Способ защиты деталей газовых турбин из никелевых сплавов

Изобретение относится к области металлургии и может быть использовано для защиты деталей от высокотемпературного окисления. Способ защиты деталей газовых турбин из никелевых сплавов включает осаждение в вакууме на внешнюю поверхность деталей первого слоя покрытия из сплава на основе никеля, содержащего, мас.%: гафний 0,5-3,0, алюминий 10,0-20,0, хром 5,0-10,0, никель – остальное. Осуществляют осаждение второго слоя из алюминиевого сплава, содержащего, мас.%: гафний 0,5-3,0, никель 10,0-20,0, алюминий – остальное. Затем осуществляют вакуумный отжиг. Техническим результатом изобретения является повышение жаростойкости покрытия при рабочих температурах деталей газовых турбин из никелевого сплава до 1250°C. 1 з.п. ф-лы, 4 табл., 3 пр.

 

Изобретение относится к области металлургии и машиностроения и может быть использовано в авиационном и энергетическом турбостроении для защиты деталей от высокотемпературного окисления, в том числе сопловых блоков, створок сопла газотурбинного двигателя (ГТД) с регулируемым вектором тяги, рабочих и сопловых лопаток газовых турбин из никелевых сплавов.

Известен способ осаждения диффузионного алюминидного покрытия на подложку из никелевого или кобальтового жаропрочного сплава (патент US 6291014 B1, С23С 10/02, опубл. 18.09.2001), включающий нанесение диффузионного алюминидного покрытия, содержащего: Al, Si и Hf на подложку для формирования начального слоя алюминидного покрытия, далее нанесение слоя платины, формирование внутреннего слоя алюминидного покрытия и внешнего слоя гамма матрицы Ni, Pt, Si с содержанием компонентов от 0,01 до 8%, вторичные выделения, включающие силициды гафния и кремния. Недостатками способа являются высокая трудоемкость процесса, использование дорогостоящего драгоценного металла - платины, неудовлетворительная жаростойкость покрытия при температурах выше 1100°C.

Известен также способ защиты лопаток газовых турбин (патент RU 2280096 C1, С23С 14/06, опубл. 20.07.2006), включающий последовательное осаждение в вакууме на внешнюю поверхность пера лопатки первого слоя конденсированного покрытия из никелевого сплава, содержащего алюминий и карбидообразующие элементы, последующее осаждение второго слоя на основе алюминия и вакуумный отжиг, отличающийся тем, что перед осаждением первого слоя конденсированного покрытия на внешней поверхности пера лопатки формируют керметный слой из никелевого сплава, содержащего алюминий и карбидообразующие элементы путем введения в вакуум углеродсодержащего газа при давлении (0,1-5)⋅10-1 Па. Недостатком способа являются недостаточно высокие жаростойкие свойства покрытия при рабочих температурах до 1200°C.

Наиболее близким аналогом, взятым за прототип, является способ защиты лопаток газовых турбин (патент RU 2452793 C1, С23С 14/06, опубл. 10.06.2012), включающий осаждение в вакууме на внешнюю поверхность деталей первого слоя конденсированного покрытия из никелевого сплава, содержащего хром, алюминий, иттрий, тантал, рений, последующее осаждение второго слоя из алюминиевого сплава и вакуумный отжиг, отличающийся тем, что осаждение первого слоя покрытия производят из никелевого сплава, дополнительно легированного гафнием, при следующем соотношении компонентов, мас. %:

Хром 6,0-11,5
Алюминий 6,0-12,0
Иттрий 0,1-0,5
Тантал 1,5-8,0
Рений 0,3-2,5
Гафний 0,2-1,5
Никель Остальное

Недостатком способа-прототипа являются недостаточно высокие жаростойкие свойства покрытия при рабочих температурах лопатки из никелевого сплава до 1250°C.

Способ защиты деталей газовых турбин из никелевых сплавов с осаждением первого слоя покрытия из сплава на основе никеля, дополнительно легированного гафнием, позволяет поднять жаростойкость покрытия за счет формирования на границе защищаемый сплав - покрытие карбидов на основе гафния, которые являются более термически стабильными при температурах выше 1100°C, чем карбиды хрома и вольфрама. Карбиды на основе гафния создают барьер, препятствующий диффузии алюминия из сплава покрытия в защищаемый сплав, а также встречной диффузии легирующих элементов защищаемого сплава в покрытие, снижающих жаростойкость при температуре выше 1100°C (титан, молибден, кобальт). Кроме того, гафний оказывает положительное влияние на жаростойкость покрытия путем создания на поверхности покрытия окислов, повышающих адгезию защитной пленки оксида алюминия. Отсутствие в составе сплава таких элементов, как тантал, рений, иттрий, исключает формирование на поверхности покрытия шпинелей, снижающих защитные свойства оксидной пленки.

Техническим результатом изобретения является повышение жаростойкости покрытия при рабочих температурах деталей газовых турбин из никелевого сплава до 1250°C.

Технический результат достигается способом защиты деталей газовых турбин из никелевых сплавов, включающим осаждение в вакууме на внешнюю поверхность деталей первого слоя конденсированного покрытия из никелевого сплава, последующее осаждение второго слоя из алюминиевого сплава и вакуумный отжиг, отличающимся тем, что осаждение первого слоя покрытия производят из никелевого сплава, при следующем содержании компонентов, мас. %:

Гафний 0,5-3,0
Алюминий 10,0-20,0
Хром 5,0-10,0
Никель Остальное

а осаждение второго слоя покрытия производят из алюминиевого сплава, легированного гафнием, при следующем соотношении компонентов, мас. %:

Гафний 0,5-3,0
Никель 10,0-20,0
Алюминий Остальное

Предпочтительно после вакуумного отжига на поверхность покрытия наносится керамический слой на основе диоксида циркония.

Примеры осуществления

Пример 1. Ионно-плазменным методом на внешнюю поверхность соплового блока из никелевого интерметаллидного сплава ВКНА-1В в соответствии с предлагаемым способом нанесли первый слой конденсированного покрытия из никелевых сплавов 1, 2 и 3 системы NiCrAlHf, состав которых представлен в таблице 1. Затем произвели осаждение второго слоя из алюминиевых сплавов 4, 5 и 6 (соответственно) системы AlNiHf, состав которых представлен в таблице 1, и термообработали в вакууме по режиму 1000-1050°C в течение 3-4 часов детали с покрытиями. Толщина слоя из никелевых сплавов составляла 60-100 мкм, удельный привес алюминия на единицу поверхности 50-60 г/м2.

Жаростойкость покрытия определяли по удельному изменению массы, результаты испытаний приведены в таблице 2.

Пример 2. Ионно-плазменным методом на внешнюю поверхность створки сопла для ГТД с регулируемым вектором тяги из никелевого интерметаллидного сплава ВКНА-25 в соответствии с предлагаемым способом нанесли первый слой конденсированного покрытия из никелевых сплавов 1, 2 и 3 системы NiCrAlHf, состав которых представлен в таблице 2. Затем произвели осаждение второго слоя из алюминиевых сплавов 4, 5 и 6 (соответственно) системы AlNiHf, состав которых представлен в таблице 1, и термообработали в вакууме по режиму 1000-1050°C в течение 3-4 часов детали с покрытиями. Толщина слоя из никелевых сплавов составляла 60-100 мкм, удельный привес алюминия на единицу поверхности 50-60 г/м2.

Жаростойкость покрытия определяли по удельному изменению массы, результаты испытаний приведены в таблице 3.

Пример 3. Ионно-плазменным методом на внешнюю поверхность лопатки газовых турбин из никелевого сплава ВИН3 в соответствии с предлагаемым способом нанесли первый слой конденсированного покрытия из никелевых сплавов 1, 2 и 3 системы NiCrAlHf, состав которых представлен в таблице 3. Затем произвели осаждение второго слоя из алюминиевых сплавов 4, 5 и 6 (соответственно) системы AlNiHf, состав которых представлен в таблице 1, и термообработали в вакууме по режиму 1000-1050°C в течение 3-4 часов детали с покрытиями. Толщина слоя из никелевых сплавов составляла 60-100 мкм, удельный привес алюминия на единицу поверхности 50-60 г/м2.

Жаростойкость покрытия определяли по удельному изменению массы, результаты испытаний приведены в таблице 4.

На всех деталях из никелевых сплавов ВКНА-1В, ВКНА-25 и ВИН3 покрытие, полученное с использованием сплавов 2 и 5, на базе испытаний 500 часов обеспечило наименьшие значения потери массы деталей (таблицы 2, 3, 4) за счет положительного влияния гафния, снижения содержания хрома и исключения тантала, рения и иттрия. Жаростойкость покрытия повысилась более чем в 1,5 раза.

Применение предлагаемого способа позволяет повысить жаростойкость покрытия и, следовательно, ресурс и надежность деталей газовых турбин.

1. Способ защиты деталей газовых турбин из никелевых сплавов, включающий осаждение в вакууме на внешнюю поверхность деталей первого слоя конденсированного покрытия из никелевого сплава, последующее осаждение второго слоя из алюминиевого сплава и вакуумный отжиг, отличающийся тем, что осаждение первого слоя покрытия производят из никелевого сплава, при следующем соотношении компонентов, мас. %:

Гафний 0,5-3,0
Алюминий 10,0-20,0
Хром 5,0-10,0
Никель остальное

а осаждение второго слоя покрытия производят из алюминиевого сплава, содержащего компоненты при следующем соотношении, мас. %:

Гафний 0,5-3,0
Никель 10,0-20,0
Алюминий остальное

2. Способ по п. 1, отличающийся тем, что после вакуумного отжига на поверхность покрытия наносят керамический слой на основе диоксида циркония.



 

Похожие патенты:

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз характеризуется тем, что определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом с изменением при этом процентного соотношения фаз металл-керамика в покрытии от нуля до максимума.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ получения нанокомпозитных покрытий металл-керамика с требуемым значением микротвердости включает обеспечение в получаемом покрытии необходимого процентного соотношения металлической и керамической фаз при определенном химическом составе упомянутых фаз, при этом определяют значение микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом с изменением при этом процентного соотношения фаз металл-керамика в покрытии от нуля до максимума.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ получения износостойкого нанокомпозитного покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины ионно-лучевым распылением включает обеспечение в получаемом покрытии необходимого процентного соотношения металлической и керамической фаз при определенном химическом составе упомянутых фаз, при этом определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом и с изменением процентного соотношения фаз металл-керамика в покрытии от нуля до максимума, после чего определяют значения микротвердости полученного покрытия при заданном соотношении указанных фаз.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике, машиностроении и т.д. Способ получения нанокомпозитного металл-керамического покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины включает нанесение ионно-лучевым распылением покрытия с необходимым процентным соотношением металлической и керамической фаз, при этом процентное соотношение металлической и керамической фаз определяют с помощью нейронной сети, для чего наносят покрытия с заданным шагом процентного соотношения фаз металл-керамика, изменяющимся в покрытии от нуля до максимума, определяют значения микротвердости нанесенных покрытий, затем на основании полученных данных создают искусственную нейронную сеть, проводят ее обучение, тестируют полученную нейросетевую модель путем последовательного исключения из статистической выборки, которая использовалась для ее обучения, экспериментально измеренных факторов нейросетевой модели, включающих микротвердость металлического покрытия, микротвердость керамического покрытия, концентрацию металлической фазы в композите и микротвердость нанокомпозитного покрытия в качестве выходного параметра модели, с последующим их определением при помощи полученной нейросетевой модели и сравнения полученных теоретических данных с исходными экспериментальными значениями, затем в искусственную нейронную сеть вводят значения микротвердости металлического и керамического покрытия, их процентное соотношение в получаемом покрытии и при помощи искусственной нейронной сети рассчитывают значение микротвердости металл-керамического нанокомпозитного покрытия при введенном процентном соотношении металлической и керамической фаз.

Изобретение относится к технологии ионно-плазменного напыления и может быть использовано для изготовления фильтрующих элементов, применяемых в медицине, а также химической, металлургической и горнодобывающей отраслях промышленности.

Изобретение относится к технологиям нанесения ионно-плазменных и катафорезных покрытий, в частности к способу обработки поверхности металлического изделия, и может быть использовано для защиты от фреттинга осей поворотных лопаток направляющего аппарата из титанового сплава и болтовых соединений из стали.

Изобретение относится к нанослойному покрытию режущего инструмента и способу его нанесения на режущий инструмент. Осуществляют нанесение на поверхность режущего инструмента покрытия, содержащего нанослойную структуру из чередующихся нанослоев А, состоящих из (Al,Ti,W)N, и нанослоев В, состоящих из (Ti,Si,W)N.

Изобретение относится к поршневому кольцу, его применению и способу его изготовления. Поршневое кольцо (1) выполнено с основой (10) и нанесенным на нее защитным покрытием от износа (20), которое имеет, по меньшей мере, первый элемент, точка плавления которого составляет Tm≤700°C.

Способ включает размещение изделия с жаростойким покрытием в камере распыления, заполненной смесью кислорода и инертного газа, нагрев изделия, магнетронное распыление мишени из сплава на основе циркония с образованием керамического слоя и термообработку изделия и отличается тем, что нагрев изделия осуществляют хотя бы частично потоком газоразрядной магнетронной плазмы до температуры 200-800°C и используют мишень из сплава циркония, иттрия, гадолиния и гафния следующего состава, мас.%: иттрий - 6-10, гадолиний - 6-10, гафний 3-7, цирконий - остальное.

Изобретение относится к изделиям, в частности, таким как водопроводные краны, имеющим декоративно-защитное покрытие темного цвета. При этом темный цвет может быть представлен, в частности, черным, темно-бронзовым, иссиня-черным, ярко-синим или серо-голубым цветом.

Изобретение относится к технологиям получения износостойких, прочностных тонких алмазных пленок методом вакуумной лазерной абляции и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и создания наноструктурных материалов. Тонкую наноалмазную пленку получают на стеклянной подложке путем распыления материала мишени импульсным лазером в вакууме, при этом в качестве мишени используют таблетки из детонационного наноалмаза, а в качестве источника импульсного лазерного излучения используют лазер с длиной волны 1064 нм серией от 13 до 20 импульсов, с энергией импульса от 3,8 до 5,8 Дж и длительностью от 1 до 1,5 мс. Процесс сопровождается диспергированием конгломератов детонационного наноалмаза до единичных нанокристаллов и очисткой от примесей в ходе высокоэнергетического воздействия лазерным импульсом. Полученная пленка представляет собой двумерный поликристаллический наноалмазный агрегат. 9 ил., 2 табл., 5 пр.

Изобретение относится к линии изготовления азотированного листа из текстурированной электротехнической стали и к способу изготовления листа из указанной стали с использованием данной линии. Упомянутая линия содержит зону азотирования для азотирования листа, зону охлаждения для охлаждения листа и зону нагрева для нагрева листа, расположенную перед зоной азотирования. Зона азотирования снабжена электродами тлеющего разряда, причем в качестве отрицательного электрода используется лист, подвергаемый плазменному азотированию в тлеющем разряде, а в качестве положительных электродов электроды тлеющего разряда, расположенные в камере азотирования. В предложенной линии зона азотирования в направлении ширины листа разделена на зоны для обеспечения раздельного контроля азотирования внутри каждой из разделенных зон. С использованием данной линии осуществляют способ изготовления азотированного листа из текстурированной электротехнической стали, в котором после холодной прокатки и перед вторичным рекристаллизационным отжигом проводят непрерывное плазменное азотирование в тлеющем разряде листа из текстурированной электротехнической стали. Обеспечивается равномерное азотирование стального листа, снижается время, необходимое для обработки стального листа, при стабильном получении превосходных магнитных свойств по всей полосе. 3 н. и 12 з.п. ф-лы, 4 ил.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана. Затем наносят верхний слой из нитрида соединения титана, кремния и молибдена при их соотношении, мас.%: титан 93,1-95,0, кремний 1,0-1,4, молибден 4,0-5,5. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами. Первый катод выполняют из сплава титана и кремния, второй - из титана и располагают противоположно первому, а третий изготавливают составным из титана и молибдена и располагают между ними. Нижний слой наносят с использованием второго катода, а верхний слой - с использованием первого и третьего катодов. Повышается работоспособность режущего инструмента. 1 табл.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана. Затем наносят верхний слой из нитрида соединения титана, кремния и хрома при их соотношении, мас.%: титан 87,1-90,5, кремний 1,0-1,4, хром 8,5-11,5. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами. Первый катод выполняют из сплава титана и кремния, второй - из титана и располагают противоположно первому, а третий изготавливают составным из титана и хрома и располагают между ними. Нижний слой наносят с использованием второго катода, а верхний слой - с использованием первого и третьего катодов. Повышается работоспособность режущего инструмента. 1 табл.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ вакуумно-плазменного нанесения многослойного покрытия, включает нанесение нижнего слоя из нитрида хрома и нанесение верхнего слоя из нитрида соединения титана, кремния и молибдена при их соотношении, мас.%: титан 93,1-95,0, кремний 1,0-1,4, молибден 4,0-5,5, при этом нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют из сплава титана и кремния, второй - из хрома и располагают противоположно первому, а третий изготавливают составным из титана и молибдена и располагают между ними, причем нижний слой наносят с использованием второго катода, а верхний слой - с использованием первого и третьего катодов. В результате нанесения многослойного покрытия повышается работоспособность режущего инструмента. 1 табл.
Изобретение относится к ионно-плазменному способу нанесения износостойких покрытий на поверхности изделий из металлов и других материалов. Способ нанесения износостойкого покрытия на основе нитрида углерода на изделие включает ионно-плазменную очистку и нагрев поверхности изделия до 200-450°C, формирование ионно-плазменным осаждением в атмосфере аргона переходного слоя Ti, формирование ионно-плазменным осаждением в атмосфере азота переходного слоя TiN, ионно-плазменное осаждение алмазоподобной пленки CNx в атмосфере азота импульсным дуговым разрядом в виде кластеров углеродной плазмы плотностью 5⋅1012-1⋅1013 см-3, длительностью импульса 200-600 мкс и частотой следования импульсов 1-5 Гц. В частных случаях осуществления изобретения при формировании промежуточных слоев Ti и TiN осуществляют магнитную сепарацию плазменного потока. Слой алмазоподобной пленки CNx покрытия наносят толщиной 0,2-2,0 мкм. Нанесение слоя алмазоподобной пленки проводят чередованием нанесения алмазоподобного слоя и обработки этого слоя ионами аргона. Во время ионно-плазменной очистки к изделию подводят импульсное отрицательное напряжение. Обеспечивается повышение износостойкости поверхности изделия за счет нанесения покрытия на основе нитрида углерода. 4 з.п. ф-лы, 3 пр.

Группа изобретений относится к нанесению покрытий на подложки и может быть использовано для нанесения покрытий на поверхности инструментов и деталей. Сверло с покрытием, которое выполнено по меньшей мере на сверлильной головке сверла и имеет по меньшей мере один слой, нанесенный магнетронным распылением импульсами высокой мощности (HIPIMS-слой), который нанесен непосредственно на корпус сверла. HIPIMS-слой имеет по меньшей мере один слой по меньшей мере из одного нитрида, и/или карбида, и/или оксида. На HIPIMS-слое предусмотрен слой из аморфного углерода или углеродсодержащий слой (DLC-слой). Слой из аморфного углерода или DLC-слой предусмотрен на HIPIMS-слое в форме металлсодержащего DLC-слоя, при этом содержание металла в DLC-слое постепенно сокращается по направлению к поверхности. Слои получаются плотными и однородными, имеют хорошее сцепление с незначительной шероховатостью поверхности. Увеличивается срок службы инструментов с таким покрытием. 4 н. и 22 з.п. ф-лы, 2 ил.

Износостойкое покрытие для режущего инструмента может быть использовано в металлообработке. Покрытие представляет собой сложный нитрид титана, циркония, гафния, ванадия, ниобия и тантала (TiZrNbVHfTa)N со стабильной однофазной структурой. При этом суммарное количество элементов покрытия Ti, Zr, Hf, V, Nb, Ta составляет от 40 до 70 ат.%, остальное – азот. Доля каждого из элементов покрытия Ti, Zr, Hf, V, Nb, Ta составляет не менее 4 ат.%. Стабильность фазового состава покрытия (TiZrNbVHfTa)N обеспечивает повышение надежности и стойкости режущего инструмента при высоких скоростях обработки. 2ил., 3 табл.

Изобретение относится к области металлургии, а именно к способам нанесения износостойких покрытий на режущий инструмент, и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана. Затем наносят верхний слой из нитрида соединения титана, алюминия и молибдена при их соотношении, мас.%: титан 75,5-82,5, алюминий 14,0-20,0, молибден 3,5-4,5. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют из сплава титана и алюминия, второй - из титана и располагают противоположно первому, а третий изготавливают составным из титана и молибдена и располагают между ними, причем нижний слой наносят с использованием второго катода, а верхний слой - с использованием первого и третьего катодов. В результате нанесения многослойного покрытия повышается работоспособность режущего инструмента. 1 табл.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана. Затем наносят верхний слой из нитрида соединения титана, алюминия и кремния при их соотношении, мас.%: титан 87,7-91,9, алюминий 7,0-11,0, кремний 1,1-1,3. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами. Первый катод выполняют из сплава титана и алюминия, второй - из титана и располагают противоположно первому, а третий изготавливают из сплава титана и кремния и располагают между ними. Нижний слой наносят с использованием второго катода, а верхний слой - с использованием первого и третьего катодов. Повышается работоспособность режущего инструмента. 1 табл.
Наверх