Способ измерения энергетических спектров квазичастиц в конденсированной среде

Изобретение относится к области техники зондовой спектроскопии, которая занимается разработкой устройств и методов для исследования спектров поверхности с нанометровым разрешением. Согласно способу измерения энергетических спектров квазичастиц в конденсированной среде возбуждают квазичастицы с нужными свойствами, производят распространение, отражение, повторное распространение отраженных квазичастиц, регистрацию отраженных квазичастиц, обработку полученной информации и восстановление спектра квазичастиц в исследуемом образце. При этом измерение может проводиться однократно или двукратно. Техническим результатом является упрощение настройки, повышение стабильности работы, уменьшение искажений. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к области приборостроения преимущественно к измерительной технике, и может быть использовано в цитологии, в биохимии для изучения распределения химического состава с нанометровым пространственным разрешением, для изучения термодинамических свойств материалов также с нанометровым разрешением.

Известен способ измерения собственных частот колебаний молекулы, заключающийся в том, что острие зонда сканирующего туннельного микроскопа (СТМ), подводится к поверхности и облучается светом лазера. Возбуждаемый при этом плазмон, благодаря соответствию его спектра спектру колебаний молекулы, в частности колебаний, отвечающим за рамановское излучение, позволяет судить о колебательном спектре молекулы, расположенной под острием зонда [R. Zhang, Y. Zhang, Z.С. Dong, S. Jiang, С. Zhang, L.G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J.L. Yang and J.G. Hou. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82-86 (06 June 2013)]. Точное соответствие плазмонного спектра и колебательного спектра молекулы достигается благодаря возможности точно изменять расстояние от острия зонда до поверхности.

К недостаткам такого способа исследования энергетических спектров элементарных возбуждений (квазичастиц) относятся:

- исследуемый спектральный диапазон ограничен диапазоном возможных собственных частот возбуждаемого плазмона;

- можно изучать только те квазичастицы, которые напрямую или опосредованно взаимодействуют со светом;

- изучаемая молекула должна быть расположена на проводящей поверхности, что не всегда возможно по условиям постановки эксперимента.

Наиболее близким аналогом по технической сущности и достигаемому результату является способ измерения, включающий облучение лучом лазера острия иглы кантилевера атомно-силового микроскопа (АСМ). Далее, после отражения измеряется интенсивность и фаза отраженного света, таким образом можно получить значение комплексных оптических констант изучаемого материала с разрешением, определяемым радиусом острия иглы кантилевера [R. Hillenbrand and F. Keilmann. Complex Optical Constants on a Subwavelength Scale. Phys. Rev. Lett. 85, 3029; Fritz Keilmann, Rainer Hillenbrand. Near-field microscopy by elastic light scattering from a tip. Phil. Trans. R. Soc. Lond. A. 2004, 362, 787-805]. Изменяя частоту падающего излучения, можно получать спектры поглощения электромагнитного излучения исследуемого материала, как следствие, можно получить спектры фононов, экситонов. Достоинством данного способа является возможность изменять частоту падающего электромагнитного излучения в очень широких пределах [A.J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua and R. Hillenbrand. Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices. Nano Lett., 2008, 8 (11), pp. 3766-3770; Hongzhou Ma and Jeremy Levy. GHz Apertureless Near-Field Scanning Optical Microscopy of Ferroelectric Nanodomain Dynamics. Nano Lett., 2006, 6 (3), pp. 341-344].

К недостаткам такого способа относятся:

- относительная сложность получения высокого разрешения из-за концентрации ближнего поля снаружи зонда;

- можно изучать только те квазичастицы, которые напрямую или опосредованно взаимодействуют со светом.

Технический результат предлагаемого изобретения заключается в измерении энергетических спектров квазичастиц в конденсированной среде (фононов, плазмонов, магнонов, поляритонов и др.), при этом латеральное разрешение при измерениях определяется радиусом острия иглы кантилевера, снимается ограничение на способность квазичастиц взаимодействовать со светом, а также появляется возможность проводить анализ химического состава поверхности с латеральным разрешением порядка радиуса острия зонда кантилевера в случае, если речь идет о фононах, также путем расчета термодинамических функций появляется возможность изучать термодинамические свойства материалов.

Указанный технический результат достигается тем, что способ измерения энергетических спектров квазичастиц в конденсированной среде включает в себя возбуждение квазичастиц с нужными свойствами, распространение квазичастиц вдоль иглы кантилевера, отражение квазичастиц от границы раздела острие иглы кантилевера/поверхность образца или от границы раздела острие иглы кантилевера/окружающая среда, повторное распространение отраженных квазичастиц вдоль иглы кантилевера, регистрацию отраженных квазичастиц, обработку полученной информации и восстановление спектра квазичастиц в исследуемом образце. В процессе распространения потока квазичастиц вдоль иглы кантилевера, он ослабляется и рассеивается. Эти процессы могут быть учтены расчетом.

Измерение энергетических спектров квазичастиц можно производить в двух вариантах:

1) измерение производится при касании острием иглы кантилевера поверхности исследуемого образца. При этом происходит отражение части потока квазичастиц в иглу кантилевера, а часть потока квазичастиц рассеивается в образце. При обработке результатов измерения должно учитываться затухание потока квазичастиц в игле кантилевера;

2) измерение производится дважды, первый раз при касании острием иглы кантилевера поверхности исследуемого образца, второй раз, когда острие иглы кантилевера не касается поверхности исследуемого образца. Зависимость отражательной способности поверхности от энергии квазичастиц находится путем сравнения результатов этих двух измерений.

Термодинамические функции находятся расчетным путем с помощью суммирования экспоненциальных членов по известным формулам статистической физики, предполагая, что существенную часть энергетического спектра квазичастиц мы смогли измерить.

Отличительным признаком предложенного способа является использование квазичастиц, распространяющихся вдоль иглы кантилевера и отражающихся от границы раздела острие зонда/исследуемая поверхность, для определения зависимости от энергии квазичастиц отражательной способности поверхности, по которой и рассчитывается энергетический спектр квазичастиц. Использование такого способа измерения позволяет повысить разрешение при измерении энергетических спектров, расширить возможности метода за счет более широкого выбора способов возбуждения квазичастиц и более точного их позиционирования на образце.

Также отличительной особенностью заявляемого способа является то, что энергетический спектр квазичастиц находится по результатам измерения зависимости величины отражательной способности поверхности от энергии падающих и отраженных для границы раздела острие иглы кантилевера/исследуемая поверхность.

Примеры технической реализации заявляемого метода.

Схема атомно-силового микроскопа (АСМ) для измерения энергетических спектров квазичастиц в конденсированной среде изображена на рис. 1. Устройство включает кантилевер 1 с иглой 2 и острием 3, образец 4, систему 3D позиционирования 5, генератор квазичастиц 6, детектор квазичастиц 7.

Способ измерения энергетических спектров квазичастиц в конденсированной среде реализуется следующим образом (рис. 1). Генератор 6 излучает квазичастицы 8 с заданным энергетическим распределением в иглу 2 кантилевера 1, которые распространяются вдоль иглы к границе раздела острие зонда 3 кантилевера/поверхность исследуемого образца 4, частично отражаются от этой поверхности обратно в иглу 2, частично рассеиваются (10) в исследуемом образце 4. Отраженные квазичастицы 9 регистрируются детектором 7 и вычисляется ослабление потока квазичастиц, а также их энергетическое распределение. Ослабление потока квазичастиц и изменение их энергетического распределения зависит как от пути, пройденного квазичастицами вдоль иглы кантилевера, так и от величины отражательной способности границы раздела острие иглы кантилевера/поверхность и вида отражения - зеркальное или диффузное. Зависимость отражательной способности границы раздела острие иглы кантилевера/исследуемая поверхность от энергии квазичастиц изучается либо путем перестройки энергии излучаемых генератором квазичастиц, либо путем излучения генератором пучка частиц с широким спектром. Во втором случае для нахождения энергетического спектра квазичастиц необходимо использовать методы гармонического анализа.

В случае, когда измерения проводятся дважды (рис. 1, 2) - в контакте с поверхностью и без контакта с ней, энергетический спектр квазичастиц в исследуемом образце может быть найден с помощью сравнения измеренных спектров квазичастиц для случаев в контакте и без контакта с поверхностью по появлению новых пиков в спектре затухания. Кроме того, при этом используется дифференциальный метод измерений, поскольку находится разность измерений в первом и втором случаях, что позволяет компенсировать многие внешние факторы, влияющие на погрешность.

Измерение энергетических спектров квазичастиц в конденсированной среде с помощью зондовых микроскопов позволяет решить многие актуальные вопросы физики конденсированных сред, молекулярной биологии, в частности такие вопросы, как исследование химического состава поверхности с нанометровым разрешением, изучение термодинамических свойств образцов с нанометровым разрешением, исследование кинетики физических процессов.

1. Способ измерения энергетических спектров квазичастиц в конденсированной среде, включающий возбуждение квазичастиц с нужными свойствами, распространение, отражение, повторное распространение отраженных квазичастиц, регистрацию отраженных квазичастиц, обработку полученной информации и восстановление спектра квазичастиц в исследуемом образце, отличающийся тем, что измерение производится однократно, распространение и повторное распространение отраженных квазичастиц происходит вдоль иглы кантилевера, отражение квазичастиц производится от границы раздела острие иглы кантилевера/поверхность образца, при этом затухание потока квазичастиц в игле кантилевера учитывается расчетом.

2. Способ измерения энергетических спектров квазичастиц в конденсированной среде, включающий возбуждение квазичастиц с нужными свойствами, распространение, отражение, повторное распространение отраженных квазичастиц, регистрацию отраженных квазичастиц, обработку полученной информации и восстановление спектра квазичастиц в исследуемом образце, отличающийся тем, что измерение производится двукратно, распространение и повторное распространение отраженных квазичастиц происходит вдоль иглы кантилевера, при первом измерении отражение квазичастиц производится от границы раздела острие иглы кантилевера/поверхность образца, при втором измерении отражение квазичастиц производится от границы раздела острие иглы кантилевера/окружающая среда, при этом зависимость от энергии квазичастиц отражательной способности поверхности находится путем сравнения результатов этих двух измерений с учетом потерь при распространении квазичастиц в игле кантилевера.



 

Похожие патенты:

Изобретение относится к области формирования зондов сканирующих зондовых микроскопов и к их конструкциям, в частности кантилеверов, состоящих из консоли и иглы. Зонд для сканирующих приборов содержит кантилевер на массивном держателе и монолитный с кантилевером ус, расположенный на свободной части кантилевера.

Изобретение относится к областям микро- и наноэлектроники, физики поверхности и может быть использовано для исследования информационных характеристик поверхности наноструктурированных и самоорганизующихся твердотельных материалов.

Изобретения относятся к измерительной технике, в частности к способу и системе нанопозиционирования объекта. Система содержит неподвижное основание, опору для объекта, привод для приложения силы с целью перемещения опоры относительно неподвижного основания, датчик для измерения силы нагрузки на опору и контроллер для обработки измеренной силы нагрузки с целью управления положением опоры и/или для подавления по меньшей мере одной резонансной частоты системы.

Способ измерения поверхности объекта в режиме сканирующего зондового микроскопа относится к измерительной технике и может быть использован для исследования структур образцов, например биоматериалов и изделий медицинского назначения.

Изобретение относится к области сканирующей зондовой микроскопии и может использоваться в условиях ограниченного доступа к зондам, например, в вакууме или агрессивной среде.

Устройство манипулирования относится к области точной механики и может быть использовано для точного перемещения объектов, например, в зондовой микроскопии. Заявленное устройство манипулирования включает основание (1) с блоком направляющих, на котором установлена подвижная каретка (2), включающая блок опор, сопряженная с блоком направляющих посредством блока опор, и привод (13), сопряженный с рычагом (18), имеющий возможность разъемного соединения с подвижной кареткой (2) Согласноизобретению подвижная каретка (2) установлена на блоке направляющих при помощи блока опор с возможностью однозначной установки в рабочее положение, при этом подвижная каретка (2) в рабочем положении имеет минимум потенциальной энергии.

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур.

Изобретение относится к контрольно-измерительной технике и предназначено для измерения линейных перемещений по трем взаимоортогональным осям. Интерферометр содержит одночастотный лазер, коллиматор для ввода излучения в транспортное волокно, коллиматор, вводящий излучение в оптическую схему, акустооптический модулятор, формирующий опорное и измерительное плечи интерферометра, поляризационный светоделитель, позволяющий развести лучи на расстояние, достаточное для их независимого использования зеркалами, систему зеркал, которая расположена вокруг пьезоэлектрического стола, триппель-призмы, закрепленные на пьезоэлектрическом столе так, что их оси симметрии проходят через центр вращения пьезоэлектрического стола, фотоприемники, подключенные к соответствующим измерительным входам фазометра, а также генератор сдвиговой частоты, связанный с акустооптическим модулятором и опорным входом фазометра.

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур.

Изобретение относится к сканирующим зондовым микроскопам, адаптированным для измерения поверхности образца, полученной после механической модификации этой поверхности.

Использование: для комплексной диагностики физико-химических свойств наноструктурированных покрытий на основе единичных наночастиц металлов и металлооксидов. Сущность изобретения заключается в том, что образец, представляющий собой проводящую или полупроводниковую подложку с нанесенным на ее поверхность покрытием на основе единичных наночастиц металлов и металлооксидов, сканируют с помощью металлического острия сканирующего туннельного микроскопа и исследуют спектроскопически путем измерения вольт-амперных зависимостей туннельного наноконтакта с целью установления формы и размеров наночастиц, электронной структуры наночастиц, степени кристалличности наночастиц и наличия у наночастиц дефектов, после чего, не прекращая процессов сканирования и измерения вольт-амперных зависимостей туннельного наноконтакта, подвергают дозированной выдержке в газовой среде химического реагента с целью расчета адсорбционного коэффициента прилипания и установления продуктов и формы адсорбции химического реагента на поверхности наночастиц, с последующим удалением адсорбировавшегося на наночастицах покрытия реагента путем прогрева образца, причем в процессе выдержки образца в газовой среде химического реагента время сканирования выбранного участка поверхности образца и давление реагента подбирают так, чтобы их произведение составляло не более 1×10-6 торр×сек. Технический результат: обеспечение возможности одновременно определить большое число различных параметров, характеризующих как сами наночастицы покрытия, так и их физико-химические свойства. 1 н. и 3 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей и атомно-силовой микроскопии. Магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой подвижно соединена с помощью двух вложенных углеродных нанотрубок с магнитопрозрачной сферой, выполненной из стекла со сквозными нанометровыми порами малого и большого диаметра, заполненными соответственно квантовыми точками и магнитными наночастицами структуры ядро-оболочка. Управление возбуждением квантовых точек структуры ядро-оболочка и их перемещение по координате Z относительно объекта диагностирования осуществляется с помощью электромагнитных полей. Техническим результатом является возможность сканирования боковых стенок 3-D нанообъектов и наноколодцев по координате Z с одновременным сочетанием комбинаций точечного теплового, магнитного и электромагнитного с оптической длиной волны воздействия с одновременным измерением характеристик электрического отклика на это стимулирующее воздействие в одной общей точке поверхности объекта с координатами X, Y без влияния на соседние участки. 2 ил.

Изобретение относится к измерительной технике и может быть использовано в атомно-силовой микроскопии. Сущность изобретения заключается в том, что магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой соединена с магнитопрозрачной полимерной сферой с нанометровыми конусообразными порами наименьшего диаметра, которые заполнены квантовыми точками структуры ядро-оболочка, а поверхность вершины зондирующей иглы подвижно соединена с помощью двух вложенных углеродных нанотрубок с магнитопрозрачной стеклянной сферой со сквозными нанометровыми порами малого и большого диаметра, заполненными соответственно квантовыми точками и магнитными наночастицами структуры ядро-оболочка. Техническим результатом является возможность осуществления сканирования боковых стенок 3D нанообъектов и наноколодцев по координате Z с одновременным сочетанием комбинаций точечного теплового, магнитного и электромагнитного с оптической длиной волны воздействия с одновременным измерением механической реакции в одной общей точке поверхности объекта диагностирования с координатами X, Y без влияния на соседние участки. 2 ил.

Изобретение предназначено для оптической микроскопии и спектрометрии комбинационного рассеяния, люминесценции или флуоресценции с использованием зондового датчика в качестве оптической антенны. Микроскоп содержит основание 1, измерительную головку 2, зондовый датчик 3, держатель зондового датчика 4, сканирующее основание 5 с держателем образца 6, первый объектив 7 и первую систему визуализации 9, оптически сопряженную с первым объективом 7 и образцом 10. Также в микроскоп введены первая система ввода/вывода излучения 8, расположенная со стороны измерительной головки 2 относительно основания прибора 1, конфокальный микроскоп 11, оптически сопряженный с, по меньшей мере, одним источником излучения 12 и с первой системой ввода/вывода излучения 8, спектрометр 13, содержащий, по меньшей мере, один детектор 14 и оптически сопряженный с первой системой ввода/вывода излучения 8. Зондовый датчик 3 оптически открыт для доступа источника излучения 12, оптически сопряжен посредством первого объектива 7 с первой системой ввода/вывода излучения 8 и содержит оптически активную зону 15. Технический результат – повышение универсальности конструкции, усиление флуоресценции, комбинационного рассеяния, повышение пространственного разрешения оптической спектроскопии. 22 з.п. ф-лы, 3 ил.

Изобретение предназначено для исследования и модификации поверхности измеряемых объектов с помощью источников излучения. Сканирующее устройство локального воздействия включает образец (1) с первой (2) и второй поверхностями (3), зонд (4) с острием (5), закрепленный в модуле зонда (7), сканер (8), первый модуль перемещения (9) и блок управления (10). Сканер (8) и первый модуль перемещения (9) установлены на платформе (11). Зонд (4) расположен с возможностью относительного сканирования острия (5) и первой поверхности (2) образца (1). Блок управления (10) адаптирован для сканирования поверхности (2) острием (5). Зонд (4) включает модуль излучения (6). Также устройство снабжено вторым модулем перемещения (13) и пуансоном (14), установленным на третьем модуле перемещения (15), и датчиком излучения (19), установленным со стороны второй поверхности (3) образца (1) с возможностью сопряжения с модулем излучения (6). Образец (1) установлен на сканере (8), закрепленном на втором модуле перемещения (13), расположенном на платформе (11). Модуль зонда (7) с зондом (4) установлен на первом модуле перемещения (9), расположенном на платформе (11). Пуансон (14) с третьим модулем перемещения 15 установлен на платформе (11) с возможностью взаимодействия с образцом (1). Технический результат - увеличение глубины воздействия на образец, расширение диапазона воздействий. 4 з.п. ф-лы, 4 ил.

Группа изобретений относится к оборудованию для контроля рабочих параметров при бурении и может быть использована для ремонта средств передачи сигналов измерения из скважины на поверхность в процессе бурения как в горизонтальных, так и в других скважинах в процессе бурения. Техническим результатом является повышение надежности и точности работы зонда после ремонта при его последующей работе. Заявляемый способ восстановительного ремонта электронного зонда заключается в том, что после замены блока датчиков пространственного положения зонда производят согласование выходов нового блока датчиков с входами блока преобразователя для восстановления заданных настроек путем реализации с помощью введенного в зонд блока сопряжения функции А=K×А’+S(A’). При этом А - набор данных по трем пространственным координатам, необходимый для корректного отображения положения зонда на дисплее приемника, А’ - тот же набор данных по трем пространственным координатам, но генерируемый новым блоком датчиков пространственного положения зонда, К - коэффициент передачи, подбираемый в процессе юстировки параметров зонда, S(A’) - матрица коэффициентов сдвига, формируемая в процессе юстировки параметров зонда. Заявляемый восстановленный таким способом электронный зонд включает в себя замененный блок 1' датчиков пространственной ориентации, соединенный с его выходом блок 5 сопряжения и подключенный входом к выходу блока 5 блок 2 преобразователя сигналов с блока 1 датчиков. 2 н. и 1 з.п. ф-лы, 7 ил.

Изобретение относится к точной механике и может быть использовано для сближения зонда и образца в сканирующей зондовой микроскопии. Сущность изобретения заключается в том, что в устройстве механического перемещения для сканирующего зондового микроскопа, содержащем основание 1, СЗМ головку 2, оснащенную первой опорой 3, второй опорой 4, третьей опорой 5, при этом первая опора 3 сопряжена с основанием 1 и снабжена первым приводом 6, установленным на СЗМ головке 2, а вторая опора 4 и третья опора 5 также сопряжены с основанием, вторая опора 4 снабжена вторым приводом 7, установленным на СЗМ головке 2, и третья опора 5 снабжена третьим приводом 8, установленным на СЗМ головке 2. Технический результат предложенного решения заключается в повышении точности измерений. 5 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Сущность изобретения заключается в том, что кантилевер соединен с электропроводящей зондирующей иглой, вершина которой продета в одну сквозную нанопору с конусообразными входами стеклянной сферы, содержащей равномерно распределенный по ее поверхности упорядоченный массив различных по диаметру сквозных нанопор с конусообразными входами, заполненными соответствующими квантовыми точками с различными дискретными спектрами излучения и безызлучательными сферами, с помощью комбинации сочетаний диаметров которых программируется общий спектральный портрет излучения. Техническим результатом является возможность одновременного сочетания электромагнитного мультиволнового с программируемым спектром излучения воздействия с измерением характеристик электрического сигнала на это стимулирующее воздействие в одной общей точке поверхности объекта диагностирования без влияния на соседние участки. 4 ил.

Изобретение относится к области техники зондовой микроскопии. Технический результат изобретения заключается в упрощении используемой экспериментальной техники, с одной стороны, и в увеличении возможностей в исследовании физических явлений на поверхности с нанометровым пространственным разрешением (химический состав, вязкоупругие свойства, диэлектрическая проницаемость и т.д.), с другой стороны. Технический результат достигается за счет квантовой точки, закрепленной на острие иглы кантилевера и находящейся в тесном механическом контакте с исследуемым образцом. Облучение квантовой точки заставляет ее высвечивать флуоресцентное излучение. Свойства флуоресцентного излучения определяются как свойствами самой квантовой точки, так и свойствами поверхности исследуемого образца в ее окрестности. 1 ил.

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Сущность изобретения заключается в том, что кантилевер соединен с зондирующей иглой, вершина которой закреплена в одной из конусообразных нанопор стеклянной сферы, содержащей равномерно распределенный по ее поверхности упорядоченный массив различных по диаметру конусообразных нанопор, заполненных соответствующими квантовыми точками с различными дискретными спектрами излучения и безызлучательными сферами, с помощью комбинации сочетаний диаметров которых программируется общий спектральный портрет излучения. Техническим результатом является возможность одновременного сочетания электромагнитного мультиволнового с программируемым спектром излучения воздействия с измерением механической реакции на это стимулирующее воздействие в одной общей точке поверхности объекта диагностирования без влияния на соседние участки. 4 ил.

Изобретение относится к области техники зондовой спектроскопии, которая занимается разработкой устройств и методов для исследования спектров поверхности с нанометровым разрешением. Согласно способу измерения энергетических спектров квазичастиц в конденсированной среде возбуждают квазичастицы с нужными свойствами, производят распространение, отражение, повторное распространение отраженных квазичастиц, регистрацию отраженных квазичастиц, обработку полученной информации и восстановление спектра квазичастиц в исследуемом образце. При этом измерение может проводиться однократно или двукратно. Техническим результатом является упрощение настройки, повышение стабильности работы, уменьшение искажений. 2 н.п. ф-лы, 2 ил.

Наверх