Устройство для формирования равномерного распределения интенсивности лазерного пучка

Устройство для формирования равномерного распределения интенсивности лазерного пучка в поперечном его сечении содержит соосно расположенные по ходу лазерного излучения полый усеченный фотометрический формирователь (ФМФ), выполненный в виде усеченного конуса, внутренняя поверхность которого покрыта диффузно отражающим покрытием, диффузно пропускающую выпукло-вогнутую линзу, двояковогнутую линзу. Причем указанные элементы соосны. Технический результат, достигаемый при реализации заявленного устройства, заключается в повышении уровня интенсивности излучения лазерного пучка в зоне выходного окна (до Emax=0,351 отн. ед.) при высокой степени его равномерности (0,96…0,99). 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к измерительной технике и технической физике, в частности - к устройствам для формирования равномерного распределения интенсивности лазерного пучка в поперечном его сечении, и может быть применено для калибровки и поверки средств измерений параметров лазерного пучка, содержащих многоэлементные измерительные преобразователи с высоким пространственным разрешением.

Из уровня техники известны устройства для формирования равномерного распределения интенсивности лазерного пучка в поперечном его сечении. Одним из формирователей такого типа является фотометрический шар [Гуревич М.М. Фотометрия (теория, методы и приборы). Л.: Энергоатомиздат, 1983.], представляющий собой сферу, внутренняя поверхность которой выполнена из диффузно отражающего материала. Такой формирователь имеет ряд недостатков: отклонение излучения от диффузного, отраженного от покрытия внутренних стенок; сложность нанесения качественного покрытия на внутренние стенки сферы; зависимость характеристик покрытия от факторов окружающей среды; потеря части падающего и отраженного излучения, связанная с наличием отверстий в фотометрическом шаре; необходимость установки дополнительного экрана для защиты от прямого попадания излучения на приемную площадку поверяемого средства измерения; значительное ослабление рассеиваемого внутри сферы потока излучения. Устранение этих недостатков приводит к усложнению технологии изготовления интегрирующих сфер, а также к тому, что они становятся более громоздкими. Наиболее близким аналогом предлагаемого устройства для формирования равномерного распределения интенсивности лазерного пучка в поперечном его сечении среди диффузных формирователей является устройство, содержащее линзу из диффузно пропускающего стекла, одна поверхность которой выпуклая, а вторая плоская, фотометрический цилиндр (ФЦ), внутренняя поверхность которого выполнена из диффузно отражающего стекла (покрытия), например, из молочного стекла МС-20, причем плоская поверхность диффузно пропускающей линзы прикреплена к входному окну полого цилиндра, а центр симметрии диффузно пропускающей линзы лежит на оси симметрии полого цилиндра [Иванов B.C., Золотаревский Ю.М., Котюк А.Ф., Либерман А.А. и др. Основы оптической радиометрии. - М.: Физматлит, 2003, раздел 18.4]. По результатам исследования устройство при определенном подборе размеров и материалов для ФЦ в пределах части его выходного окна создает распределение с высоким уровнем равномерности относительной интенсивности ≈0,95…0,99 (приведенной к наибольшему значению). Однако в данном техническом решении не учтены характеристики ослабления ФЦ, что делает неоптимальным его применение с указанными в нем параметрами. Так, для определения коэффициентов преобразования многоэлементных измерительных преобразователей лазерного пучка при проведении калибровки или поверки важно обеспечить не только необходимые характеристики равномерности, но и требуемый уровень энергии (мощности), приходящийся на один его элемент.

Техническая задача, решаемая заявляемым изобретением, состоит в создании устройства для формирования равномерного распределения интенсивности лазерного пучка в поперечном его сечении, способного обеспечить распределения интенсивности с заданной степенью равномерности с наибольшим значением интенсивности в зоне выходного окна.

Технический результат, достигаемый при реализации заявленного устройства, заключается в повышении уровня интенсивности излучения лазерного пучка в зоне выходного окна при высокой степени его равномерности (0,96…0,99).

Данный технический результат обеспечивается предлагаемым устройством для формирования равномерного распределения интенсивности лазерного пучка в поперечном его сечении, включающим соосно расположенную по ходу лазерного излучения диффузно пропускаюпгую линзу, полый фотометрический формирователь (ФМФ), внутренняя поверхность которого выполнена из диффузно отражающего покрытия, имеющий входное и выходное окна, причем диффузно пропускающая линза закреплена на входном окне ФМФ, отличающимся тем, что устройство дополнительно содержит двояковогнутую линзу и диффузно пропускающую пластину, а полый ФМФ выполнен в виде усеченного конуса, а диффузно пропускающая линза имеет выпукло-вогнутую форму, при этом центр симметрии двояковогнутой линзы и диффузно пропускающей линзы лежит на оси симметрии полого усеченного ФМФ, а диффузно пропускающая пластина закреплена на выходном окне полого усеченного ФМФ, причем двояковогнутая линза расположена перед диффузно пропускающей линзой так, что обеспечивает полную засветку диффузно пропускающей линзы, а геометрические параметры полого усеченного ФМФ с радиусами оснований R1, R2 и высотой L выбраны из соотношений:

R2=r/ρ; R1=1,2R2, L=10R2/3,

где , Δ - коэффициент равномерности, выбранный из диапазона , r<R2 - радиус зоны выходного окна.

Предлагаемое устройство содержит двояковогнутую линзу, выполненную, например, из оптического стекла К-8, диффузно пропускающую выпукло-вогнутую линзу, выполненную, например, из молочного стекла МС-23, закрепленную на входном окне полого усеченного (ФМФ), выполненного, например, из металла (дюралюминиевый сплав Д16), внутренняя поверхность которого покрыта диффузно отражающим покрытием, например светотехнической эмалью марки АК-243.

С целью обеспечения дополнительного выравнивания распределения интенсивности диффузно пропускающая пластина выполнена, например, из молочного стекла МС-23.

Двояковогнутая линза расположена перед диффузно пропускающей линзой на расстоянии, необходимом для ее полной засветки, и может быть закреплена либо путем жесткого соединения с ФМФ в единой конструкции, либо автономно.

Устройство представляет пассивный формирователь равномерного распределения интенсивности лазерного пучка, в котором осуществляется выравнивание распределения интенсивности за счет многократных диффузных отражений излучения от внутренней поверхности ФМФ и его прохождения через диффузно пропускающие линзу и пластину. Параметры двояковогнутой линзы и ее расположение обеспечивают полную засветку диффузно пропускающей линзы и ФМФ. Схема заявляемого устройства формирования равномерного распределения интенсивности лазерного пучка в поперечном его сечении в предпочтительном варианте его осуществления представлена на чертеже. Устройство содержит соосно расположенные по ходу лазерного излучения от источника 1 двояковогнутую линзу 2, изготовленную из оптического стекла К-8, диффузно пропускающую выпукло-вогнутую линзу 3, изготовленную из молочного стекла МС-23, закрепленную на входном окне полого ФМФ 4, выполненного из металла (дюралюминиевый сплав Д16) с внутренней поверхностью 5, покрытой светотехнической эмалью АК-243, и диффузно пропускающую пластину 6 из молочного стекла МС-23, закрепленную на выходном окне ФМФ. На выходе пластины 6 установлен калибруемый или поверяемый данным устройством многоэлементный измерительный преобразователь 7.

Исследование данного устройства, представленное в таблице, показало, что геометрические параметры ФМФ, обеспечивающие наибольшее значение относительной интенсивности Emax при высокой равномерности, соответствуют соотношениям:

, где R1, R2 - входной и выходной радиусы усеченного ФМФ соответственно и , где L - высота ФМФ. Значение интенсивности при отсутствии ФМФ приблизительно в 1,8 раза меньше. Распределение относительной интенсивности лазерного пучка Е(ρ) в пределах зоны выходного окна диффузно пропускающей линзы 6, радиуса r, предназначенного для установки калибруемого или поверяемого многоэлементного измерительного преобразователя 7, может быть аппроксимировано квадратичной зависимостью вида:

,

где , .

Оптимальные параметры ФМФ определяются следующим образом:

- исходя из требуемой степени равномерности Δ на границе многоэлементного измерительного преобразователя, радиуса r, выбранной из промежутка , находят значения ρ и радиус R2 ФМФ по формулам:

, ;

- определяют высоту ФМФ из соотношения L=10R2/3;

- определяют радиус R1 ФМФ: R1=1,2R2.

Как видно из таблицы, при значениях параметров m=0,3; γ=1,2 достигается наибольшее значение относительной интенсивности Emax=0,351 отн. ед. при высокой степени равномерности, если ρ≤0,4.

Устройство работает следующим образом. Лазерное излучение от источника 1 падает по нормали на центр двояковогнутой линзы 2, обеспечивающей полную засветку диффузно пропускающей выпукло-вогнутой линзы 3. Такая ее форма обеспечивает выравнивание распределения интенсивности на краях за счет более интенсивного поглощения в центре и создания условий более эффективного использования ФМФ. Проходя линзу 3, излучение распределяется внутри ФМФ 4 по закону, близкому к закону Ламберта. Часть излучения достигает диффузно пропускающей пластины 6 без отражения от внутренней поверхности полого ФМФ, а другая часть - после многократных отражений от его внутренней поверхности. Поскольку внутренняя поверхность цилиндра выполнена из диффузно отражающего покрытия, то в каждой ее точке излучение также будет распределяться по закону Ламберта. В результате на входе диффузно пропускающей пластины 6 формируется распределение интенсивности, близкое к равномерному. Диффузно пропускающая пластина 6 осуществляет дополнительное выравнивание распределения интенсивности излучения, поступающего на калибруемый или поверяемый многоэлементный измерительный преобразователь 7.

Таким образом, параметры предлагаемого устройства оптимизированы как по степени равномерности, так и уровню интенсивности излучения.

1. Устройство для формирования равномерного распределения интенсивности лазерного пучка в поперечном его сечении, включающее соосно расположенные по ходу лазерного излучения диффузно пропускающую линзу, полый фотометрический формирователь, внутренняя поверхность которого выполнена из диффузно отражающего покрытия, имеющий входное и выходное окна, причем диффузно пропускающая линза закреплена на входном окне фотометрического формирователя, отличающееся тем, что устройство дополнительно содержит двояковогнутую линзу и диффузно пропускающую пластину, а полый фотометрический формирователь выполнен в виде усеченного конуса, а диффузно пропускающая линза имеет выпукло-вогнутую форму, при этом центр симметрии двояковогнутой линзы и диффузно пропускающей линзы лежит на оси симметрии полого усеченного фотометрического формирователя, а диффузно пропускающая пластина закреплена на выходном окне полого усеченного фотометрического формирователя, причем двояковогнутая линза расположена перед диффузно пропускающей линзой так, что обеспечивает полную засветку диффузно пропускающей линзы, а геометрические параметры полого усеченного фотометрического формирователя с радиусами оснований R1, R2 и высотой L выбраны из соотношений:

R2=r/ρ; R1=1,2R2, L=10R2/3,

где , Δ - коэффициент равномерности, выбранный из диапазона Δ=0,96÷0,99, r<R2 - радиус зоны выходного окна.

2. Устройство по п. 1, отличающееся тем, что диффузно пропускающая пластина изготовлена из молочного стекла МС-23.

3. Устройство по п. 1, отличающееся тем, что полый усеченный фотометрический формирователь выполнен, например, из дюралюминиевого сплава Д16, а в качестве диффузно отражающего покрытия используют, например, светотехническую эмаль АК-243.

4. Устройство по п. 1, отличающееся тем, что двояковогнутая линза выполнена, например, из оптического стекла К-8.



 

Похожие патенты:

Способ изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера включает в себя измерение диаграммы направленности VCSEL.

Способ относится к оптическому приборостроению и касается способа изготовления дифракционных оптических элементов и масок для изготовления фазовых структур. Способ включает нанесение молибденовой пленки толщиной 35-45 нм на поверхность диэлектрической подложки с последующим воздействием на нее сфокусированным лазерным излучением.

Изобретение относится к области лазерной оптики, а именно к острой фокусировке когерентного излучения, и может быть использовано для высокоразрешающей оптической записи и сканирующей оптической микроскопии.

Изобретение относится к способу управления распределением интенсивности поля волны или волн частично когерентного или некогерентного оптического излучения на конечном расстоянии от его источника или в дальней зоне и устройству, реализующему заявленный способ.

Изобретение относится к световой панели, содержащей источник света и панельный элемент. .

Изобретение относится к световым индикаторам, подсвечиваемым источником света. .

Изобретение относится к области оптических измерений с применением дифракционной оптики и может найти применение при поиске, определении пространственного положения и ориентации группы рассеивающих частиц в различных оптических элементах, а также при получении достоверных измерений пространственно-частотных спектров этих рассеивающих частиц с целью их точной идентификации, повышения точности в определении их размеров и расстояний между ними.

Изобретение относится к области оптических измерений и может быть использовано для измерения расстояния до излучающего объекта, в частности для определения расстояния до точечного источника света.

Изобретение относится к области светотехники. Техническим результатом является повышение яркости освещения с полным спектром видимого излучения.

Изобретение относится к области микроскопии. Осветительная система для микроскопа содержит по меньшей мере один источник света, выполненный с возможностью подачи двух коллимированных световых пучков к поверхности предмета, где два коллимированных световых пучка по меньшей мере частично перекрываются, и отводимый светоделитель на линии визирования микроскопа.

Пленочный материал включает микроизображения и периодическую двумерную матрицу нецилиндрических линз. При этом пленочный материал использует периодическую двумерную матрицу нецилиндрических линз для увеличения микроизображений и создания искусственно увеличенного изображения посредством объединенного множества отдельных линз/систем изображений пиктограмм.

Пленочный материал включает микроизображения и периодическую двумерную матрицу нецилиндрических линз. При этом пленочный материал использует периодическую двумерную матрицу нецилиндрических линз для увеличения микроизображений и создания искусственно увеличенного изображения посредством объединенного множества отдельных линз/систем изображений пиктограмм.

Сканирующий многолучевой лидар содержит оптическую приемную систему, в которой используется зеркальный объектив, вторичное зеркало которого выполнено в виде зеркально-линзового компонента, за которым на оптической оси телескопа установлены дополнительная положительная линза и ТВ-камера.

Способ когерентного сложения включает в себя разделенное на каналы лазерное излучение, направленное на соответствующие каналам фазовые модуляторы. После прохождения фазовых модуляторов все каналы выставляют параллельно друг другу, при этом волновой фронт в каждом канале делают плоским.

Система содержит объектив, формирующий промежуточное изображение в промежуточной плоскости фокусировки, фильтр изображения, содержащий маску с отверстиями в промежуточной плоскости фокусировки; матрицу микролинз, параллельную промежуточной плоскости фокусировки; оптическую систему сопряжения, формирующую изображение матрицы микролинз в плоскости съемки изображения; и матрицу детектирования изображения, содержащую фоточувствительные элементы в плоскости съемки изображения.

Изобретение относится к области передачи информации посредством поверхностных электромагнитных волн и касается геодезической призмы для отклонения пучка монохроматических поверхностных плазмон-поляритонов (ППП).

Изобретение относится к области светотехники. Техническим результатом является повышение мощности.

Изобретение относится к области оптического приборостроения и касается оптического лучевого делителя. Оптический лучевой делитель представляет собой сборную дихроидную призму и выполнен в виде склейки нескольких прозрачных призм.
Наверх