Способ определения места установки устройств секционирования воздушной линии напряжением 380 в

Использование: в области электротехники. Технический результат – уменьшение времени срабатывания защиты. Согласно способу рассчитывают минимальные токи однофазного короткого замыкания по длине этой воздушной линии с учетом сопротивления дуги в месте замыкания и эффекта «теплового спада», строят график функции изменения величины минимального тока однофазного короткого замыкания от длины участка воздушной линии напряжением 380 В между трансформаторной подстанцией и точкой однофазного короткого замыкания, выбирают по условиям отстройки от рабочих и пиковых токов электрической нагрузки воздушной линии напряжением 380 В номинальный ток вставки плавкого предохранителя и устанавливают его в трансформаторной подстанции в начале воздушной линии напряжением 380 В, рассчитывают и строят на графике по паспортным защитным времятоковым характеристикам вставки выбранного плавкого предохранителя и графику функции изменения величины минимального тока однофазного короткого замыкания от длины участка воздушной линии напряжением 380 В зависимость времени срабатывания выбранного плавкого предохранителя от длины воздушной линии напряжением 380 В, определяют по этой зависимости зону защиты выбранного плавкого предохранителя, установленного в трансформаторной подстанции в начале воздушной линии напряжением 380 В, в которой обеспечивается время срабатывания не более 5 секунд, устанавливают в конце его зоны защиты секционирующий плавкий предохранитель, если установленный в начале воздушной линии напряжением 380 В плавкий предохранитель не обеспечивает защиту всей линии со временем срабатывания не более 5 секунд, причем номинальный ток вставки секционирующего плавкого предохранителя выбирают по условиям отстройки от рабочих и пиковых токов нагрузки оставшегося участка воздушной линии напряжением 380 В. 2 ил.

 

Изобретение относится к электротехнике и может быть использовано для защиты от однофазных коротких замыканий на четырехпроводных воздушных линиях напряжением 380 В для обеспечения электробезопасности людей, пожаро- и взрывобезопасности электрооборудования.

Известен способ проектирования зануления в силовых установках [Спеваков П.И. К проектированию сетей зануления в силовых установках. - Электричество. - 1939. - №8. - С. 69], в котором для определения параметров цепей зануления используют отношение однофазного короткого замыкания к номинальному току плавкого предохранителя, равного 2,5. Недостатком данного способа является то, что он предназначен только для определения сечений и длин заземляющих магистралей воздушных линий напряжением 380 В.

Наиболее близким к заявляемому способу по технической сущности и техническому результату является способ защиты воздушной линии электропередачи напряжением 380 В [Спеваков П.И. Проверка на автоматическое отключение линий в сетях до 1000 В. - М.: Энергия, 1971. - 88 с. «Методические указания по выбору устройств релейной защиты в сетях 0,38-35 кВ сельскохозяйственного назначения» // Руководящие материалы по проектированию электроснабжения сельского хозяйства, №11. - М.: ВГПИНИИ «Сельэнерго-проект», 1976. - 116 с.], принятый за прототип, в котором рассчитывают минимальные токи однофазного короткого замыкания по длине воздушной линии, определяют отношение минимального тока однофазного короткого замыкания к номинальному току плавкого предохранителя, установленного в начале воздушной линии, по предельному значению этого отношения, равного 3, определяют зону защиты плавкого предохранителя, установленного в начале воздушной линии, и в конце указанной зоны защиты устанавливают секционирующий плавкий предохранитель, который обеспечивает защиту воздушной линии на последующих ее участках.

Недостатком прототипа является, во-первых, использование для расчета минимальных токов однофазного короткого замыкания упрощенного метода «петли фаза-нуль», основанного на применении упрощенного определения параметров схемы замещения, а также не учитывающего сопротивления дуги в месте однофазного короткого замыкания и теплового изменения сопротивлений элементов электрической сети при протекании по ним тока короткого замыкания (эффекта «теплового спада»), во-вторых, время срабатывания плавкого предохранителя при однофазном коротком замыкании в конце определенной зоны защиты достигает 80-100 секунд, в-третьих, не удовлетворяются требования к расчету и выбору параметров защитных аппаратов [п.1.7.79, «Правила устройства электроустановок», 7-е издание], которые устанавливают время отключения повреждения не более 5 секунд.

Технический результат заявляемого изобретения заключается в обеспечении времени срабатывания устройства защиты воздушной линии напряжением 380 В не более 5 секунд.

Указанный технический результат достигается за счет того, что способ определения места установки устройств секционирования воздушной линии напряжением 380 В характеризуется тем, что рассчитывают минимальные токи однофазного короткого замыкания по длине этой воздушной линии с учетом сопротивления дуги в месте замыкания и эффекта «теплового спада», строят график функции изменения величины минимального тока однофазного короткого замыкания от длины участка воздушной линии напряжением 380 В между трансформаторной подстанцией и точкой однофазного короткого замыкания, выбирают по условиям отстройки от рабочих и пиковых токов электрической нагрузки воздушной линии напряжением 380 В номинальный ток вставки плавкого предохранителя и устанавливают его в трансформаторной подстанции в начале воздушной линии напряжением 380 В, рассчитывают и строят на графике по паспортным защитным времятоковым характеристикам вставки выбранного плавкого предохранителя и графику функции изменения величины минимального тока однофазного короткого замыкания от длины участка воздушной линии напряжением 380 В зависимость времени срабатывания выбранного плавкого предохранителя от длины воздушной линии напряжением 380 В, определяют по этой зависимости зону защиты выбранного плавкого предохранителя, установленного в трансформаторной подстанции в начале воздушной линии напряжением 380 В, в которой обеспечивается время срабатывания не более 5 секунд, устанавливают в конце его зоны защиты секционирующий плавкий предохранитель, если установленный в начале воздушной линии напряжением 380 В плавкий предохранитель не обеспечивает защиту всей линии со временем срабатывания не более 5 секунд, причем номинальный ток вставки секционирующего плавкого предохранителя выбирают по условиям отстройки от рабочих и пиковых токов нагрузки оставшегося участка воздушной линии напряжением 380 В.

Сущность изобретения поясняется графическим материалом, представленным на фиг. 1 и 2.

Так, на фиг. 1 представлена схема электрической сети напряжением 380 В и графическая интерпретация определения зоны защиты воздушной линии от однофазных коротких замыканий; на фиг. 2 приведены паспортные защитные времятоковые характеристики tS.F=f(L) вставки плавкого предохранителя.

На схеме электрической сети показаны: Т - трансформатор напряжением 6-10/0,4 кВ, к которому через плавкий предохранитель F подключена четырехпроводная воздушная линия напряжением 380 В (ВЛ-380 В); F1 и F2 - плавкие предохранители, используемые для секционирования воздушной линии. На графике показаны: - зависимость минимального тока однофазного короткого замыкания от длины воздушной линии; tS.F=f (L) - зависимость времени срабатывания плавкого предохранителя при однофазном коротком замыкании от длины воздушной линии.

Для интерпретации рассматриваемого способа в качестве примера взята электрическая сеть напряжением 380 В, которая питается от силового трансформатора Т типа ТМГ-160/10/0,4 со схемой соединения обмоток Y/YH. Воздушная линия напряжением 380 В имеет длину 500 м и выполнена неизолированным проводом АС-3×35+1×35 мм2. Для защиты воздушной линии в ее начале в трансформаторной подстанции установлен плавкий предохранитель F типа ПН-2 с номинальным током вставки IF.НОМ=100 А, значение которого выбрано из условия отстройки от рабочих и пусковых токов нагрузки воздушной линии. Вставка плавкого предохранителя F имеет паспортную защитную времятоковую характеристику tF=f(IF) с ±50%-ной зоной разброса срабатывания (фиг. 2). При рассмотрении характеристик защиты воздушной линии использована верхняя времятоковая характеристика (+50% разброса), соответствующая максимальным временам срабатывания плавкого предохранителя.

Сущность заявляемого способа определения места установки устройств секционирования воздушной линии 380 В заключается в следующих последовательных действиях:

1. Рассчитывают минимальные токи однофазного короткого замыкания для каждой точки Li воздушной линии напряжением 380 В (фиг. 1) в несколько этапов с учетом сопротивления дуги в месте замыкания и эффекта «теплового спада», т.е. получают зависимость

1.1. Рассчитывают изменение сопротивления электрической сети напряжением 380 В минимальному току однофазного короткого замыкания по длине воздушной линии:

где R1∑, R2∑, R0∑, Х1∑, Х1∑, X0∑ - активные и индуктивные сопротивления прямой, обратной и нулевой последовательности электрической сети напряжением 380 В, включающие в себя сопротивления питающего трансформатора напряжением 10/0,4 кВ и сопротивления воздушной линии напряжением 380 В, которые изменяются в зависимости от длины этой линии.

1.2. Рассчитывают согласно положениям [ГОСТ 28249-93. Короткие замыкания в электроустановках: Методы расчета в электроустановках переменного тока напряжением до 1кВ. - М.: Изд-во стандартов, 1994. - 42 с.] минимальный ток металлического однофазного короткого замыкания в различных точках, расположенных по длине воздушной линии:

где UCP.НН - среднее линейное напряжение на стороне низшего напряжения силового трансформатора Т.

1.3. Рассчитывают уменьшение минимального тока дугового однофазного короткого замыкания, обусловленное наличием в месте замыкания сопротивления дуги RД и определяемое понижающим поправочным коэффициентом :

1.4. Рассчитывают сначала увеличение активных сопротивлений фазного и нулевого проводов из-за нагрева ϑ при протекании по ним дугового минимального тока однофазного короткого замыкания (от эффекта «теплового спада»), потом соответствующее изменение полного сопротивления цепи току дугового однофазного короткого замыкания

1.5. Рассчитывают минимальный ток однофазного короткого замыкания с учетом сопротивления дуги RД и эффекта «теплового спада» ϑ:

2. Строят график функции изменения величины минимального тока однофазного короткого замыкания от длины участка воздушной линии напряжением 380 В между трансформаторной подстанцией и точкой однофазного короткого замыкания с учетом сопротивления дуги RД и эффекта «теплового спада» ϑ (далее будем использовать упрощенную запись см. фиг. 1.

3. Выбирают по условиям отстройки от рабочих и пиковых токов электрической нагрузки воздушной линии напряжением 380 В номинальный ток IF.НОМ вставки плавкого предохранителя F и устанавливают его в трансформаторной подстанции в начале воздушной линии напряжением 380 В для ее защиты.

4. Рассчитывают, используя паспортные защитные времятоковые характеристики tF=f(IF) вставки выбранного плавкого предохранителя и график функции изменения величины минимального тока однофазного короткого замыкания от длины участка воздушной линии напряжением 380 В зависимость времени срабатывания tS.F плавкого предохранителя от длины L защищаемой линии tS.F=f(L) и строят ее на графике, приведенном на фиг 1.

Расчет зависимости tS.F=f(L) проводят в следующем порядке. Для каждого значения длины линии Li по графику определяют значение минимального тока . По паспортной защитной времятоковой характеристике (с +50%-ным разбросом) вставки плавкого предохранителя tF=f(IF), приведенной на фиг. 2, для каждого значения тока короткого замыкания и, соответственно, для каждой точки воздушной линии Li находят соответствующее время tS.Fi срабатывания плавкого предохранителя - в результате получается зависимость tS.F=f(L) - изменение времени срабатывания tS.F плавкого предохранителя по длине воздушной линии L.

5. Определяют, руководствуясь требованиями [п.1.7.79, «Правила устройства электроустановок», 7-е издание] о том, что время отключения повреждения не должно превышать tS.F1=5 секунд, по зависимости tS.F=f(L) зону защиты LЗ.1 выбранного плавкого предохранителя F, установленного в трансформаторной подстанции в начале воздушной линии напряжением 380 В.

6. Устанавливают в конце зоны защиты LЗ.1 секционирующий плавкий предохранитель F1 на ближайшую опору, находящуюся внутри зоны защиты LЗ.1, т.е. ближе к трансформатору Т, если установленный в трансформаторной подстанции в начале воздушной линии напряжением 380 В плавкий предохранитель F не обеспечивает защиту всей линии со временем срабатывания не более 5 секунд. Причем номинальный ток вставки секционирующего плавкого предохранителя F1 выбирают по условиям отстройки от рабочих и пиковых токов нагрузки оставшегося участка воздушной линии напряжением 380 В.

При таком порядке установки секционирующего плавкого предохранителя F1 обеспечивается требование п. 1.7.79 Правил устройства электроустановок 7-го издания - время срабатывания плавкого предохранителя F, установленного в трансформаторной подстанции в начале воздушной линии напряжением 380 В, не превышает iS.F.1=5 секунд, при этом минимальный ток однофазного короткого замыкания в конце зоны защиты LЗ.1, определенный по зависимости равен , а коэффициент чувствительности защиты воздушной линии составляет:

В заключение покажем какие характеристики имеет защита, построенная на основе прототипа. Исходным моментом для построения этой защиты является положение о том, что минимальное значение коэффициента чувствительности должно быть равно трем, т.е. КЧ=3 - этому соответствует значение минимального тока однофазного короткого замыкания Отложив по оси ординат значение этого тока и проведя горизонтальную линию до пересечения с кривой получим длину LЗ.2, соответствующую концу зоны защиты плавкого предохранителя F, где должен быть установлен секционирующий плавкий предохранитель F2. Теперь, зная длину LЗ.2, по кривой tS.F=f(L) определим время срабатывания плавкого предохранителя F в конце зоны LЗ.2 защиты - tS.F.2=80 с.

Таким образом, видно, что при возникновении однофазного короткого замыкания в конце зоны защиты, построенной на основе положений прототипа, при коэффициенте чувствительности КЧ=3 время перегорания плавкого предохранителя равно 80 с, что намного больше требований п. 1.7.79 «Правил устройства электроустановок» 7-го издания.

Способ определения места установки устройств секционирования воздушной линии напряжением 380 В, характеризующийся тем, что рассчитывают минимальные токи однофазного короткого замыкания по длине этой воздушной линии с учетом сопротивления дуги в месте замыкания и эффекта «теплового спада», строят график функции изменения величины минимального тока однофазного короткого замыкания от длины участка воздушной линии напряжением 380 В между трансформаторной подстанцией и точкой однофазного короткого замыкания, выбирают по условиям отстройки от рабочих и пиковых токов электрической нагрузки воздушной линии напряжением 380 В номинальный ток вставки плавкого предохранителя и устанавливают его в трансформаторной подстанции в начале воздушной линии напряжением 380 В, рассчитывают и строят на графике по паспортным защитным времятоковым характеристикам вставки выбранного плавкого предохранителя и графику функции изменения величины минимального тока однофазного короткого замыкания от длины участка воздушной линии напряжением 380 В зависимость времени срабатывания выбранного плавкого предохранителя от длины воздушной линии напряжением 380 В, определяют по этой зависимости зону защиты выбранного плавкого предохранителя, установленного в трансформаторной подстанции в начале воздушной линии напряжением 380 В, в которой обеспечивается время срабатывания не более 5 секунд, устанавливают в конце его зоны защиты секционирующий плавкий предохранитель, если установленный в начале воздушной линии напряжением 380 В плавкий предохранитель не обеспечивает защиту всей линии со временем срабатывания не более 5 секунд, причем номинальный ток плавкой вставки секционирующего предохранителя выбирают по условиям отстройки от рабочих и пиковых токов нагрузки оставшегося участка воздушной линии напряжением 380 В.



 

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано для контроля теплового состояния силовых модулей, входящих в состав статических преобразователей напряжения и частоты различного назначения.

Изобретение относится к области электротехники. Технический результат - снижение подверженности к сбоям путем контроля нескольких параллельных проводов.

Использование: в области электротехники. Технический результат - повышение точности тепловой защиты электроустановки.

Изобретение относится к электротехнике и может быть использовано для контроля теплового состояния силовых модулей, входящих в состав статических преобразователей напряжения и частоты различного типа и назначения.

Изобретение относится к области электротехники и может быть использовано в электроприводах на основе коллекторных электродвигателей, в частности для тяговых электродвигателей электропоездов.

Изобретение относится к электротехнике и реализует простой и универсальный способ контроля и защиты инвертора от перегрузок как по активной, так и по полной мощности, что обеспечивает безопасность его эксплуатации без ограничения мощностных возможностей инвертора.

Изобретение относится к технике диагностирования маслонаполненного оборудования. Технический результат состоит в расширении диапазона измеряемых величин и повышении точности измерения.

Использование: в области электроэнергетики. Технический результат - обеспечение точного контроля без необходимости непосредственных измерений и снижение числа контролируемых факторов с обеспечением точности контроля.

Использование: в области электротехники. Шинная распределительная систем (1) включает в себя множество соединенных друг с другом, одно- или многофазных модульных отрезков (2) шинопровода, к шинной распределительной системе подключены несколько ответвительных коробок (3) и/или электрических приборов (4).

Изобретение относится к защитному устройству для крана, которое может стабильно использоваться при температуре, не превышающей минимальную эксплуатационную температуру электронных устройств.

Использование: в области электротехники. Технический результат – повышение точности определения времени срабатывания защиты. Способ включает контроль отклонения от максимально допустимого значения температуры наиболее подверженной перегреву контактной поверхности токоведущего контактного соединения в составе коммутационного аппарата и генерацию сигнала, по которому определяют время достижения контактной поверхностью максимально допустимой температуры. Дополнительно в способе в режиме мониторинга измеряют значение прямоугольного импульса тока и сравнивают измеренную величину с заданным пороговым значением испытательного или эксплуатационного прямоугольного импульса тока, в случае превышения током своего порогового значения проводят температурный контроль контактной поверхности в режиме динамического мониторинга на интервале времени нагрева контактного соединения. Далее проводят пересчет измеренных в ходе динамического мониторинга значений температуры, доступной для прямых измерений внешней поверхности контакт-детали, в соответствующие значения температуры, недоступной для прямых измерений контактной поверхности контактного соединения, и по зарегистрированным косвенным измерениям температуры контактной поверхности строят линейное уравнение регрессии, из которого определяют момент времени до отключения коммутационного аппарата. 4 ил., 2 табл.

Изобретение относится к области электротехники и может быть использовано для защиты электрических двигателей от тепловых перегрузок. Техническим результатом является повышение точности порога срабатывания защиты. Способ защиты электрического двигателя от технологических перегрузок, состоящий в том, что фиксируют ток двигателя, преобразуют его в величину и производят отключение двигателя, за критерий опасного режима принимают мгновенное значение температуры нагрева мощностью независимо от формы тока, фиксируют мгновенное значение тока перегрузки, проходящего через двигатель, и мгновенное значение напряжения на двигателе, перемножают их и величину, пропорциональную получившейся в результате перемножения мощности, рассеиваемой в двигателе и греющей его, подают на элементы, воссоздающие экспоненциальные зависимости, соответствующие кривым нагрева различных условных участков структуры защищаемого двигателя, причем параметры элементов получают путем разложения экспериментально снятой кривой нагрева наиболее опасного в тепловом отношении участка физической структуры защищаемого двигателя на составляющие ее экспоненты, а параметры на выходе указанных элементов складывают, получая параметр, пропорциональный мгновенному значению температуры перегрева наиболее опасного участка физической структуры двигателя относительно окружающей среды, который складывают со значением параметра, пропорционального температуре окружающей среды, а получающуюся в результате суммирования величину, пропорциональную мгновенному значению температуры нагрева наиболее опасного участка физической структуры двигателя, сравнивают с температурой уставки срабатывания защиты, а результат сравнения преобразуют в соответствующие электрические сигналы, с помощью которых производят защитное отключение двигателя. Устройство защиты двигателя от перегрузки состоит из датчика тока (1), двигателя (6), подключенного к преобразователю (3), который преобразует в предлагаемом устройстве мощность, рассеиваемую в двигателе (6), в величину, пропорциональную мгновенному значению температуры опасного участка структуры защищаемого двигателя (6). К входу преобразователя (3) подключен также датчик напряжения на двигателе (2). Выход преобразователя (3) подключен через контакты (4) к контактору (5), предназначенному для защитного отключения двигателя (6). 2 н.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано в устройствах питания асинхронных двигателей как общепромышленного, так и специального назначения. Техническим результатом является обеспечение защиты двигателя от перегрева вследствие повреждений обмоток при повреждении электрической цепи ротора и обеспечения бесперебойной работы двигателя в подобных режимах. В устройство питания асинхронного двигателя, содержащее три мостовых инвертора, питаемых от сети постоянного напряжения и управляемых от трехфазного источника сигналов, введены преобразователи уровней, пик-детекторы фазных напряжений, блок формирования средней амплитуды, аналоговые умножители напряжения, трансформаторы тока, соединенные выходами с сумматорами, вторыми входами у которых являются выходы аналоговых умножителей напряжения, первыми входами которых являются выходы задающего генератора, формирующего фазные напряжения и синхронизированного с питающей сетью, а вторыми - выход блока нелинейного преобразования, вход которого соединен с выходом блока формирования средней амплитуды, входы которого подключены к выходам пик-детекторов, входы которых подключены к выходам преобразователей уровней, входы которых подключены к зажимам питания двигателя, который подключен к выходам мостовых инверторов, к управляющим входам которых подключены выходы сумматоров. 2 ил.
Наверх