Способ выделения гликолевой кислоты из смеси продуктов диспропорционирования глиоксаля

Изобретение относится к химической промышленности, в частности к способу выделения гликолевой кислоты, которая широко применяется в косметологии, нефтегазовой, кожевенной отраслях промышленности, а также используется в синтезе биоразлагаемых полимеров и сополимеров, например, является исходным веществом для получения полигликолида и сополимера лактида и гликолида. Способ выделения гликолевой кислоты из смеси продуктов диспропорционирования глиоксаля включает обработку такой смеси соединениями Ca(An)2, где An = Cl, Br, I, NO3, CH3COO, используя их в виде растворов или твердых веществ из расчета 0,45-0,5 моль Ca(An)2 на каждый моль использованного глиоксаля для образования осадка малорастворимого гликолята кальция, который фильтруют, сушат и определяют содержание кальциевой соли гликолевой кислоты в этом осадке по количеству катионов кальция комплексонометрическим титрованием или атомно-эмиссионной спектроскопией, после чего этот осадок в твердом виде добавляют к раствору щавелевой кислоты, либо к водной суспензии этого осадка добавляют раствор щавелевой кислоты при перемешивании с последующей фильтрацией и концентрированием фильтрата, при этом щавелевую кислоту в обоих случаях берут в количестве 0,9–1,0 моль на каждый моль гликолята кальция, содержащегося в смеси, а её раствор имеет температуру 20-80°С. Предлагаемый способ позволяет получать целевой продукт с высокими выходом и чистотой. 2 ил., 5 пр.

 

Изобретение относится к химической промышленности, в частности к способу выделения гликолевой кислоты, которая широко применяется в косметологии, нефтегазовой, кожевенной отраслях промышленности, а также используется в синтезе биоразлагаемых полимеров и сополимеров, например, является исходным веществом для получения полигликолида и сополимера лактида и гликолида.

Одним из способов получения гликолевой кислоты является диспропорционирование (внутримолекулярное окисление-восстановление, реакция Канниццаро) глиоксаля в растворе, однако процесс выделения из реакционной смеси гликолевой кислоты высокой чистоты является затратным и технически сложным, отделение гликолевой кислоты от продуктов осмоления производится с использованием дорогостоящего оборудования и реагентов.

Известен способ (Патент РФ 2541790, МПК С07С 59/06, опубл. 20.02.2015), в котором вначале реакционную смесь очищают с помощью активированного угля для удаления продуктов осмоления, а затем используют метод электродиализа для перевода очищенного раствора в гликолевую кислоту с последующим концентрированием.

Известен способ (Патент JP 2008156300, МПК С07С 51/02, опубл. 10.07.2008), в котором реакционную смесь обрабатывают солями кальция для выделения кислоты в виде ее кальциевой соли с последующей обработкой соли серной кислотой.

Однако недостатком этих способов является то, что для выделения кислоты в первом патенте используется сложный метод электродиализа с применением специального оборудования и дорогих расходных материалов, что отрицательно сказывается на себестоимости конечного продукта. Во втором патенте авторы используют серную кислоту для перевода кальциевой соли гликолевой кислоты в саму кислоту, однако серная кислота может выступать в роли окислителя. Образующийся осадок CaSO4×2H2O мелкодисперсный и практически не задерживается фильтром. Растворимость CaSO4×2H2O составляет 2,4 г/л воды при 20°С, что отрицательно сказывается на чистоте конечного продукта.

Задача настоящего изобретения заключается в разработке способа выделения гликолевой кислоты из продуктов диспропорционирования глиоксаля по реакции Канниццаро с применением недорогих и общедоступных реагентов с целью получения продукта с высокими выходом и чистотой, что подтверждается ВЭЖХ-хроматограммами образцов товарной кислоты и синтезированных образцов. Преимуществом метода является то, что гликолевую кислоту можно выделить из смеси продуктов реакции без использования дорогостоящих реагентов и специфического оборудования.

Технический результат достигается за счет выделения гликолевой кислоты из реакционной смеси в виде ее малорастворимой кальциевой соли, которую в дальнейшем переводят в гликолевую кислоту обменной реакцией с щавелевой кислотой (ЩК).

На рис. 1 представлена схема получения гликолевой кислоты по реакции Канниццаро из глиоксаля.

Внутримолекулярное диспропорционирование глиоксаля проводят в щелочной среде, например в присутствии гидроксида натрия (рис. 1). При этом образуются гликолевая кислота в виде ее натриевой соли и побочные продукты осмоления.

Процесс выделения гликолевой кислоты осуществляют в три этапа:

Этап 1. Выделение гликолевой кислоты из реакционной смеси в виде малорастворимого гликолята кальция

Выделение проводят путем обработки этой смеси соединениями Са(An)2, где An=Cl, Br, I, NO3, СН3СОО, используя их в виде растворов или твердых веществ из расчета 0,45-0,5 моль Са(An)2 на каждый моль использованного глиоксаля. Полученный гликолят кальция промывают водой, избавляясь, таким образом, от продуктов осмоления.

Этап 2. Определение содержания гликолята кальция в осадке любым из доступных методов

Для определения содержания гликолята кальция в осадке последний в количестве ~ 0,2 г растворяют в 50 мл дистиллированной воды.

Количество гликолята кальция определяют по количеству катионов кальция комплексонометрическим титрованием или атомно-эмиссионной спектроскопией. При дальнейшей переработке смеси полагают, что количество обнаруженных ионов кальция в растворе соответствует количеству кальциевой соли гликолевой кислоты в смеси.

Этап 3. Проведение реакции обмена между гликолятом кальция и щавелевой кислотой

Гликолят кальция в твердом виде или в виде водной суспензии смешивают с водным раствором ЩК с температурой 20-80°С из расчета 0,9-1,0 моль ЩК на каждый моль гликолята кальция. По окончании реакции гликолевая кислота находится в растворе, а ЩК образует практически нерастворимый оксалат кальция, что приводит к смещению равновесия реакции в сторону образования целевого продукта.

Полученный раствор гликолевой кислоты отделяют от осадка оксалата кальция фильтрованием и концентрируют до требуемых значений на роторном испарителе при пониженном давлении.

Примеры конкретного выполнения

Пример 1. К реакционной смеси, полученной при диспропорционировании 30 г глиоксаля в щелочной среде, добавляют при перемешивании 28,7 г твердого обезвоженного хлорида кальция из расчета 0,5 моль хлорида кальция на каждый моль исходного глиоксаля. Образовавшийся осадок гидрата гликолята кальция фильтруют под вакуумом, промывают водой на фильтре, сушат и взвешивают. Масса осадка равна 40,9 г. Далее определяют количество кальция в осадке методом атомно-эмиссионной спектроскопии. Для этого навеску осадка массой 0,2 г растворяют в 50 мл дистиллированной воды и раствор анализируют на содержание катионов кальция. Найденное количество ионов кальция в фильтрате численно равно количеству гликолята кальция. Навеску 40,7 г осадка, содержащую 84,1% (в пересчете на безводную соль) гликолята кальция, добавляют к 100 мл раствора ЩК, нагретого до 50°С и содержащего 16,29 г ЩК из расчета 1 моль ЩК на каждый моль гликолята кальция. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую гликолевую кислоту, отделяют от образовавшегося оксалата кальция. Полученный раствор гликолевой кислоты имеет концентрацию 3,6026 моль/л. Раствор упаривается под вакуумом при Т=40°С до необходимого значения концентрации. Выход кислоты - 27,38 г (69,65% от теоретического). Чистота продукта по данным ВЭЖХ ~ 97,5%.

Пример 2. К реакционной смеси, полученной при диспропорционировании 30 г глиоксаля в щелочной среде, добавляют при перемешивании 47,8 мл 1,5 М водного раствора бромида кальция из расчета 0,4 5 моль бромида кальция на каждый моль исходного глиоксаля. Образовавшийся осадок гидрата гликолята кальция фильтруют под вакуумом, промывают водой на фильтре, сушат и взвешивают. Масса осадка равна 39,7 г. Далее определяют количество кальция в осадке методом комплексонометрического титрования. Для этого навеску осадка массой 0,2 г растворяют в 50 мл дистиллированной воды и раствор анализируют на содержание катионов кальция. Найденное количество ионов кальция в фильтрате численно равно количеству гликолята кальция. Навеску 39,5 г осадка, содержащую 84,1% (в пересчете на безводную соль) гликолята кальция, взмучивают в 100 мл дистиллированной воды и добавляют к этой суспензии 157,3 мл 1 М раствора ЩК с температурой 20°С из расчета 0,9 моль ЩК на каждый моль гликолята кальция. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую гликолевую кислоту, отделяют от образовавшегося оксалата кальция. Полученный раствор гликолевой кислоты имеет концентрацию 1,2058 моль/л. Раствор упаривается под вакуумом при Т=40°С до необходимого значения концентрации. Выход кислоты - 23,58 г (59,98% от теоретического). Чистота продукта по данным ВЭЖХ ~ 98%.

Пример 3. К реакционной смеси, полученной при диспропорционировании 30 г глиоксаля в щелочной среде, добавляют при перемешивании 162,1 мл 1,5 М водного раствора иодида кальция из расчета 0,4 7 моль иодида кальция на каждый моль исходного глиоксаля. Образовавшийся осадок гидрата гликолята кальция фильтруют под вакуумом, промывают водой на фильтре, сушат и взвешивают. Масса осадка равна 40,2 г. Далее определяют количество кальция в осадке методом комплексонометрического титрования. Для этого навеску осадка массой 0,2 г растворяют в 50 мл дистиллированной воды и раствор анализируют на содержание катионов кальция. Найденное количество ионов кальция в фильтрате численно равно количеству гликолята кальция. Навеску 40 г осадка, содержащую 84,1% (в пересчете на безводную соль) гликолята кальция взмучивают в 150 мл дистиллированной воды и добавляют к этой суспензии 164,7 мл 1 М раствора ЩК при температуре 20°С из расчета 0,93 моль ЩК на каждый моль гликолята кальция. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую гликолевую кислоту, отделяют от образовавшегося оксалата кальция. Полученный раствор гликолевой кислоты имеет концентрацию 1,0377 моль/л. Раствор упаривают под вакуумом при Т=40°С до необходимого значения концентрации. Выход кислоты - 24,82 г (63,14% от теоретического). Чистота продукта по данным ВЭЖХ ~ 98%.

Пример 4. К реакционной смеси, полученной при диспропорционировании 30 г глиоксаля в щелочной среде, добавляют при перемешивании 124,1 мл 2 М водного раствора нитрата кальция из расчета 0,48 моль нитрата кальция на каждый моль исходного глиоксаля. Образовавшийся осадок гидрата гликолята кальция фильтруют под вакуумом, промывают водой на фильтре, сушат и взвешивают. Масса осадка равна 40,3 г. Далее определяют количество кальция в осадке методом комплексонометрического титрования. Для этого навеску осадка массой 0,2 г растворяют в 50 мл дистиллированной воды и раствор анализируют на содержание катионов кальция. Найденное количество ионов кальция в фильтрате численно равно количеству гликолята кальция. Навеску 40,1 г осадка, содержащую 84,1% (в пересчете на безводную соль) гликолята кальция взмучивают в 120 мл дистиллированной воды и добавляют к этой суспензии 18,7 мл 9 М раствора ЩК с температурой 80°С из расчета 0,95 моль ЩК на каждый моль гликолята кальция. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую гликолевую кислоту, отделяют от образовавшегося оксалата кальция. Полученный раствор гликолевой кислоты имеет концентрацию 2,4124 моль/л. Раствор упаривают под вакуумом при Т=40°С до необходимого значения концентрации. Выход кислоты - 25,43 г (64,69% от теоретического). Чистота продукта по данным ВЭЖХ ~ 98%.

Пример 5. К реакционной смеси, полученной при диспропорционировании 30 г глиоксаля в щелочной среде, добавляют при перемешивании 253,4 мл 1 М водного раствора ацетата кальция из расчета 0,49 моль ацетата кальция на каждый моль исходного глиоксаля. Образовавшийся осадок гидрата гликолята кальция фильтруют под вакуумом, промывают водой на фильтре, сушат и взвешивают. Масса осадка равна 39,9 г. Далее определяют количество кальция в осадке методом комплексонометрического титрования. Для этого навеску осадка массой 0,2 г растворяют в 50 мл дистиллированной воды и раствор анализируют на содержание катионов кальция. Найденное количество ионов кальция в фильтрате численно равно количеству гликолята кальция. Навеску 39,7 г осадка, содержащую 84,1% (в пересчете на безводную соль) гликолята кальция, взмучивают в 200 мл дистиллированной воды и добавляют к этой суспензии 172,2 мл 1 М раствора ЩК при температуре 25°С из расчета 0,98 моль ЩК на каждый моль гликолята кальция. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую гликолевую кислоту, отделяют от образовавшегося оксалата кальция. Полученный раствор гликолевой кислоты имеет концентрацию 0,9142 моль/л. Раствор упаривают под вакуумом при Т=40°С до необходимого значения концентрации. Выход кислоты - 25,86 г (65,78% от теоретического). Чистота продукта по данным ВЭЖХ ~ 98%.

На рис. 2 представлены ВЭЖХ хроматограммы образцов гликолевой кислоты, где а – кислота, полученная в примере 1, б - импортная кислота от компании Acros Organics.

В качестве сравнения, ВЭЖХ хроматограмму (а) кислоты из примера 1 сравнили с хроматограммой (б) гликолевой кислоты от компании Acros Organics, США. На хроматограмме импортной кислоты присутствует ряд дополнительных сигналов, характерных для муравьиной и уксусной кислот, в то время как кислота из примера 1 содержит лишь один небольшой пик щавелевой кислоты (рис. 2).

Таким образом, предлагаемый способ позволяет выделять гликолевую кислоту (содержание основного продукта ~ 98%) из продуктов диспропорционирования глиоксаля через осаждение кальциевой соли гликолевой кислоты с последующей обменной реакцией с щавелевой кислотой без использования специфического оборудования и ионообменных смол.


Способ выделения гликолевой кислоты из смеси продуктов диспропорционирования глиоксаля, включающий обработку такой смеси соединениями Ca(An)2, где An = Cl, Br, I, NO3, CH3COO, используя их в виде растворов или твердых веществ из расчета 0,45-0,5 моль Ca(An)2 на каждый моль использованного глиоксаля для образования осадка малорастворимого гликолята кальция, который фильтруют, сушат и определяют содержание кальциевой соли гликолевой кислоты в этом осадке по количеству катионов кальция комплексонометрическим титрованием или атомно-эмиссионной спектроскопией, после чего этот осадок в твердом виде добавляют к раствору щавелевой кислоты либо к водной суспензии этого осадка добавляют раствор щавелевой кислоты при перемешивании с последующей фильтрацией и концентрированием фильтрата, при этом щавелевую кислоту в обоих случаях берут в количестве 0,9–1,0 моль на каждый моль гликолята кальция, содержащегося в смеси, а её раствор имеет температуру 20-80 °С.



 

Похожие патенты:

Настоящее изобретение относится к способу извлечения лактида из полилактида (ПЛ), в котором а) ПЛ приводят в контакт с гидролизирующей средой в расплаве и гидролитически разлагают в олигомеры ПЛ, имеющие среднечисленную молярную массу Mn от 162 до 10000 г/моль, измеренную с помощью кислотно-основного титрования карбоксильных групп, причем гидролизирующую среду добавляют в количестве от 50 ммоль до 10 моль на кг массы ПЛ, и б) олигомеры ПЛ затем подвергают циклической деполимеризации в лактид.

Изобретение относится к усовершенствованному способу получения гликолевой кислоты. Гликолевая кислота находит широкое применение в различных отраслях промышленности: пищевой, кожевенной, нефтегазовой, обрабатывающей, текстильной, строительной и т.д.

Изобретение относится к процессам переработки углеводородных газов с получением жидких химических продуктов, в частности к получению эфиров гликолевой кислоты. Способ получения метилового эфира гликолевой кислоты включает стадии карбонилирования формальдегида и этерификации гликолевой кислоты, где этан или этансодержащий углеводородный газ смешивают с кислородом или с кислородсодержащим газом в мольном соотношении этан : кислород, равном 40÷1:1, проводят окисление при температуре 350-550°C и давлении 20-40 бар, полученные продукты охлаждают и разделяют на поток (I), содержащий формальдегид и воду, и поток (II), содержащий СО, метиловый и этиловый спирты, непрореагировавшие этан и метан, поток (I) направляют на стадию карбонилирования формальдегида полученным в процессе СО, поток (II) направляют на стадию этерификации гликолевой кислоты входящими в состав потока метиловым и этиловым спиртами, после которой получают поток продуктов этерификации (III), из которого известными приемами выделяют метиловый эфир гликолевой кислоты, и поток (IV), содержащий СО, непрореагировавшие этан и метан, который направляют на стадию карбонилирования, непрореагировавшие этан и метан после стадии карбонилирования частично возвращают на парциальное окисление и/или используют в виде топливного газа.
Изобретение относится к органическому синтезу, конкретно к усовершенствованному способу получения гликолевой кислоты или ее натриевой соли, которые находят широкое применение в органическом синтезе.
Изобретение относится к процессу очистки по существу безводного жидкого сырья, содержащего монохлоруксусную кислоту, дихлоруксусную кислоту, необязательно хлорангидриды, необязательно ангидриды и необязательно уксусную кислоту, который содержит стадии: (a) добавление воды к жидкому сырью, так чтобы было получено жидкое сырье, содержащее между 0,01 и 5% по массе воды, исходя из общей массы жидкого сырья, и (b) после этого подвергание жидкого сырья, полученного на стадии (а), каталитической стадии дегидрохлорирования, приведением его в контакт с источником водорода для превращения дихлоруксусной кислоты в монохлоруксусную кислоту в присутствии твердого гетерогенного катализатора гидрогенизации, содержащего один или более металлов группы VIII периодической системы элементов, нанесенных на носитель, с получением продукта гидрогенизации, где продукт гидрогенизации представляет собой продукт, содержащий монохлоруксусную кислоту, с пониженным содержанием дихлоруксусной кислоты и с окрашиванием, равным или меньшим чем 300 единиц Pt-Co, измеренным в соответствии с ISO-6271.
Изобретение относится к способу, в котором жидкое сырье, содержащее монохлоруксусную кислоту, дихлоруксусную кислоту и необязательно уксусную кислоту и/или трихлоруксусную кислоту, подвергается каталитическому гидродехлорированию приведением его в контактирование с источником водорода для превращения дихлоруксусной кислоты в монохлоруксусную кислоту в присутствии твердого гетерогенного катализатора гидрогенизации, содержащего один или более металлов VIII группы Периодической системы элементов, нанесенных на носитель, отличающийся тем, что указанное каталитическое гидродехлорирование осуществляется в вертикальном трубчатом реакторе с диаметром, превышающим 0,4 м, с твердым гетерогенным катализатором гидрогенизации, расположенным в неподвижном каталитическом слое, в котором жидкое сырье подается в верхнюю часть указанного вертикального трубчатого реактора с приведенной массовой скоростью между 1 и 10 кг/с в расчете на квадратный метр горизонтального поперечного сечения вертикального трубчатого реактора и скоростью от 250 и 3000 кг/ч в расчете на м3 указанного каталитического слоя, в котором источник водорода подается в верхнюю часть или нижнюю часть вертикального трубчатого реактора с приведенной скоростью газа от 0, 025 до 0,25 Нм3/с в расчете на квадратный метр горизонтального поперечного сечения вертикального трубчатого реактора, так чтобы был получен средний аксиальный градиент давления по меньшей мере 2 кПа в расчете на метр указанного каталитического слоя, и в котором температура в верхней части вертикального трубчатого реактора составляет от 100 до 200°С, и в котором давление в верхней части вертикального трубчатого реактора составляет от 0,2 до 1,0 МПа.

Изобретение относится к способу получения очищенной терефталевой кислоты, в котором экономично выполняют способ без использования сушилки, в котором влажные кристаллы сырой терефталевой кислоты очищают в виде суспензии с помощью водной жидкости, без высушивания влажных кристаллов до кристаллического порошка.

Изобретение относится к усовершенствованному способу получения гликолевой кислоты. Гликолевая кислота находит широкое применение в различных отраслях промышленности: пищевой, кожевенной, нефтегазовой, обрабатывающей, текстильной, строительной и т.д.

Изобретение относится к улучшенному способу хроматографического фракционирования для очистки полиненасыщенных жирных кислот (ПНЖК) и их производных. Способ хроматографического разделения для выделения продукта - полиненасыщенной жирной кислоты (ПНЖК) из исходной смеси включает введение исходной смеси в хроматографическую установку с псевдодвижущимся или истинным движущимся слоем, имеющую множество связанных хроматографических колонок, содержащих в качестве элюента водный спирт, где установка имеет множество зон, включающих по меньшей мере первую зону и вторую зону, причем каждая зона имеет поток экстракта и поток рафината, из которых можно отобрать жидкость из указанного множества связанных хроматографических колонок, и где (а) поток рафината, содержащий ПНЖК продукт совместно с более полярными компонентами, отбирается из колонки в первой зоне и вводится в несмежную колонку во второй зоне и/или (б) поток экстракта, содержащий ПНЖК продукт совместно с менее полярными компонентами, отбирается из колонки во второй зоне и вводится в несмежную колонку в первой зоне, причем указанный ПНЖК продукт отделяется от других компонентов исходной смеси в каждой зоне.

Изобретение относится к биотехнологии пищевых продуктов и может быть использовано при переработке растворов брожения с получением молочной кислоты. Способ извлечения молочной кислоты из растворов брожения включает экстракцию молочной кислоты солью четвертичного аммониевого основания в разбавителе и реэкстракцию кислоты, причем экстракцию ведут солью четвертичного аммониевого основания в сульфатной форме [(R4N)2SO4], где R представляет собой алкильный или арильный радикал, в присутствии п-третичных алкилфенолов при молярном соотношении (R4N)2SO4 : п-третичные алкилфенолы, равном соответственно 1:2, при значении рН раствора 5,0-7,0, реэкстракцию кислоты проводят растворами гидроксида натрия, а регенерацию экстрагента осуществляют его обработкой стехиометрическим количеством серной кислоты.
Изобретение относится к улучшенному способу селективного удаления примеси пропионовой кислоты из потока акриловой кислоты. .
Изобретение относится к усовершенствованному способу предотвращения осаждений фумаровой кислоты при получении ангидрида малеиновой кислоты со следующими стадиями: а) поглощение ангидрида малеиновой кислоты из смеси продуктов, полученной в результате частичного окисления бензола, олефинов, имеющих 4 атома углерода или н-бутана, в органическом растворителе или воде в качестве поглотителя, b) отделение ангидрида малеиновой кислоты от поглотителя, содержащего фумаровую кислоту, причем регенерированный таким образом поглотитель, содержащий фумаровую кислоту, полностью или частично каталитически гидрируют и полностью или частично возвращают на стадию поглощения (а), при этом фумаровая кислота подвергается гидрированию до янтарной кислоты.

Изобретение относится к усовершенствованным способам производства ароматических карбоновых кислот, включающим контактирование сырья, содержащего по меньшей мере один исходный замещенный ароматический углеводород, заместители которого способны окисляться до групп карбоновой кислоты, с газообразным кислородом в реакционной смеси жидкофазного окисления, содержащей монокарбоновую кислоту в качестве растворителя и воду, в присутствии каталитической композиции, содержащей по меньшей мере один тяжелый металл, эффективный для катализации окисления замещенного ароматического углеводорода до ароматической карбоновой кислоты, в секции реакции при повышенной температуре и давлении, эффективных для поддержания в жидком состоянии реакционной смеси жидкофазного окисления и образования ароматической карбоновой кислоты и примесей, содержащих побочные продукты окисления исходного ароматического углеводорода, растворенные или суспендированные в реакционной смеси жидкофазного окисления, и паровой фазы высокого давления, содержащей растворитель - монокарбоновую кислоту, воду и небольшие количества исходного ароматического углеводорода и побочных продуктов; перенос паровой фазы высокого давления, отведенной из секции реакции в секцию разделения, орошаемую жидкой флегмой, содержащей воду и способную практически полностью разделить растворитель - монокарбоновую кислоту и воду в паровой фазе высокого давления с образованием жидкости, обогащенной растворителем - монокарбоновой кислотой и обедненной водой, и газа высокого давления, содержащего водяной пар; перенос газа высокого давления, содержащего водяной пар, отведенного из секции разделения, без обработки для удаления органических примесей в секцию конденсации и конденсацию газа высокого давления с образованием жидкого конденсата, содержащего воду, и отходящего газа из секции конденсации под давлением, содержащего неконденсируемые компоненты газа высокого давления, перенесенного в секцию конденсации; выделение из секции конденсации жидкого конденсата, содержащего воду и пригодного для использования без дополнительной обработки в качестве по меньшей мере одной жидкости, содержащей воду, в способе очистки ароматических карбоновых кислот; и подачу жидкого конденсата, содержащего воду, выделенного в секции конденсации, в процесс очистки ароматической карбоновой кислоты, в котором по меньшей мере одна стадия включает: (а) приготовление реакционного раствора очистки, содержащего ароматическую карбоновую кислоту и примеси, растворенные или суспендированные в жидкости, содержащей воду; (b) контактирование реакционного раствора очистки, содержащего ароматическую карбоновую кислоту и примеси в жидкости, содержащей воду, при повышенных температуре и давлении с водородом в присутствии катализатора гидрирования с образованием жидкой реакционной смеси очистки; (с) выделение твердого очищенного продукта, содержащего карбоновую кислоту, из жидкой реакционной смеси очистки, содержащей ароматическую карбоновую кислоту и примеси в жидкости, содержащей воду; и (d) промывку по меньшей мере одной жидкостью, содержащей воду, полученной очищенной твердой ароматической карбоновой кислоты, выделенной из жидкой реакционной смеси очистки, содержащей ароматическую карбоновую кислоту, примеси жидкость, содержащую воду; так что жидкость, содержащая воду, по меньшей мере на одной стадии способа очистки включает жидкий конденсат, содержащий воду и не требующий обработки по удалению органических примесей.

Изобретение относится к усовершенствованному способу сушки ароматической карбоновой кислоты, включающему непрерывную сушку осадка ароматической карбоновой кислоты с помощью сушилки с псевдоожиженным слоем, причем осадок вводят в сушилку при скорости 50 кг/час или выше, и сушильный газ, имеющий температуру 80-160°С, подают в сушилку при приведенной скорости 0,3-1 м/сек, с тем, чтобы содержание жидкости в осадке составило 14% по массе или ниже; а также к усовершенствованному способу получения сухой ароматической карбоновой кислоты, включающему непрерывную сушку осадка ароматической карбоновой кислоты с помощью сушилки с псевдоожиженным слоем с получением готовой ароматической карбоновой кислоты, где осадок вводят в сушилку при скорости 50 кг/час или выше, и сушильный газ, имеющий температуру 80-160°С, подают в сушилку при приведенной скорости 0,3-1 м/сек, с тем, чтобы содержание жидкости в осадке составило 14% по массе или ниже.
Изобретение относится к способу получения лактобионовой кислоты и может быть использовано в химической промышленности. Предложен способ получения лактобионовой кислоты из лактобионата натрия ионным обменом на катонитах, отличающийся тем, что используют катиониты КУ-2.8-ЧС, Amberlite TM FPC23 H, пропускают через колонку с катонитом 20 ммоль/л раствор лактобионата натрия в течение 10 мин при массовом соотношении катионит/лактобионат натрия 3/0,8-1 и температуре 25°С.

Изобретение относится к области получения пищевых кислот, а именно к технологии получения винной кислоты. Способ получения винной кислоты из виннокислой извести включает расщепление виннокислой извести, ее фильтрование с образованием раствора неочищенной винной кислоты и осадка, промывание осадка, смешивание полученных промывных вод с раствором неочищенной винной кислоты, концентрирование полученного раствора, его отстаивание, фильтрование, концентрирование, кристаллизацию.

Изобретение относится к способу получения антиагломератора на основе стеарата кальция, который находит применение в нефтехимической промышленности при получении синтетических каучуков.

Изобретение относится к усовершенствованному способу получения гликолевой кислоты. Гликолевая кислота находит широкое применение в различных отраслях промышленности: пищевой, кожевенной, нефтегазовой, обрабатывающей, текстильной, строительной и т.д.

Изобретение относится к способу переработки лактата аммония в молочную кислоту и ее сложные эфиры. Предложенный способ осуществляется путем контакта водного раствора лактата аммония с гидроксилсодержащим соединением в вертикальном массообменном аппарате при повышенных температуре и давлении, отводом сопутствующих продуктов реакции, главным образом, с потоком пара и целевых продуктов, главным образом, с потоком жидкости.

Изобретение относится к химической промышленности, в частности к способу выделения гликолевой кислоты, которая широко применяется в косметологии, нефтегазовой, кожевенной отраслях промышленности, а также используется в синтезе биоразлагаемых полимеров и сополимеров, например, является исходным веществом для получения полигликолида и сополимера лактида и гликолида. Способ выделения гликолевой кислоты из смеси продуктов диспропорционирования глиоксаля включает обработку такой смеси соединениями Ca2, где An Cl, Br, I, NO3, CH3COO, используя их в виде растворов или твердых веществ из расчета 0,45-0,5 моль Ca2 на каждый моль использованного глиоксаля для образования осадка малорастворимого гликолята кальция, который фильтруют, сушат и определяют содержание кальциевой соли гликолевой кислоты в этом осадке по количеству катионов кальция комплексонометрическим титрованием или атомно-эмиссионной спектроскопией, после чего этот осадок в твердом виде добавляют к раствору щавелевой кислоты, либо к водной суспензии этого осадка добавляют раствор щавелевой кислоты при перемешивании с последующей фильтрацией и концентрированием фильтрата, при этом щавелевую кислоту в обоих случаях берут в количестве 0,9–1,0 моль на каждый моль гликолята кальция, содержащегося в смеси, а её раствор имеет температуру 20-80°С. Предлагаемый способ позволяет получать целевой продукт с высокими выходом и чистотой. 2 ил., 5 пр.

Наверх