Способ пассивирования тонкого порошка алюминия


 


Владельцы патента RU 2610580:

Акционерное общество "Федеральный научно-производственный центр "Алтай" (RU)

Изобретение относится к пассивированию тонкого порошка алюминия. Способ включает термическую обработку и последующее охлаждение порошка, при этом порошок алюминия нагревают до температуры пассивации 200-350°С и ведут термическую обработку порошка алюминия в воздушной среде с влажностью 8-12 г/м3 в течение 30-150 мин. Обеспечивается образование на поверхности частиц порошка оксидной пленки Al2O3 при сохранении содержания активного алюминия в порошке более 98%. 1 ил., ; пр.

 

Изобретение относится к порошковой металлургии, в частности к пассивированию алюминиевого порошка за счет формирования на поверхности порошка оксидной пленки, характеризующейся высокими защитными свойствами.

Металлические порошки используются в процессах спекания в металлургии и в катализе в химической промышленности. Такие порошки можно использовать для производства конструктивных элементов, магнитных пленок, химических и антикоррозионных покрытий, присадок к маслам, добавок к ракетному топливу, а также во взрывчатых веществах.

Поверхность порошка можно окислить с помощью пассивирующего газового потока, это особенно предпочтительно, когда материалом является алюминий или материалы на его основе. Введение стадии пассивации обеспечивает порошковый материал возможностью длительного хранения без снижения потребительских свойств, делает его более пригодным для транспортировки.

Из уровня техники известны способы нанесения оксидной (защитной) пленки на поверхность алюминиевого порошка. Известен, например, способ по патенту US №6740424 (дата публикации 25.05.2004 г.), включающий нанесение покрытия посредством взаимодействия алюминиевого порошка с гидрофильным модификатором, находящимся в кислотном фосфатном растворе.

К недостатку описанного способа следует отнести использование неорганических растворов, которое требует дополнительных мероприятий по технике безопасности в связи с опасностью возгорания из-за контакта с металлом, кроме того, даже незначительное превышение количества жидкого состава сверх предусмотренных значений ведет к появлению стойкого эффекта агломерации порошкообразного металла.

Известен также способ по патенту РФ №2263006 (дата публикации 20.04.2004 г.), где поверхность порошка алюминия пассивируют высокотемпературным кислородсодержащим газом. Пассивирующая пленка состоит при этом преимущественно из оксида алюминия.

К недостаткам предлагаемого способа стоит отнести использование сложного оборудования, что значительно усложняет и удорожает технологический процесс в целом.

Известен способ пассивирования тонкого порошка алюминия по патенту РФ №2407610 (дата публикации 27.12.2010), включающий термическую обработку порошка в среде, содержащей кислород, и его последующее охлаждение. По технической сущности, наличию сходных существенных признаков данный патент наиболее близок к предлагаемому и поэтому принят за прототип.

Недостатком прототипа является повышенная энергоемкость и сложность процесса из-за применения в нем специальной газовой смеси из кислорода и азота и проведения процесса при высоких температурах 350-450°С.

Задачей предлагаемого изобретения является упрощение способа и снижение энергоемкости процесса пассивации тонких алюминиевых порошков с образованием на поверхности частиц оксидной пленки Al2O3, при сохранении содержания активного алюминия в порошке более 98%.

Поставленная задача решается предлагаемым способом пассивирования тонкого порошка алюминия, который включает его термическую обработку и последующее охлаждение, при этом порошок алюминия нагревают до температуры пассивации 200-350°С и ведут термическую обработку порошка алюминия в воздушной среде с влажностью 8-12 г/м3 в течение 30-150 минут.

Предлагаемое техническое решение отличается от прототипа, тем, что обработку порошка осуществляют в воздушной среде, из технологического процесса исключена стадия приготовления специальной газовой смеси из кислорода и азота, что безусловно упрощает процесс.

Также в предлагаемой формуле изобретения заявлен ряд признаков, выраженных в абсолютных величинах:

Температура воздуха, в котором осуществляется термическая обработка, составляет 200-350°С, уменьшение температуры ниже 200°С приведет к тому, что увеличится время термообработки, что приведет к прекращению процесса упрочнения пленки. На чертеже приведен график зависимости влияния термообработки на совместимость с нитроэфиром.

Повышение температуры выше указанного предела может привести к возгоранию алюминия в воздушной среде.

Заявленная продолжительность процесса термообработки составляет 30-150 минут. Нижний предел заявляемого интервала обусловлен тем, что результаты оценки совместимости термообработанных в течение менее 30 минут алюминиевых порошков с нитроэфиром показывают увеличение объема газовыделения. Верхний предел заявляемого интервала термообработки 150 и более минут обусловлен тем, что при дальнейшем увеличении времени термообработки совместимость взаимодействия алюминиевых порошков с нитроэфиром не меняется.

Уровень исходной влажности воздуха 8-12 г/м3 выбран исходя из атмосферных сезонных условий, так как термообработка алюминиевого порошка проводится в воздушной среде. При влажности воздуха более 12 г/м3 на поверхности порошка происходит образование плотной оксидной пленки, которая ухудшает качество порошка и приводит к снижению гарантийных сроков хранения продукта, при влажности ниже 8 г/см3 воздух содержит недостаточное количество паров для образования полноценной оксидной пленки.

Примеры конкретного выполнения

Пример 1

Пассивированию подвергают порошок с удельной поверхностью не менее 0,50 м2/г. Пассивацию осуществляют в муфельной печи при температуре 200°С в течение 150 минут. Влажность воздуха составляет 8 г/м3. Алюминиевый порошок насыпают слоем 2 см на алюминиевые противни, далее их ставят на поддон и помещают в разогретую до 200°С муфельную печь. При достижении температуры обрабатываемой массы порошка 200°С начинается процесс пассивации порошка алюминия. После пассивации противни извлекают из муфельной печи и помещают в эксикаторы для остывания. После того как алюминиевый порошок принял комнатную температуру, его упаковывают в герметичную тару, при этом отбирают пробу на анализы.

Содержание активного алюминия составляет - 99,6%, объем газовыделения - 1,17 см3/г. В исходном образце содержание активного алюминия составляет - 99,6%, объем газовыделения - 2,46 см3/г.

Пример 2

Пассивированию подвергают порошок с удельной поверхностью не менее 0,50 м2/г. Пассивацию осуществляют в муфельной печи при температуре 250°С в течение 120 минут. Влажность воздуха составляет 9 г/м3. Алюминиевый порошок насыпают слоем 3 см в алюминиевые противни, далее их ставят на поддон и помещают в разогретую до 250°С муфельную печь. При достижении температуры обрабатываемой массы порошка 250°С начинается процесс пассивации. После пассивации противни извлекают из муфельной печи и помещают в эксикаторы для остывания. После того как алюминиевый порошок принял комнатную температуру, его упаковывают в герметичную тару, при этом отбирают пробу на анализы.

Содержание активного алюминия составляет - 99,4%, объем газовыделения - 0,98 см3/г. В исходном образце содержание активного алюминия составляет - 99,6%, объем газовыделения - 2,46 см3/г.

Пример 3

Пассивированию подвергают порошок с удельной поверхностью не менее 0,50 м2/г. Пассивацию осуществляют в муфельной печи при температуре 300°С в течение 60 минут. Влажность воздуха составляет 10 г/м3. Алюминиевый порошок насыпают слоем 3 см в алюминиевые противни, далее их ставят на поддон и помещают в разогретую до 300°С муфельную печь. При достижении температуры обрабатываемой массы порошка 300°С начинается процесс пассивации. После пассивации противни извлекают из муфельной печи и помещают в эксикаторы для остывания. После того как алюминиевый порошок принял комнатную температуру, его упаковывают в герметичную тару, при этом отбирают пробу на анализы.

Содержание активного алюминия составляет - 99,0%, объем газовыделения - 1,00 см3/г. В исходном образце содержание активного алюминия сотавляет - 99,6%, объем газовыделения - 2,46 см3/г.

Пример 4

Пассивированию подвергают порошок с удельной поверхностью не менее 0,50 м2/г. Пассивацию осуществляют в муфельной печи при температуре 350°С в течение 30 минут. Влажность воздуха составляет 11 г/м3. Алюминиевый порошок насыпают слоем 3 см в алюминиевые противни, далее их ставят на поддон и помещают в разогретую до 350°С муфельную печь. При достижении температуры обрабатываемой массы порошка 350° начинают процесс пассивации. После процесса пассивации противни извлекают из муфельной печи и помещают в эксикаторы для остывания. После того как алюминиевый порошок принял комнатную температуру, его упаковывают в герметичную тару, при этом отбирают пробу на анализы.

Содержание активного алюминия составляет - 99,7%, объем газовыделения - 1,12 см3/г. В исходном образце содержание активного алюминия составляет - 99,6%, объем газовыделения - 2,46 см3/г.

Предлагаемый способ пассивирования тонкого порошка алюминия практически реализуем и не вызывает трудностей при осуществлении, применяемые компоненты производятся на промышленных установках и имеют приемлемые технологические свойства, способ был успешно опробован на базе химических лабораторий АО «ФНПЦ «Алтай», где подтвердил высокую технико-экономическую эффективность и возможность использования в самых ответственных областях техники.

Способ пассивирования тонкого порошка алюминия, включающий его термическую обработку и последующее охлаждение, отличающийся тем, что порошок алюминия нагревают до температуры пассивации 200-350°С и ведут термическую обработку порошка алюминия в воздушной среде с влажностью 8-12 г/м3 в течение 30-150 мин.



 

Похожие патенты:

Изобретение относится к порошку сплава, содержащему уран и молибден в метастабильной γ-фазе, композиции порошков, заключающей в себе указанный порошок, а также к вариантам использования упомянутого порошка сплава и упомянутой композиции порошков для изготовления тепловыделяющих элементов, в частности топливных элементов для экспериментальных ядерных реакторов, и мишеней, предназначенных для получения радиоактивных элементов, в частности, для формирования изображений в области медицины.

Изобретение относится к реакторам для осаждения материалов на поверхности при последовательном использовании самоограниченных поверхностных реакций. Способ атомно-слоевого осаждения (АСО) покрытия на поверхность частиц дисперсного материала включает установку картриджа для атомно-слоевого осаждения (картриджа АСО) в приемник реактора АСО посредством осуществления быстроразъемного соединения, причем картридж АСО сконфигурирован с возможностью выполнения функции реакционной камеры АСО, обработку поверхности дисперсного материала в картридже АСО путем обработки дисперсного материала в расположенных одно над другим отделениях картриджа, каждое из которых отделено от смежного отделения пластинчатым фильтром.

Изобретение относится к получению наночастиц с ядром из ферромагнитного металла и диэлектрической оболочкой из оксида алюминия. В способе по варианту 1 проводят плазменную переконденсацию в токе инертного газа частиц порошка оксида алюминия с нанесенным на их поверхность покрытием из ферромагнитного металла с массовой долей от 25 до 75 мас.%, при этом обеспечивают послойное испарение упомянутых частиц и последующее образование наночастиц путем первичной конденсации кластеров из ферромагнитного металла и конденсации на них паров оксида алюминия.

Изобретение может быть использовано при электродуговой сварке для модифицирования металла сварного шва наноразмерными тугоплавкими частицами. Рубленую сварочную проволоку диаметром 1-2 мм и длиной 1-2 мм смешивают с модифицирующей добавкой диоксида титана с помощью высокоэнергетической планетарной мельницы с ускорением частиц не менее 20 g.

Изобретение относится к получению композиционного армированного порошкового материала для нанесения покрытий холодным сверхзвуковым газодинамическим напылением.

Изобретение относится к нанесению боросиликатного покрытия на частицы порошкообразного гидрида титана, применяемого в ядерной энергетике в качестве нейтронопоглощающего материала.

Изобретение относится к области управления переносом тепловой энергии через материалы, а именно к термобарьерному покрытию и способу его нанесения. Термобарьерное покрытие, нанесенное на подложку, содержит металлические наночастицы с нанесенным на них стекловидным составом, образующие упорядоченную структуру и вплавленные в стекловидную матрицу для удержания в ней.

Изобретение относится к технологии плакирования композиционных порошковых материалов, которые могут быть использованы для напыления покрытий. Порошок зернистостью менее 20 мкм обрабатывают в растворе плакирования, содержащем соль осаждаемого металла, комплексообразователь и восстановитель.

Группа изобретений относится к способу получения органических частиц субстрата, связанных с переключаемыми ферромагнитными наночастицами со средним диаметром частиц в интервале от 10 до 1000 нм, к применению таких частиц для гипертермического лечения организма и к медикаменту для гипертермического лечения.
Изобретение относится к области порошковой металлургии, в частности к получению порошка для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН).
Наверх