Способ изготовления омических контактов к нитридным гетероструктурам algan/gan


 


Владельцы патента RU 2610346:

Федеральное государственное бюджетное учреждение науки Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук (ИСВЧПЭ РАН) (RU)

Изобретение относится к технологии формирования омических контактов к гетероструктурам AlGaN/GaN и может быть использовано при изготовлении полупроводниковых приборов, в частности полевых транзисторов СВЧ диапазона. Технический результат - уменьшение удельного сопротивления омических контактов и упрощение процесса изготовления омических контактов. Технический результат достигается за счет того, что в способе изготовления омических контактов к гетероструктурам AlGaN/GaN после травления проводящего и барьерного слоев гетероструктуры производится дополнительное растравливание «окон» диэлектрической пленки SiO2 перед началом нанесения омических контактов, тем самым отсутствует необходимость напылять металлические слои под углом и улучшается сам контакт на вертикальной границе сформированного «окна» осажденных металлов с двумерным электронным газом. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к технологии формирования омических контактов к гетероструктурам AlGaN/GaN и может быть использовано при изготовлении полупроводниковых приборов, в частности полевых транзисторов СВЧ диапазона.

Из предшествующего уровня техники известен способ [US 7700974 В2; МПК H01L 29/778] изготовления омических контактов к полупроводниковой гетероструктуре AlGaN/GaN, включающий образование углублений строго заданных размеров в слое AlGaN путем «сухого» травления. В места образования углублений наносят слои металлом Ti/Al/Ni/Au, а затем нагревают указанные осажденные металлы до высокой температуры (более 800°С), в результате чего образуется омический контакт с двумерным электронным газом. Недостатком способа является грубая морфология омических контактов и высокое удельное сопротивление.

Известен способ [US 6852615 В2; МПК H01L 21/338] изготовления омических контактов к гетероструктуре, состоящей из трех слоев элементов группы А3В5. На верхний слой наносят фоторезист и уменьшают толщину третьего (барьерного) слоя, образуя углубления. Удаляют первый фоторезист и наносят второй фоторезист. Величина отверстий во втором фоторезисте больше, чем в первом. Затем осаждают металлические слои, которые закрывают часть поверхности гетероструктуры, удаляют второй фоторезист и производят отжиг. Недостатком способа является отсутствие защитного слоя для гетероструктуры, что ухудшает характеристики омических контактов при последующей высокотемпературной обработке.

Известен способ [US 8878245 В2; МПК H01L 29/66] изготовления омических контактов к гетероструктуре, которая состоит из одного или более проводящего и барьерного слоя. Барьерный слой может включать в себя несколько слоев, таких как AlGaN и AlN. На барьерный слой наносится маска, материал маски выбирается таким образом, что он может функционировать в качестве пассивирующего слоя. Например, SiN может быть использован в качестве маски. Затем происходит травление маски, барьерного и проводящего слоев через сформированные в маске с помощью фотолитографии «окна». И осуществляется рост высоколегированного полупроводникового материала, который контактирует с проводящим слоем. В гетероструктурах AlGaN/GaN это может быть n+GaN. Далее осаждают на область n+GaN металл, образующий омический контакт. Высокое легирование n+GaN обеспечивает связь металла с двумерным электронным газом без отжига контактов при высоких температурах. Недостатком способа является высокое удельное сопротивление.

Известен способ [Nidhi, Brown G.F., Keller S., Mishra U.K. // Japanese Journal of Applied Physics 49 (2R), 021005. 2010] изготовления омических контактов к гетероструктуре, состоящей из эпитаксиального слоя, барьерного слоя и слоя легированного GaN (n+GaN). С помощью плазменного травления формируют «окна» в барьерном и n+GaN слоях. Затем наносят слои металлов Ti/Al/Ni/Au под различными углами между источником металлов и нормалью к гетероструктуре. Наименьшее сопротивление омических контактов, равное 0,1 Ом⋅мм, было достигнуто при нанесении металлических слоев под углом 40°С. Недостатками способа являются применение дополнительных установок для нанесения металлических слоев под углом, что существенно усложняет процесс изготовления омических контактов, и недостаточно низкое удельное сопротивление омических контактов.

Данный способ принят в качестве прототипа настоящего изобретения.

Техническим результатом изобретения является уменьшение удельного сопротивления омических контактов и упрощения процесса изготовления омических контактов.

Технический результат достигается за счет того, что после травления проводящего и барьерного слоев гетероструктуры производится дополнительное растравливание «окон» диэлектрической пленки SiO2 перед началом нанесения омических контактов, тем самым отсутствует необходимость напылять металлические слои под углом и улучшается сам контакт на вертикальной границе сформированного «окна» осажденных металлов с двумерным электронным газом.

Суть изготовления омических контактов поясняют фиг. 1-4. На поверхности гетероструктуры, состоящей из проводящего слоя GaN (1) и барьерного слоя AlGaN (2), наносится диэлектрическая пленка (3), например SiO2. Через фоторезистивную маску проводится травление «окно» в диэлектрической пленке, после чего фоторезистивная маска удаляется. Далее проводится травление гетероструктуры, через сформированные «окна» в диэлектрической пленке, на глубину ниже залегания области (4) двумерного электронного газа. После образования углублений в герероструктуре происходит повторное травление диэлектрической пленки для расширения «окон» в диэлектрической пленке. Далее возможно либо осаждение металлических слоев (5), либо осаждение сильнолегированного n+GaN (6) в образованные «окна» и последовательное нанесение металлических слоев.

Фиг. 1. Схематическое изображение гетероструктуры после травления.

Фиг. 2 Схематическое изображение гетероструктуры после повторного травления диэлектрической пленки.

Фиг. 3. Схематическое изображение гетероструктуры с осажденными металлическими слоями.

Фиг. 4. Схематическое изображение гетероструктуры с осажденными n+GaN и металлическими слоями.

Пример 1

Эксперимент по изготовлению омических контактов проводился на гетероструктуре, состоящей из проводящего слоя GaN и барьерного слоя AlGaN. После формирования «меза»-изоляции приборов путем плазмохимического вытравливания верхних активных слоев на глубину до 80 нм в смеси N2O+SiH4 при температуре 300°С наносится диэлектрическая пленка SiO2. Травление диэлектрической пленки SiO2 через предварительно сформированную фоторезистивную маску осуществляется плазмохимическим методом в смеси SF6 и O2. Далее удаляется фоторезистивная маска и через сформированную диэлектрическую пленку SiO2 проводится плазмохимическое травление гетероструктуры в смеси BCl3 и Ar на глубину ниже залегания двумерного электронного газа. После образования углублений в герероструктуре происходит повторное травление диэлектрической пленки SiO2 для расширения «окон» в диэлектрической пленке SiO2. Далее на гетероструктуру со сформированной диэлектрической пленкой SiO2 происходит осаждение сильнолегированного n+GaN в установке молекулярно-лучевой эпитаксии при температуре 850°С. Формирование омических контактов завершается последовательным нанесением металлических слоев Cr/Au (40/300 нм) на область n+GaN. Удельное сопротивление изготовленных омических контактов составило 0,11 Ом⋅мм.

Пример 2.

Эксперимент по изготовлению омических контактов проводился на гетероструктуре, состоящей из проводящего слоя GaN и барьерного слоя AlGaN. После формирования «меза»-изоляции приборов путем плазмохимического вытравливания верхних активных слоев на глубину до 80 нм в смеси N2O+SiH4 при температуре 300°С наносится диэлектрическая пленка SiO2. Травление диэлектрической пленки SiO2 через предварительно сформированную фоторезистивную маску осуществляется плазмохимическим методом в смеси SF6 и O2. Далее удаляется фоторезистивная маска и через сформированную диэлектрическую пленку SiO2 проводится плазмохимическое травление гетероструктуры в смеси BCl3 и Ar на глубину ниже залегания двумерного электронного газа. После образования углублений в герероструктуре происходит повторное травление диэлектрической пленки SiO2, для расширения «окон» в диэлектрической пленке SiO2. Формирование омических контактов завершается последовательным нанесением металлических слоев Ti/Al/Ni/Au. Удельное сопротивление изготовленных омических контактов составило 0,11 Ом⋅мм.

1. Способ изготовления омических контактов к гетероструктурам AlGaN/GaN, включающий нанесение диэлектрической пленки, вытравливание гетероструктуры на глубину ниже залегания области двумерного электронного газа и последовательное напыление металлических слоев, отличающийся тем, что после травления гетероструктуры и перед напылением металлических слоев производят дополнительное растравливание «окон» диэлектрической пленки.

2. Способ по п. 1, отличающийся тем, что перед напылением металлических слоев осаждают n+GaN.



 

Похожие патенты:

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления приборов с пониженным контактным сопротивлением.

Изобретение относится к области электронной техники и описывает возможность получения дырочной проводимости аморфной оксидной пленки на поверхности металлического стекла системы Ni-Nb путем искусственного оксидирования.

Изобретение относиться к области технологии производства полупроводниковых приборов, в частности к технологии изготовления контактов полупроводникового прибора.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления контактно-барьерной металлизации прибора.

Изобретение относится к области технологии микроэлектроники и наноэлектроники, а именно к технологии формирования упорядоченных наноструктур на поверхности твердого тела, и может быть использовано для создания проводников, длина которых на несколько порядков превышает его диаметр (нанопроволоки).

Изобретение относится к области изготовления полупроводниковых приборов из кремния, в частности к изготовлению фотопреобразователей. .

Изобретение относится к полупроводниковой микро- и наноэлектронике и может быть использовано в производстве интегральных схем, при формировании электродов в транзисторах и обкладок конденсаторов, при формировании контактов и проводящих областей на поверхности кремния, в качестве проводящих, термостабильных и барьерных слоев в системах металлизации.

Изобретение относится к технологии изготовления световых устройств, имеющих структуры с квантовыми ямами, и к процессам перемешивания квантовых ям, используемым для регулируемого изменения запрещенной зоны в квантовой яме в предварительно определенных областях структуры.

Изобретение относится к технологии нанесения с помощью плазмы полимерных покрытий (тонких пленок) на поверхность предметов различного назначения, изготовленных из различных материалов, и может быть использовано в микроэлектронике для нанесения резистных, пассивирующих и диэлектрических слоев, в медицинской промышленности для нанесения антикоррозионных защитных покрытий на хирургические инструменты и медицинское оборудование, с той же целью в производстве химической посуды, в текстильной промышленности для придания волокнам или готовым тканям гидрофобных свойств путем нанесения на их поверхность тонкого слоя полимера и в других областях.

Изобретение относится к электронной технике, к технологии селективного осаждения вольфрама, и может быть использовано в производстве сверхбольших интегральных схем.
Наверх