих в машино- и автомобилестроении и др. Недостатками указанного полисульфона является его неспособность задерживать УФ-излучение, недостаточный уровень прочностных свойств и максимальной рабочей температуры. Кроме того, материал является диэлектриком, что обуславливает скопление на поверхности изготовленных из него деталей статического электричества (ρv=2,9×1016 Ом⋅см).

Известен аналог отечественного производства - полисульфон ПСФ-150, имеющий температуру эксплуатации 150°С и стеклования 190°С. Полисульфон ПСФ-150 полностью отвечает требованиям АП-25 (FAR-25) по горючести и дымообразованию, обладает высокой прочностью (56 МПа), жесткостью (2500 МПа), стойкостью к удару, различным агрессивным средам, имеет хорошие электрические свойства, технологичен при переработке. ПСФ-150 является единственным конструкционным материалом с повышенной теплостойкостью, который выпускается в отечественной промышленности в настоящее время. Однако также являясь диэлектриком, по сравнению с полисульфоном Udel Ρ – 1700, он имеет более низкие значения температуры эксплуатации (150°С) и прочности при растяжении (56 МПа).

Наиболее близким аналогом (патент US 8158245, МПК В32В 27/04, опубл. 17.04.2012), взятым за прототип, является термопластичный композиционный материал следующего химического состава, масс. %:

полиэфирэфиркетон РЕЕК 25,0-60,0
углеродные нанотрубки 3,0-28,0
углеродное волокно AS - 4 35,0-80,0
канальная сажа 25,9 5,9-28,7

Недостатком указанной композиции являются высокие температуры переработки (360-410°С), что требует дорогостоящего специального технологического оборудования.

Технической задачей и техническим результатом заявленного изобретения является разработка литьевого композиционного термопластичного материала, позволяющего снизить вес элементов и деталей СКВ на 20-30% по сравнению с элементами из алюминиевых сплавов и обеспечивающего технологичность процесса изготовления деталей, а также их рабочую температуру до 180°С.

Для решения поставленной задачи и достижения технического результата предлагается термопластичный композиционный материал, включающий термопластичный полимер, наполнитель и модификатор Материал в качестве термопластичного полимера содержит полисульфон, являющийся продуктом поликонденсации щелочной соли бисфенола с 4,4'-дихлордифенилсульфоном, в качестве модификатора содержит фенолфталеин, а в качестве наполнителя содержит коаксиальные многослойные углеродные нанотрубки при следующем соотношении компонентов, масс. %:

полисульфон 25-67
фенолфталеин 30-70
коаксиальные многослойные углеродные нанотрубки 3-30

Коаксиальные многослойные углеродные нанотрубки могут иметь наружный диаметр 8-15 нм, внутренний диаметр 4-8 нм и длину не более 2 мкм, например, типа «Таунит-М».

Полисульфон (марок «ПСФ-1», «ПСК-1»), являющийся продуктом поликонденсации щелочной соли бисфенола с 4,4'-дихлордифенилсульфоном, макромолекула которого содержит группы =С(СН3)2, получают по технологии нуклеофильной поликонденсации в растворителе, что обеспечивает изготовление сополимеров заданной молекулярной массы с высокой термостабильностью.

Применение в качестве модификатора фенолфталеина (объемными боковыми циклическими группами в повторяющемся звене макромолекулы полисульфона), позволяет повысить температуру стеклования до 10% и прочность при растяжении до 35%. Введение модификатора в полисульфон осуществляется путем химической модификации - в процессе синтеза при температурах 160-320°С.

Применение в качестве наполнителя коаксиальных многослойных углеродных нанотрубок типа «Таунит-М» позволяет повысить у химически модифицированного полисульфона - полиарилсульфона прочность при растяжении до 8%, стабильность размеров (снизить усадку в 2 раза), обеспечить антистатические свойства (ρv=1,0×104 Ом⋅см вместо 6,7×1015 Ом⋅см). Углеродные нанотрубки имеют наружный диаметр 8-15 нм и длину - не более 2 мкм. Число слоев одной трубки - 6÷10. Удельная геометрическая

поверхность составляет 300÷320 м2/г. Указанные параметры углеродных нанотрубок обеспечивают повышение электропроводности (антистатических свойств) материала и сохранение его технологичности при переработке.

При эксплуатации изделий из полимерных материалов существует опасность возникновения на их поверхности статического электричества вследствие низкой электропроводности. Статическое электричество значительно повышает риск возникновения пожаров, что, в свою очередь, может привести к выведению отдельных узлов или всей конструкции из строя. Одним из методов преобразования изолирующего полимера в проводящий является его наполнение проводящими частицами, такими как канальная сажа, технический углерод, углеродное волокно, металлическое волокно (из нержавеющей стали), а также углеродные нанотрубки. Для обеспечения необходимого уровня электрических свойств полимерных композиционных материалов важны контактные явления на границе наполнитель-полимер, определяющие в значительной мере электропроводность и другие электрофизические свойства материала. Образование проводящих путей в двухфазной системе зависит от способности частиц электропроводящей фазы образовывать хороший электрический контакт при их соприкосновении или сближении. Учитывая огромное число контактов между частицами, любые изменения в свойствах контакта оказывают сильное влияние на электропроводность материала.

Введение углеродных нанотрубок осуществляют способом физической модификации, которая позволяет получить полимеры матричной структуры, основные свойства которых определяет матрица, в данном случае - полиарилсульфон (химически модифицированный полисульфон). Модификацию осуществляли путем совмещения компонентов в двухшнековом экструдере при температуре 290-325°С и объемной скорости переработки 400-600 см3.

Переработка разработанного литьевого самозатухающего композиционного термопластичного материала осуществляется способом литья под давлением на термопластавтомате со шнековой пластикацией (фирмы ARBURG ALLROUNDER). Температура литья 300-350°С, давление - 145-165 МПа, скорость впрыска - от 45 до 70 см3/с.

По сравнению с российским аналогом - полисульфоном ПСФ-150 (ОАО «Институт пластмасс») и зарубежным - полисульфоном марки Udel Ρ -1700 фирмы «Solvay Advanced Polymers» предлагаемый размеростабильный литьевой самозатухающий композиционный термопластичный материал на основе полиарилсульфона имеет следующие преимущества (соответственно):

- более высокую рабочую температуру (на 30 и 20°С); (20,0 и 12,5%);

- повышенную температуру стеклования (на 22 и 20°С); (11,5 и 11,0%):

- более высокое значение прочности при растяжении (на 32 и 26 МПа); (57,1 и 22,2%);

- антистатические свойства: удельное объемное электрическое сопротивление ρv=2,2×105 Ом⋅см против >1,4×1016 и 2,9×1016;

- технологичность по сравнению с полисульфоном марки Udel Ρ - 1700, так как имеет молекулярную массу Mw на 33-45% ниже.

Кроме того, предлагаемый материал сохраняет значение модуля упругости при растяжении при температуре испытания 180°С на уровне 70%, что является следствием сохранения жесткости и стабильности размеров литьевых деталей и изделий в процессе эксплуатации, а также имеет значение температурного коэффициента линейного расширения (ТКЛР) в диапазоне температур от -60 до 180°С - 47-65×10-6 К-1 и обладает колебанием усадки 0,05%, то есть материал является размеростабильным.

Заявленный литьевой самозатухающий композиционный термопластичный материал позволяет обеспечить импортозамещение, возможность использования не только в изделиях гражданской и военной техники, но и в народном хозяйстве; улучшить экологическую обстановку в цехах при изготовлении и переработке материала за счет исключения растворителя; осуществить возможности многократной переработки без ухудшения свойств изделия и значительно сократить количество отходов за счет вторичной переработки.

Примеры осуществления

Пример 1

Приготовление

Смесь щелочной соли бисфенола - А с 4,4'- дихлордифенилсульфоном, 30 масс. %, и фенолфталеином, 70 масс. %, загружают в реактор, где проводят синтез методом ароматической нуклеофильной поликонденсации в апротонных растворителях. В качестве растворителей, как правило, используют диметилсульфоксид, диметилацетамид, N-метилпирролидон, диметилсульфон, дифенилсульфон. Для получения щелочных солей бисфенолов применяют гидроокись натрия или углекислый калий. Поликонденсацию ведут при температуре 160-3200°С, в зависимости от применяемого растворителя и реакционной способности мономеров. После перерастворения в хлорбензоле и фильтрации от соли полученный продукт концентрируют на роторно-пленочном испарителе.

Для изготовления литьевого самозатухающего композиционного термопластичного материала полученный в результате реакции поликонденсации в виде порошка полиарилсульфон насыпают в металлические противни ровным слоем, толщиной не более 30 мм и сушат в вакуумном сушильном шкафу в течение 3 ч при температуре (125±5)°С (остаточное давление 0,3 кгс/см2). Высушенный материал выгружают из термошкафа и пересыпают в герметичную тару.

Далее полиарилсульфон, 100 масс. %, и многослойные углеродные нанотрубки «Таунит-М», 3,1 масс. %, загружают при комнатной температуре в смеситель типа «пьяная бочка» и перемешивают. Полученную смесь (композицию) выгружают из смесителя и помещают в полимерную емкость, закрыв крышкой.

Затем подготовленную смесь (композицию) загружают в бункер экструдера, нагретый до 300-325°С, при скорости вращения шнека: 20-40 об/мин. Полученный в результате нагрева расплав полиарилсульфона перемешивается с многослойными углеродными нанотрубками в зонах экструдера с помощью двух вращающихся шнеков.

Выходящие из сопла экструдера стренги изготовленного материала пропускаются через направляющие ролики в ванне охлаждения и подаются в приемно-гранулирующее устройство с установленной скоростью нарезки гранул, обеспечивающую необходимый размер получаемых гранул - от 2 до 8 мм.

Полученные гранулы материала собираются в приемную емкость.

Технологию изготовления литьевых композиционных термопластичных материалов по примерам 2-12 (табл. 1) осуществляли аналогично примеру 1.

По сравнению с прототипом - углеволокнитом на основе полиэфирэфиркетона РЕЕК и углеродного волокна AS – 4, разработанный литьевой композиционный термопластичный материал обладает большей технологичностью:

- перерабатывается высокопроизводительным способом литья под давлением (прототип - прессованием, вакуум-формовкой, штамповкой и т.д.);

- имеет температуры переработки 300-350°С, что на 60°С ниже температур переработки прототипа (360-410°С), что позволяет использовать серийное оборудование.

1. Термопластичный композиционный материал, включающий термопластичный полимер, наполнитель и модификатор, отличающийся тем, что в качестве термопластичного полимера содержит полисульфон, являющийся продуктом поликонденсации щелочной соли бисфенола с 4,4'-дихлордифенилсульфоном, в качестве модификатора содержит фенолфталеин, а в качестве наполнителя содержит коаксиальные многослойные углеродные нанотрубки при следующем соотношении компонентов, мас.%:

полисульфон 25-67
фенолфталеин 30-70
коаксиальные многослойные углеродные нанотрубки 3-30

2. Термопластичный композиционный материал по п.1, отличающийся тем, что коаксиальные многослойные углеродные нанотрубки имеют наружный диаметр 8-15 нм, внутренний диаметр 4-8 нм и длину не более 2 мкм.



 

Похожие патенты:

Изобретение относится к поверхностным пленкам композитов, в частности к поверхностным пленкам для армированных полимерматричных композитных структур, способу их получения.

Изобретение относится к получению синтетических формованных изделий, например, для изготовления снижающих трение лент, используемых в качестве промежуточного слоя гибких жидкостных трубопроводов, например, для транспортирования нефти.

Изобретение относится к химии полимеров, в частности к составам на основе эпоксидных смол, применяемых для получения покрытий защитного назначения методом ускоренного их формирования.

Изобретение относится к области создания многослойных полимерных пленочных покрытий для применения в составе изделий из полимерных композиционных материалов (ПКМ), в том числе, когда формирование полимерного покрытия и изделия из ПКМ происходит за один технологический цикл, а также для нанесения полимерных покрытий на металлические материалы, которые могут быть использованы в авиационной, машино-, авто-, судостроительной промышленности.

Изобретение относится к эпоксидным смолам, которые упрочняют с помощью термопластичных материалов и которые используют для получения композитных материалов для изготовления препрегов, используемых для аэрокосмических применений.
Изобретение относится к полимерным пленочным материалам, модифицированным нанокомпозитными соединениями, предназначенным для применения в электронной промышленности, электротехнике, машиностроении.

Изобретение относится к смеси полифенилсульфона (ПФСУ) и политетрафторэтилена (ПТФЭ) для изготовления формованных изделий из синтетического материала, к способу изготовления формованных изделий из синтетического материала и применению вышеуказанной смеси.

Изобретение относится к термопластичной формовочной массе, обладающей устойчивостью к деформации формованных изделий, используемых для изготовления рефлекторов (фар), например, в автомобильной промышленности.
Изобретение относится к полимерным композициям на основе полисульфона и могут применяться в производстве конструкционных пленочных изделий. .

Изобретение относится к новой смеси стабилизатора для стабилизации органического материала от воздействия света, тепла и кислорода. .

Изобретение относится к резиновой промышленности, в частности к композиции для низа обуви. .

Способ стабилизации полиамидов против термоокислительной деструкции1известен способ ста^илиз-ации полиам:идов против термоокислительной деструкции путем введения в них стабилизирующей смеси из двух компонентов: гипофосфнта металла, взятого в количестве от 0,0004—0,0014 до 0,1 — 0, 35 вес. %, и фосфината, взятого в количестве 0,0002—0,04 вес. % •однако использование указанного стабилизирующего состава не обеспечивает достаточно эффективной стабилизации полиамидов.с целью повыщения эффективности стабилизации полиамидов предлагается в качестве стабилизатора использовать синергическую смесь, содержащую гипофосфит металла переменной валентности или 1а, па или пб- групп периодической системы менделеева, взятый в количестве 0, 01—0,25% от веса полиамида и фенольное соединение, взятое в количестве 0,01—^5% от веса полиамида, обшей формулы i или ii10•ch2-n-c--b (шн j2где r* и r2 — низший алкил с 1—6 атомами углерода, а — группа, состоящая из-^н-снох^^ у ch^- nh-,15-n-(c^h,н,)-?-и01 chg-chj-c--а (i)2или-ж'чn-,\/'20 m — число от 2 до 8, предпочтительно 2—6, в — алкилен с 1 —10 атомами углерода или•^с2н4s^с2н4—.примерами низших алкильных групп r*^ и r2 являются метил-, этил-, пропил-, изопро- 25 пил-, грег-бутил-, пентилн гексил-, предпочтительно метили разветвлешные алкильные группы, как третичный бутил и изопропил. // 432725

Изобретение относится к каучуковой композиции на основе диенового эластомера, армирующего наполнителя, содержащего технический углерод и неорганический наполнитель в количестве менее чем или равном 50 мас.ч.
Наверх