Ротор электромашины

Изобретение относится к области электротехники. Технический результат: повышение механической прочности ротора, уменьшение дополнительных потерь и паразитных моментов, вызванных высшими гармониками магнитного поля индуктора. Ротор содержит цилиндрический вал из немагнитного материала, на который надет магнитный индуктор, содержащий планки из магнитного материала, чередующиеся с полюсами, выполненными из материала с высокой магнитной проницаемостью. Вал выполнен из дисков равного сопротивления с одинаковым внешним диаметром. На внешней поверхности вала выполнены продольные канавки округлого сечения, равномерно удаленные друг от друга, симметричные радиально ориентированным плоскостям. Планки из магнитного материала выполнены в виде пластин, торцы которых, обращенные к валу, конгруэнтны его поверхности, а торцы, обращенные к внешней поверхности ротора, конгруэнтны контактирующей с ними поверхности тонкостенной фиксирующей втулки, надетой на индуктор. Поверхности полюсов, обращенные к тонкостенной фиксирующей втулке, выступают по отношению к поверхностям магнитных планок и выполнены со скруглением, радиус кривизны которого меньше радиуса кривизны поверхности тонкостенной фиксирующей втулки на ее контакте с магнитными планками. Магнитные планки намагничены тангенциально. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к области электротехники, в частности к электромашиностроению, и может быть использовано при проектировании электрогенераторов и электродвигателей с высокой частотой вращения.

Известен ротор электромашины, содержащий полый вал из немагнитного материала и надетый на него цилиндр, выполненный из магнитомягкого материала с высокой магнитной проницаемостью, в продольных радиальных пазах которого размещены постоянные магниты, зафиксированные немагнитными металлическими клиньями, внешняя поверхность которых соответствует кривизне внешней поверхности цилиндра (Балагуров В.А., Галтеев Ф.Ф. Электрические генераторы с постоянными магнитами. – М.: Энергоатомиздат, 1988, с.30, рис.1.27).

Недостатком известного устройства является невозможность обеспечения высокой мощности при ограниченных массогабаритных параметрах устройства, которую можно было бы получить за счет повышения частоты вращения ротора, в связи с недостаточной механической прочностью ротора, приводящей к возможности его разрушения при эксплуатации в режиме повышенных частот вращения.

Известен также ротор электрогенератора, содержащий втулку из немагнитного материала и надетый на нее цилиндр, составленный полюсами, выполненными из магнитомягкого материала, чередующимися с постоянными магнитами, радиальные наружные торцы которых перекрыты немагнитными металлическими клиньями, внешняя поверхность которых соответствует кривизне внешней поверхности цилиндра. При этом немагнитная втулка, цилиндр и немагнитные клинья скреплены вакуумно-диффузионной сваркой (RU 2386200, 2010).

Недостатком известного устройства является невозможность использования ротора значительной осевой длины из-за прогиба для создания высокооборотной электромашины большой мощности.

Известен также ротор электромашины, содержащий цилиндрический вал из немагнитного материала, на который надет магнитный индуктор, содержащий планки из магнитного материала, чередующиеся с контактирующими с ними своими боковыми поверхностями полюсами, выполненными из материала с высокой магнитной проницаемостью, при этом внешняя поверхность ротора выполнена с возможностью удержания элементов индуктора при вращении. Краевые участки ротора выполнены в виде полых цилиндрических немагнитных втулок, внешний диаметр которых равен диаметру ротора, при этом длина опорной поверхности этих втулок и ротора превышает длину индуктора (RU 2385524, 2010).

Недостатком известного устройства является радиальная деформация краевых полых цилиндрических втулок ротора при высоких частотах вращения и, как следствие, возможность заклинивания ротора.

Задачей, на решение которой направлено предлагаемое техническое решение, является повышение прочности ротора при высоких окружных скоростях, уменьшение массы и массовых моментов инерции ротора и уменьшение дополнительных потерь и паразитных моментов, вызванных высшими гармониками магнитного поля индуктора.

Технический результат, который достигается при решении поставленной задачи, выражается в повышении механической прочности ротора, обеспечивающей возможность его использования в режиме повышенной окружной скорости мощных электромашин, уменьшении массы и массовых моментов инерции ротора с обеспечением приближения к синусоидальности графика распределения индукции магнитного поля по окружности поверхности индуктора, что приводит к уменьшению дополнительных потерь и паразитных моментов, вызванных высшими гармониками магнитного поля индуктора.

Для решения поставленной задачи ротор электромашины, содержащий цилиндрический вал из немагнитного материала, на который надет магнитный индуктор, содержащий планки из магнитного материала, чередующиеся с контактирующими с ними своими боковыми поверхностями полюсами, выполненными из материала с высокой магнитной проницаемостью, при этом внешняя поверхность ротора выполнена с возможностью удержания элементов индуктора при вращении, согласно изобретению вал выполнен из дисков равного сопротивления с одинаковым внешним диаметром, выполненных предпочтительно из титанового сплава, жестко скрепленных друг с другом торцевыми поверхностями ободов, при этом на внешней поверхности вала выполнены продольные канавки округлого сечения, равномерно удаленные друг от друга, симметричные радиально ориентированным плоскостям, причем планки из магнитного материала выполнены в виде пластин, торцы которых, обращенные к валу, конгруэнтны его поверхности, а торцы, обращенные к внешней поверхности ротора, конгруэнтны контактирующей с ними поверхности тонкостенной фиксирующей втулки, выполненной из немагнитного материала, предпочтительно из титанового сплава, надетой на индуктор, при этом тонкостенная фиксирующая втулка жестко скреплена с обращенными к ней поверхностями полюсов, а цилиндрический вал жестко скреплен с обращенными к нему противоположными поверхностями полюсов, кроме того, поверхности полюсов, обращенные к тонкостенной фиксирующей втулке, выступают по отношению к поверхностям магнитных планок и выполнены со скруглением, радиус кривизны которого меньше радиуса кривизны поверхности тонкостенной фиксирующей втулки на ее контакте с магнитными планками, с обеспечением приближения к синусоидальности графика распределения индукции магнитного поля по окружности поверхности индуктора, кроме того, магнитные планки намагничены тангенциально, кроме того, на внешней поверхности тонкостенной фиксирующей втулки выполнен бандаж предпочтительно из высокопрочного волоконного материала, например из углеволокна. Кроме того, цапфы выполнены из немагнитного материала, в виде выступов, сторона которых, обращенная к торцу ротора, снабжена юбкой в виде диска, выполненного с возможностью жесткого, предпочтительно разъемного скрепления с торцами ротора. Кроме того, торцы магнитных планок уперты в юбки цапф.

Сопоставительный анализ совокупности существенных признаков предлагаемого технического решения и совокупности существенных признаков прототипа и аналогов свидетельствует о его соответствии критерию «новизна».

При этом существенные признаки отличительной части формулы изобретения решают следующие функциональные задачи.

Признак «…вал выполнен из дисков равного сопротивления с одинаковым внешним диаметром, выполненных предпочтительно из титанового сплава, жестко скрепленных друг с другом торцевыми поверхностями ободов…» формирует жесткую и прочную основу конструкции ротора, имеющую малые массы и массовые моменты инерции и снижает его деформацию от действия центробежных сил при высоких окружных скоростях.

Признак «…на внешней поверхности вала выполнены продольные канавки округлого сечения, равномерно удаленные друг от друга, симметричные радиально ориентированным плоскостям…» снижает концентрацию напряжений от действия центробежных сил в местах соединения дисков и полюсов.

Признаки «…планки из магнитного материала выполнены в виде пластин, торцы которых, обращенные к валу, конгруэнтны его поверхности, а торцы, обращенные к внешней поверхности ротора, конгруэнтны контактирующей с ними поверхности тонкостенной фиксирующей втулки, выполненной из немагнитного материала, предпочтительно из титанового сплава, надетой на индуктор…» формируют продольный канал для размещения магнитных планок и препятствуют их перемещению под действием центробежных сил, кроме того, обеспечивают равномерное контактное давление между магнитными планками и тонкостенной фиксирующей втулкой.

Признаки «…тонкостенная фиксирующая втулка жестко скреплена с обращенными к ней поверхностями полюсов, а цилиндрический вал жестко скреплен с обращенными к нему противоположными поверхностями полюсов…» обеспечивают повышение прочности ротора при высоких окружных скоростях, формируют возможность размещения постоянных магнитов в продольных каналах.

Признаки «…поверхности полюсов, обращенные к тонкостенной фиксирующей втулке, выступают по отношению к поверхностям магнитных планок и выполнены со скруглением, радиус кривизны которого меньше радиуса кривизны поверхности тонкостенной фиксирующей втулки на ее контакте с магнитными планками, с обеспечением приближения к синусоидальности графика распределения индукции магнитного поля по окружности поверхности индуктора …» обеспечивают прочность перемычек каналов при высоких окружных скоростях для размещения постоянных магнитов, снижают концентрацию напряжений и обеспечивают приближение к синусоидальности графика индукции магнитного поля.

Признак «…магнитные планки намагничены тангенциально…» формирует направление магнитного потока индуктора, обеспечивает возможность работы электрической машины.

Признак «…на внешней поверхности фиксирующей втулки выполнен бандаж предпочтительно из высокопрочного волоконного материала, например из углеволокна…» повышает прочность ротора.

Признаки «…цапфы выполнены из немагнитного материала в виде выступов, сторона которых, обращенная к торцу ротора, снабжена юбкой в виде диска, выполненного с возможностью жесткого, предпочтительно разъемного скрепления с торцами ротора…» обеспечивает формирование прочной конструкции цапф и вала ротора.

Признак «…торцы магнитных планок уперты в юбки цапф…» предотвращает осевое смещение магнитов при вращении ротора.

Заявленное устройство иллюстрируется чертежами, где на фиг. 1 показан продольный разрез ротора электромашины, на фиг. 2 - его поперечное сечение.

На чертежах показаны диски равного сопротивления 1, магнитные планки 2 в виде пластин, полюса 3, фиксирующая втулка 4, бандаж 5, торцевые цапфы 6, 7, винты 8, продольные канавки 9, юбки 10 цапф 6, 7.

Ротор электромашины содержит цилиндрический вал, сформированный из дисков 1 равного сопротивления, с одинаковым внешним диаметром, выполненных из немагнитного материала, например из высокопрочного титана ВТ22, жестко скрепленных друг с другом торцевыми поверхностями ободов дисков 1, например, вакуумно-диффузионной сваркой, на который надет магнитный индуктор цилиндрической формы. На внешней поверхности вала выполнены продольные канавки 9 округлого сечения, равномерно удаленные друг от друга, симметричные радиально ориентированным плоскостям, предназначенные для снижения концентрации напряжений от центробежных сил в местах соединения дисков 1 и полюсов 3.

Магнитный индуктор содержит планки 2 из магнитного материала, чередующиеся с контактирующими с ними своими боковыми поверхностями полюсами 3, выполненными из материала с высокой магнитной проницаемостью.

Планки 2 ориентированы вдоль продольной оси ротора, выполнены из постоянных магнитов в виде пластин, торцы которых, обращенные к валу, конгруэнтны его поверхности, а торцы, обращенные к внешней поверхности ротора, конгруэнтны контактирующей с ними поверхности тонкостенной фиксирующей втулки 4, выполненной из немагнитного материала, предпочтительно из титанового сплава, надетой на индуктор. При этом планки 2 размещены так, что между пластинами, намагниченными в тангенциальном направлении, размещены полюса 3 с возможностью образования магнитной схемы с тангенциальным направлением намагниченности. Полюса 3 выполнены из материала с высокой магнитной проницаемостью, например из сплава 48КНФ.

Тонкостенная фиксирующая втулка 4 жестко скреплена с обращенными к ней поверхностями полюсов 3, а цилиндрический вал жестко скреплен с обращенными к нему противоположными поверхностями полюсов 3. При этом поверхности полюсов 3, обращенные к тонкостенной фиксирующей втулке 4, выступают по отношению к поверхностям магнитных планок 2 и выполнены со скруглением, радиус кривизны которого меньше радиуса кривизны поверхности тонкостенной фиксирующей втулки 4 на ее контакте с магнитными планками 2, с целью получения распределения индукции магнитного поля по окружности поверхности индуктора, близкого к синусоидальному. При этом магнитные планки 2 с тангенциальным направлением намагниченности уперты в обращенные к ним внутренние поверхности немагнитной тонкостенной фиксирующей втулки 4. Полюса 3 внутренними поверхностями жестко скреплены с наружными цилиндрическими поверхностями дисков 1 равного сопротивления, а наружными – с внутренними поверхностями немагнитной тонкостенной фиксирующей втулки 4, например, вакуумно-диффузионной сваркой. На внешней поверхности тонкостенной фиксирующей втулки 4 выполнен бандаж 5 из высокопрочного волоконного материала, например из углеволокна.

Наружные торцевые поверхности крайних дисков 1 равного сопротивления жестко скреплены с выступами цилиндрических торцевых цапф 6 и 7. Цапфы 6 и 7 выполнены из немагнитного материала в виде выступов, сторона которых, обращенная к торцу ротора, снабжена юбкой 10 в виде диска, выполненного с возможностью жесткого, предпочтительно разъемного скрепления с торцами ротора. При этом торцы магнитных планок 2 уперты в юбки 10 цапф 6 и 7.

Торцевая цапфа 6 снабжена валом.

Ротор изготавливают в следующем порядке (фиг.1 и 2). Цилиндрические диски 1 изготавливают из высокопрочного титанового сплава ВТ22, которые сваривают между собой по торцевым поверхностям ободов, например, вакуумно-диффузионной сваркой. На внешней поверхности дисков 1 фрезеруют продольные канавки 9. На полученную конструкцию устанавливают полюса 3, между которыми устанавливают технологические проставки, например, из текстолита, имеющих форму и размеры магнитных планок 2. На полюса 3 и технологические проставки надевают предварительно нагретую тонкостенную фиксирующую втулку 4 из титанового сплава и сваривают полученную конструкцию вакуумно-диффузионной сваркой. После сварки извлекают технологические проставки. Из немагнитного материала, например титанового сплава ВТ22, изготавливают цилиндрические торцевые цапфы 6, 7. К торцу одного крайнего цилиндрического диска 1 соосно устанавливают и приваривают торцевую цапфу 7, например, вакуумно-диффузионной сваркой. Нагревают сваренную конструкцию цилиндрических дисков 1, полюсов 3, цапфы 7 до температуры, не превышающей точку Кюри постоянных магнитов, и вставляют во внутрь каналов, образовавшихся после удаления технологических проставок, предварительно намагниченные планки 2 в виде пластин. На наружную поверхность тонкостенной фиксирующей втулки 4 наматывают бандаж 5 из углеволокна и пропитывают его твердеющими синтетическими смолами. К торцу второго крайнего цилиндрического диска 1 соосно устанавливают цапфу 6 и закрепляют ее винтами 8 с крайним цилиндрическим диском 1. Ротор подвергают динамической балансировке.

Заявленное устройство работает следующим образом (см. фиг.1). При вращении ротора в цилиндрических дисках 1, планках 2 в виде пластин постоянных магнитов, полюсах 3 и цапфах 6, 7 возникают напряжения от действия центробежных сил и они тем больше, чем выше частота вращения ротора. Для предотвращения разрушения цилиндрических дисков ротора на его наружную поверхность намотан бандаж 5 из высокомодульного материала, например углеволокна. При отсутствии центрального отверстия в цилиндрических дисках 1 напряжения минимальны (отсутствует эффект «булавочного укола»). Момент от внешнего механизма передается на ротор через вал цапфы 6.

Работа электромашины не отличается от работы известных устройств аналогичного назначения.

1.     Ротор электромашины, содержащий цилиндрический вал из немагнитного материала, на который надет магнитный индуктор, содержащий планки из магнитного материала, чередующиеся с контактирующими с ними своими боковыми поверхностями полюсами, выполненными из материала с высокой магнитной проницаемостью, при этом внешняя поверхность ротора выполнена с возможностью удержания элементов индуктора при вращении, отличающийся тем, что вал выполнен из дисков равного сопротивления с одинаковым внешним диаметром, выполненных предпочтительно из титанового сплава, жестко скрепленных друг с другом торцевыми поверхностями ободов, при этом на внешней поверхности вала выполнены продольные канавки округлого сечения, равномерно удаленные друг от друга, симметричные радиально ориентированным плоскостям, причем планки из магнитного материала выполнены в виде пластин, торцы которых, обращенные к валу, конгруэнтны его поверхности, а торцы, обращенные к внешней поверхности ротора, конгруэнтны контактирующей с ними поверхности тонкостенной фиксирующей втулки, выполненной из немагнитного материала, предпочтительно из титанового сплава, надетой на индуктор, при этом тонкостенная фиксирующая втулка жестко скреплена с обращенными к ней поверхностями полюсов, а цилиндрический вал жестко скреплен с обращенными к нему противоположными поверхностями полюсов, кроме того, поверхности полюсов, обращенные к тонкостенной фиксирующей втулке, выступают по отношению к поверхностям магнитных планок и выполнены со скруглением, радиус кривизны которого меньше радиуса кривизны поверхности тонкостенной фиксирующей втулки на ее контакте с магнитными планками, с обеспечением приближения к синусоидальности графика распределения индукции магнитного поля по окружности поверхности индуктора, кроме того, магнитные планки намагничены тангенциально, кроме того, на внешней поверхности тонкостенной фиксирующей втулки выполнен бандаж предпочтительно из высокопрочного волоконного материала, например из углеволокна.

2.     Ротор электромашины по п.1, отличающийся тем, что цапфы выполнены из немагнитного материала, в виде выступов, сторона которых, обращенная к торцу ротора, снабжена юбкой в виде диска, выполненного с возможностью жесткого, предпочтительно разъемного скрепления с торцами ротора.

3.     Ротор электромашины по п.1, отличающийся тем, что торцы магнитных планок уперты в юбки цапф.



 

Похожие патенты:

Изобретение относится к области электротехники, в частности к электромашиностроению. Технический результат – уменьшение массы и габаритов электромашины, повышение её надежности и эффективности охлаждения обмотки и сердечника статора.

Изобретение относится к области электротехники, в частности к электромашиностроению. Технический результат - повышение механической прочности ротора, уменьшение дополнительных потерь и паразитных моментов, вызванных высшими гармониками магнитного поля индуктора.

Изобретение относится к электротехнике, а именно к ротору электродвигателя с постоянными магнитами. Ротор (101) электродвигателя содержит сердечник (102) с постоянными магнитами (105), торцевые поверхности (105q) которых находятся в контакте с основными корпусными частями (117) магнитных экранирующих частей (107).

Изобретение относится к области электротехники. Технический результат – повышение прочности ротора, уменьшение дополнительных потерь и паразитных моментов, вызванных высшими гармониками магнитного поля индуктора.

Изобретение относится к области электротехники. Технический результат - повышение механической прочности ротора, уменьшение дополнительных потерь и паразитных моментов, вызванных высшими гармониками магнитного поля индуктора.

Изобретение относится к электротехнике и может быть использовано в энергетике и приборостроении. Технический результат состоит в повышении кпд.

Изобретение относится к области электромашиностроения, в частности к индукторам линейных магнитоэлектрических генераторов с возбуждением от постоянных магнитов.

Изобретение относится к области электротехники, в частности, к электрической машине и транспортному средству, содержащему такую машину. Технический результат – улучшение охлаждения.

Изобретение относится к электрической машине и статору машины. Технический результат – обеспечение защиты электрической машины от воздействий окружающей среды.

Изобретение относится к магнитным подшипникам для вращающихся машин, в соответствии с чем подшипник представляет собой интегрированную радиально-осевую конструкцию, при этом осевой магнитный поток управления проходит через центральное отверстие магнитомягкого сердечника.

Изобретение относится к области электромашиностроения, в частности к конструкции статора мощного турбогенератора. Технический результат - повышение эксплуатационной надежности и упрощение конструкции с одновременным обеспечением эффективного охлаждения нажимных плит и электромагнитных экранов. Статор турбогенератора содержит сердечник, в пазы которого уложены стержни обмотки с лобовыми частями, нажимные плиты, установленные по торцам сердечника с образованием радиальных каналов и электромагнитные экраны, закрепленные на нажимных плитах и состоящие из радиальной и наклонной частей. Радиальные каналы сообщаются с проходами между внутренними цилиндрическими поверхностями нажимных плит и поверхностями стержней обмотки, находящимися за пределами торцов сердечника, а также с продольными пазами, выполненными равномерно по окружности на внутренних цилиндрических поверхностях нажимных плит. Проходы и продольные пазы сообщаются с каналами, образованными между наружными поверхностями экранов и поверхностями элементов, ограничивающих каналы со стороны лобовых частей обмотки. 2 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике, а именно к электрической машине с ротором из сверхпроводящего материала и способу управления. Электрическая машина (101), содержит статор (103), установленный с возможностью вращения ротор (105) с охлаждаемым, намагничиваемым роторным участком (107) из сверхпроводящего материала (417) и блок управления (109) с возможностью намагничивать током статора роторный участок (107) из сверхпроводящего материала (417). Блок управления (109) обеспечивает управление электрической машиной (101) в зависимости от температуры сверхпроводящего материала и магнитного поля ротора. Технический результат состоит в улучшении эксплуатационных показателей сверхпроводящих электрических машин. 2 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к электротехнике и может быть использовано в качестве электродвигателя постоянного тока повышенной надежности. Технический результат состоит в упрощении конструкции. Двигатель содержит статор и ротор с осью вращения с размещенными на ней скользящими контактами кольцевого типа, заключенные в разборный корпус. В качестве статора использованы два укрепленных к корпусу ферромагнитных тороида из магнитомягкого материала, помещенные соответственно в первую и вторую цилиндрические катушки, соосные оси вращения. На ферромагнитных тороидах статора намотаны катушки вокруг образующих этих тороидов. Ротор выполнен в виде ферромагнитного тороида, размещенного между ферромагнитными тороидами статора и помещенного в третью цилиндрическую катушку, закрепленную с ферромагнитным тороидом ротора. Все катушки включены к источнику постоянного тока последовательно так, что намагничивающийся ферромагнитный тороид ротора взаимно однонаправлено отталкивается от намагниченных ферромагнитных тороидов статора. Катушки, намотанные вокруг образующих ферромагнитных тороидов статора, включены так, что магнитные поля, возникающие внутри этих ферромагнитных тороидов являются однонаправленными. 1 ил.

Изобретение относится к области электротехники и касается ротора для синхронного реактивного электродвигателя. Технический результат - обеспечение высокого крутящего момента и высокой частоты вращения. Ротор содержит пакет листов из нескольких электрически изолированных друг от друга слоев. В каждом слое образованы в совокупности несколько участков прямой проводимости, отделенных немагнитной областью. Между по меньшей мере двумя из слоев расположена прокладочная пластина, которая всегда соединена с по меньшей мере двумя участками прямой проводимости одного из слоев или обоих слоев, между которыми она расположена, соединяя таким образом эти участки прямой проводимости через находящуюся между ними немагнитную область. Прокладочная пластина включает в себя ткань, волокна которой ориентированы к оси q пакета листов под углом, находящимся в пределах от 40° до 50°, и/или прокладочная пластина в немагнитной области между двумя участками прямой проводимости, которые она соединяет, является более толстой, чем на участках прямой проводимости. 4 н. и 21 з.п. ф-лы, 6 ил.

Изобретение касается ротора для синхронной электрической машины, в частности для реактивной индукторной электрической машины. Технический результат – улучшение магнитных характеристик ротора. Ротор для синхронной электрической машины содержит роторный вал и выполненный цилиндрическим магнитно-мягкий элемент, установленный коаксиально на роторной оси и зафиксированный как в осевом, так и в тангенциальном направлении. Указанный магнитно-мягкий элемент для создания барьеров для магнитного потока и оптимизации соотношения магнитной проницаемости вдоль осей d и q имеет выемки, образующие четное число явновыраженных магнитных полюсов. При этом по меньшей мере одна выемка по меньшей мере частично заполнена диамагнитной или парамагнитной средой вместо воздуха. На роторной оси расположен по меньшей мере один прокладочный элемент. При этом лежащий над прокладочным элементом промежуток по меньшей мере частично заполнен диамагнитной или парамагнитной средой, и эта диамагнитная или парамагнитная среда образует цельное тело. 4 н. и 8 з.п. ф-лы, 7 ил.

Изобретение относится к электрическим машинам, а именно к явнополюсным электрическим машинам, в частности к конструкциям для крепления обмоток на роторе электрической машины. Технический результат - повышение надежности электрической машины, увеличение срока службы ротора, повышение эффективности использования ротора. Ротор явнополюсной электрической машины содержит вал, сердечник, выполненный как единое целое, состоящий из ярма ротора и полюсов с полюсными наконечниками, катушки, размещенные по прямоугольному контуру вокруг полюсов. Каждая катушка снабжена бандажом прямоугольной формы, выполненным в виде слоев немагнитного синтетического материала и размещенным с натягом по всей внешней поверхности катушки. 1 ил.

Изобретение относится к электротехнике и может быть использовано в синхронных генераторах. Технический результат состоит в снижении сопротивления ротора вращению от первичного двигателя в результате пространственного разделения основного и вторичного магнитных потоков и снижения, таким образом, степени их взаимодействия. Способ пространственного разделения магнитных потоков в электрических машинах характеризуется тем, что часть основной магнитной цепи машины (ротор или статор) создают с небольшим магнитным сопротивлением для основного магнитного потока возбуждения и разбивают ее на несколько одинаковых магнитных участков, которые чередуют с дополнительными магнитными участками с большим магнитным сопротивлением для основного магнитного потока возбуждения. Затем приводят в движение ротор относительно статора и создают в генераторных обмотках, замкнутых на нагрузку, ЭДС индукции и ток индукции. Ток индукции создает вторичный магнитный поток. Силовые линии вторичного магнитного потока проходят через и концентрируются в дополнительных магнитных цепях с наибольшей магнитной проницаемостью. 3 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике и электромашиностроению. Технический результат - повышение надежности работы электродвигателя. Ротор асинхронного электродвигателя содержит сердечник, выполненный в виде цилиндрического шихтованного пакета с пазами и зафиксированный на валу, короткозамкнутую обмотку, выполненную в виде конструкции "беличья клетка" и содержащую стержни длиной , высотой hc и шириной bc, расположенные в пазах сердечника ротора, и короткозамыкающие кольца, расположенные на торцевых поверхностях сердечника ротора. Короткозамыкающие кольца выполнены с радиальной высотой an и аксиальной толщиной bn. На четных зубцовых делениях длиной t2 короткозамыкающих колец 4 в радиальном направлении выполнены проточки прямоугольной формы длиной и глубиной h, расположенные симметрично относительно осей симметрии четных зубцовых делений. 2 табл., 5 ил.

Изобретение относится к области электромашиностроения и может быть использовано в электрических машинах с постоянными магнитами. Технический результат - увеличение магнитного потока и улучшение рабочих характеристик электрической машины. Ротор содержит вал из магнитомягкого материала, в продольных пазах которого размещены постоянные магниты, закрепленные средствами фиксации в форме стержней, концы которых замкнуты в единый контур кольцами, расположенными по торцам ротора. Средства фиксации уложены в проточки, которые расположены на боковых поверхностях продольных пазов и постоянных магнитов друг напротив друга. Средства фиксации и кольца выполнены из диамагнитного материала, а постоянные магниты в поперечном сечении имеют прямоугольную форму, причем внешняя плоскость закруглена по радиусу ротора. Средства фиксации в форме стержней позволяют надежно закрепить магниты в роторе. Короткозамкнутая обмотка из диамагнитного материала, образованная средствами фиксации и кольцами, создает условия для осуществления прямого пуска в малоинерционных синхронных электродвигателях. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники, в частности к сегментированному статору. Технический результат – повышение технологичности конструкции. Статор содержит множество сегментов, соединенных с помощью соединителей для формирования сердечника статора. Каждый из сегментов содержит множество пластин, размещаемых рядом друг с другом, формируя набор пластин с аксиально противоположными сторонами. Набор пластин имеет торцевую заглушку, примыкающую к осевой стороне набора пластин. Торцевая заглушка имеет первый и второй штырьки, проходящие аксиально из нее. По меньшей мере один из штырьков определяет путь провода для провода, намотанного вокруг набора. Каждый из соединителей содержит часть перемычки. Часть перемычки имеет отверстия такого размера, что они принимают штырьки таким образом, что соединитель является съемно присоединенным к штырьку торцевой заглушки сегмента и штырьку торцевой заглушки смежного сегмента. Соединитель имеет изоляционную часть, выступающую из части перемычки. Изоляционная часть проходит между смежными сегментами, когда соединитель съемно присоединен к смежным сегментам. 4 н. и 21 з.п. ф-лы, 35 ил.
Наверх