Способ оценки обводненности продукции нефтедобывающей скважины

Изобретение относится к способу измерения обводненности скважинной продукции. В скважине, оборудованной глубинным электроцентробежным насосом (ЭЦН) и частотным регулятором тока электропитания погружного электродвигателя, в интервале от забоя скважины (зона нефтяного пласта) до глубинного насоса стационарно располагают не менее двух датчиков давления (манометров) с определенным расстоянием между ними по вертикали. Датчики с заданной периодичностью передают информацию по давлению на контроллер станции управления работы скважины, находящийся на поверхности земли. При этом выбирают такой режим работы ЭЦН, который обеспечивает давление в зоне измерительных датчиков (манометров) выше, чем давление насыщения нефти газом. Обводненность скважинной продукции определяется по математической формуле, в которой плотность нефти и воды закладываются как известные величины при давлении, равном средней величине давлений по двум ближайшим датчикам. Данные по плотностям пластовых флюидов получаются по предварительным исследованиям глубинных проб нефти и воды нефтедобывающих скважин. 1 ил., 2 табл.

 

Предлагаемое изобретение относится к скважинной добыче нефти из продуктивных пластов, в частности к методам оценки объемов добычи нефти и воды из скважины. Изобретение предназначено для скважин, оборудованных глубинными электроцентробежными насосами (ЭЦН) и погружной телеметрией.

Разработка нефтяных месторождений основана на поскважинном учете добычи нефти и воды с тем, чтобы контролировать степень нефтеизвлечения как в целом по залежи или месторождению, так и решать эту задачу отдельно по зонам объекта разработки. Традиционная практика оценки степени обводненности нефтедобывающей скважины основана на периодическом отборе проб скважинной жидкости с устьевого пробоотборника, расположенного на выкидной линии скважины. Согласно ГОСТ 2517-85 «Нефть и нефтепродукты. Методы отбора проб» пробы с трубопровода можно отбирать только в двух случаях: после насоса или перемешивающего устройства (п. 2.13.1.4). Глубинный насос находится на расстоянии нескольких сотен метров от устьевого пробоотборника, а перемешивающее устройство - перед насосом в выкидной линии (ВЛ), как правило, отсутствует. Это приводит к тому, что отбираемая проба может отличаться по составу от скважинной продукции благодаря явлению гравитационного разделения жидкости в ВЛ на прослои с различным содержанием нефти и воды.

С целью повышения точности оценки состава добываемой скважинной жидкости авторами изобретения по патенту РФ №2533468 (опубл. 20.11.2014) предложена скважина, оборудованная с ЭЦН, который можно периодически останавливать и наблюдать за расслоением скважиной продукции, находящейся в колонне насосно-компрессорных труб, на составные части: воду, нефть и нефтяной газ. По высотам нефтяной и водной части в колоне НКТ можно судить об обводненности добываемой жидкости. Определенным недостатком данного способа является то, что колонну НКТ предварительно оборудуют акустическими датчиками и соответствующими преобразователями-контроллерами, вследствие чего повышается стоимость производимых измерений.

Известно изобретение по патенту РФ №2520251 (опубл. 20.06.2014), согласно которому обводненность продукции нефтедобывающей скважины определяется путем остановки эксплуатации электроцентробежного насоса, ожидания гравитационного разделения газожидкостного состава в колонне лифтовых труб на участки с водой и нефтью, а попутный газ при этом выпускается из колонны труб через лубрикаторное устройство. Для определения границ нефти и воды, а также уровня нефти в колоне НКТ по колонне опускают на геофизическом кабеле измерительный прибор, например резистивиметр или влагомер. Недостатком данной технологии является необходимость остановки работы скважины на длительный период для достижения качественного отстоя скважинной продукции. Вторым недостатком является необходимость проведения спуско-подъемных операций, что также повышает стоимость оценочных работ и увеличивает время простаивания нефтедобывающей скважины. Исследования получаются чрезвычайно дорогими.

Известен принцип работы влагомера по патенту РФ №2396427, в котором доля нефти и воды в герметичном вертикально вытянутом сосуде определяется по давлению в нижней точке сосуда. Недостатком способа является то, что нефть находится в этом сосуде с определенным и неизвестным остаточным содержанием попутного нефтяного газа. Поэтому плотность такой нефти всегда остается величиной, определенной с определенной погрешностью, которая будет влиять и на конечный результат - определение обводненности скважинной продукции.

Технической задачей по изобретению является создание технологии скважинных измерений по оценке обводненности скважинной продукции, проводимых без остановки работы глубинно-насосного оборудования и без спуско-подъемных операций глубинных измерительных приборов. Второй технической задачей по изобретению является повышение точности проводимых измерений благодаря приведению скважинной продукции в детерминированное, то есть известное состояние, и использованию в расчетах надежных исходных данных.

Поставленная задача достигается тем, что по способу оценки обводненности продукции нефтедобывающей скважины, заключающемуся в измерении давления, создаваемого столбом скважинной продукции в измерительном устройстве, в скважине, оборудованной глубинным электроцентробежным насосом (ЭЦН) и частотным регулятором тока электропитания погружного электродвигателя, в интервале от забоя скважины (зона нефтяного пласта) до глубинного насоса стационарно располагают не менее двух датчиков давления (манометров) с определенным расстоянием между ними по вертикали, которые с заданной периодичностью передают информацию по давлению на контроллер станции управления работы скважины, находящийся на поверхности земли, при этом выбирают такой режим работы ЭЦН, который обеспечивает давление в зоне измерительных датчиков (манометров) выше, чем давление насыщения нефти газом. Один из датчиков давления располагают на забое скважины - напротив продуктивного пласта, второй - выше на определенном расстоянии от этого датчика. В качестве второго датчика допустимо использовать датчик давления, входящий в комплект стандартного оборудования установки электроцентробежного насоса с внутрискважинной телеметрией типа ТМС, например Электон-ТМС-3 (Система погружной телеметрии ЭЛЕКТОН-ТМС-3 / Руководство по эксплуатации ЦКД 228 РЭ. - г. Радужный Владимирской обл.: ЗАО «ЭЛЕКТОН», 2013. - 35 с.). Датчик давления в системе ТМС фиксируется, как правило, к нижней части погружного электродвигателя установки ЭЦН.

Благодаря тому, что давления в зонах нахождения верхнего и нижнего по высоте датчиках поддерживаются на время измерения обводненности продукции выше величины давления насыщения нефти газом Рнас, скважинная продукция между двумя датчиками рассматривается как жидкость без свободного газа, так как попутный нефтяной газ будет находиться в жидкостной фазе в растворенном состоянии. В этом случае разность давлений между двумя датчиками можно записать в виде:

где P1 - давление в зоне первого - нижнего датчика, в атм;

Р2 - давление в зоне второго - верхнего датчика, в атм;

H1 - вертикальная глубина первого датчика в призабойной зоне пласта, в м;

Н2 - вертикальная глубина второго датчика, в м;

ρж - средняя плотность жидкости между двумя рассматриваемыми датчиками, в кг/м3.

Плотность двухфазной скважинной продукции при отсутствии свободного попутного нефтяного газа определяется аддитивной формулой:

где ρв - плотность воды, в кг/м3, при среднем давлении ;

ρн - плотность пластовой нефти, в кг/м3, при среднем давлении Рср;

fв - обводненность скважиной продукции, выраженная в долях от единицы.

Используя формулы 2 и 1, выразим искомую обводненность fв:

Схема оборудования скважины для реализации предложенного способа приведена на рисунке, где 1 - обсадная колонна нефтедобывающей скважины, 2 - колонна НКТ (лифтовых труб), 3 - глубинная насосная установка (ЭЦН) с погружным электродвигателем (ПЭД), 4 - датчик давления в составе ТМС, 5 - верхний датчик давления, 6 - нижний датчик давления, 7 - станция управления скважиной, 8 - кабель электропитания датчиков и канала обратной связи, 9 - штатный кабель электропитания ПЭД, совмещающий функцию обратной связи со станцией управления.

Обводненность продукции нефтедобывающей скважины по изобретению определяется в следующем порядке:

1. Скважина с УЭЦН предварительно комплектуется двумя или более датчиками, их на кабеле располагают в зоне от ПЗП до электроцентробежного насоса.

2. С помощью электрочастотного регулятора тока ПЭД глубинный насос на время исследований эксплуатируют с наименьшей производительностью, благодаря этому давление в ПЗП и в зоне расположения датчиков давления повышается и становится выше давления насыщения нефти газом, и становится правомерным определения степени обводненности скважинной продукции fн по формуле (3).

Отметим, что данные по плотностям пластовой воды и нефти при давлениях Р1, Р2 и Рср определяются заблаговременно по пробам нефти и воды, отобранным глубинными пробоотборниками при давлениях выше Рнас и разгазированным до атмосферного давления с получением графика зависимости плотности флюида (нефти и воды) от давления.

В таблице 1 дана необходимая по изобретению исходная информация по нефтедобывающей скважине залежи нефти пластово-сводового типа, расположенной на северо-западе республики Башкортостан.

Давление в зоне верхнего датчика давления поддерживается на время измерений чуть выше давления насыщения нефти газом: Р2нас (51>50), поэтому в зоне между двумя датчиками в нефти будет отсутствовать свободный газ, а плотность нефти будет практически неизменной величиной в этой зоне. По предварительным лабораторным исследованиям глубинных проб нефти определены плотности пластовой нефти и пластовой воды в интервале давлений Р12. Эти данные приведены в таблице 2.

По формуле (3) находим обводненность по первой скважине:

Рассчитанная по изобретению обводненность скважиной продукции (СП) равна 36,8%. По данным устьевых проб, средняя обводненность СП равна 36,0%.

Расхождение между предложенным способом измерения обводненности и существующим (отбор проб на устье) стал возможным по той причине, что скважинная продукция представляет эмульсионный состав, а это предопределяет гомогенный состав флюидов в зоне устьевого пробоотборника.

Полученная приемлемая сходимость показывает, что предложенный способ сможет стать надежным методом контроля за добычей нефти и воды из скважин. Это особенно важно для тех скважин, где устьевые пробы могут быть не представительными из-за гравитационного разделения скважинной жидкости в выкидной линии скважины в ее устьевой зоне на прослои с различным содержанием нефти и воды.

В открытой печати отсутствует информация по предложенной нами технологии, на наш взгляд, по заявке соблюдены критерии существенного отличия и новизна.

Способ оценки обводненности продукции нефтедобывающей скважины, заключающийся в измерении давления, создаваемого столбом скважинной продукции в измерительном устройстве, отличающийся тем, что в скважине, оборудованной глубинным электроцентробежным насосом (ЭЦН) и частотным регулятором тока электропитания погружного электродвигателя, в интервале от забоя скважины (зона нефтяного пласта) до глубинного насоса стационарно располагают не менее двух датчиков давления (манометров) с определенным расстоянием между ними по вертикали, которые с заданной периодичностью передают информацию по давлению на контроллер станции управления работы скважины, находящийся на поверхности земли, при этом выбирают такой режим работы ЭЦН, который обеспечивает давление в зоне измерительных датчиков (манометров) выше, чем давление насыщения нефти газом, а обводненность скважинной продукции определяют по формуле:

где fв - обводненность скважиной продукции, выраженная в долях от единицы;

P1 - давление в зоне первого - нижнего датчика, в атм;

Р2 - давление в зоне второго - верхнего датчика, в атм;

H1 - вертикальная глубина первого датчика, в м;

Н2 - вертикальная глубина второго датчика, в м;

ρв - плотность попутной воды, в кг/м3, при среднем давлении:

где ρн - плотность пластовой нефти, в кг/м3, при среднем давлении Рср;

g - ускорение свободного падения.



 

Похожие патенты:

Предлагаемое изобретение относится к области нефтегазовой промышленности и может быть использовано для контроля технического состояния нефтегазовых скважин. Предлагаемый способ включает регистрацию по стволу скважин амплитуды электромагнитного поля в низкочастотном диапазоне, вызванном вибрацией потока жидкости в заколонном пространстве обсадной колонны с остаточной намагниченностью.

Изобретение относится к технике, используемой в нефтедобывающей промышленности, и предназначено для замера и учета продукции нефтяных скважин. Технический результат заключается в повышении качества и эффективности измерения дебита нефтяных скважин.

Изобретение относится к нефтедобыче, а именно к измерению дебита скважины в процессе ее эксплуатации. Технический результат заключается в упрощении и повышении точности определения дебита.
Изобретение относится к области добычи природного газа и, в частности, к оперативному контролю выноса воды и песка из скважины в автоматизированных системах управления технологическими процессами (АСУ ТП) нефтегазоконденсатных месторождений Крайнего Севера.

Изобретение относится к нефтегазовой промышленности и может быть использовано при разработке газовых и газоконденсатных месторождений. Способ включает проведение стандартных газодинамических исследований скважин на стандартных режимах фильтрации с построением зависимости устьевых параметров (давления и температуры) и давления на забое скважины от расхода газа, контроль соответствия величины фиксируемых в процессе эксплуатации устьевых параметров величине параметров, определяемой зависимостью, построенной по результатам газодинамических исследований (ГДИ) при текущем расходе газа.

Изобретение относится к области исследования характеристик скважин. Техническим результатом является обеспечение возможности проведения оперативного контроля скважины одновременно с этапом ее освоения.

Изобретение относится к газодобывающей промышленности и может быть использовано при разработке и эксплуатации газовых месторождений. Техническим результатом является диагностирование начала обводнения газовых скважин в режиме реального времени и предотвращение их самозадавливания.

Изобретение относится к нефтегазодобывающей промышленности, в частности к методам поиска скважин с заколонными перетоками (ЗКЦ) воды. Техническим результатом настоящего изобретения являются повышение эффективности способа выявления скважин, обводняющихся посредством заколонных перетоков воды, за счет повышения надежности исследования скважин путем увеличения длительности анализируемого начального периода их эксплуатации и за счет значительного сокращения затрат времени на исследование.

Изобретение относится к области нефтегазовой промышленности, может быть использовано при измерении и контроле дебита газоконденсатных скважин и позволяет повысить точность измерения дебита газоконденсатных скважин.

Изобретение относится к системе и способу динамической визуализации скорости текучей среды в подземных пластах путем отображения частицы в различных местах расположения на линии тока, которая представляет путь текучей среды в подземном пласте.

Изобретение относится к способу определения границы вода/цемент в кольцевом зазоре между двумя коаксиальными трубами в углеводородной скважине. Технический результат заключается в улучшении определения границы вода/цемент в кольцевом зазоре между двумя коаксиальными трубами в углеводородной скважине. Способ включает запуск скважинного прибора в центральной трубе скважины, причем скважинный прибор содержит корпус и установленные в корпусе прибора генератор импульсов и регистратор сигнала; генерирование, посредством генератора импульсов, электромагнитного импульса и возбуждение тем самым физических вибраций в центральной трубе скважины; регистрацию, посредством регистратора сигнала, акустических сигналов, отраженных от скважины; повторение операций генерирования и регистрации для различных положений генератора импульсов по глубине скважины; обеспечение организации зарегистрированных сигналов в виде двумерного представления; фильтрацию зарегистрированных сигналов, прошедших организацию, с целью идентифицировать в двумерном представлении гиперболу и принятие вершины гиперболы в качестве определяющей положение границы вода/цемент. 6 з.п. ф-лы, 11 ил.

Изобретение относится к нефтедобывающей промышленности, а именно к управлению заводнением нефтяных пластов. Способ включает отбор нефти через добывающие скважины и закачку рабочего агента через нагнетательные скважины, оценку влияния добывающих и нагнетательных скважин. При этом для определения оптимальных значений приемистости нагнетательных скважин используют математическую модель месторождения, а в качестве первоначальных данных для каждой добывающей скважины и потенциально влияющих на нее нагнетательных скважин принимают показатели в виде даты замера, значение приемистости, дебита жидкости и доли нефти. В качестве математической модели используют функции, отражающие изменение дебита жидкости и доли нефти добывающих скважин при изменении приемистости нагнетательных скважин, при этом производят адаптацию математической модели путем получения минимального расхождения фактических и расчетных данных дебита жидкости и доли нефти каждой работы добывающей скважины. Определяют оптимальные значения настроечных параметров функций дебита жидкости и доли нефти, и составляют смешанную функцию суточной добычи нефти добывающей скважины в зависимости от приемистости окружающих ее нагнетательных скважин. Затем производят максимизацию суммарной добычи нефти по месторождению в целом путем перераспределения приемистости нагнетательных скважин, с наложением ограничений на объемы закачки для эффективной организации системы вытеснения нефти водой и поддержания пластового давления. Технический результат заключается в обеспечении эффективной организации системы вытеснения нефти водой и системы поддержания пластового давления. 4 ил., 11 табл.

Изобретение относится к нефтегазовой промышленности, в частности к проведению работ по длительному исследованию скважин в условиях автономии, и может быть использовано в процессах изучения новых месторождений в отсутствии сопутствующей инфраструктуры. Модульный комплекс содержит модуль тестового сепаратора и учета продукции скважины, подключенный к трубопроводной линии продукции скважин, поступающей с устья исследуемой скважины, модуль накопительной емкости с насосами откачки, модуль распределения газа, блок факельного хозяйства, состоящий из факельной совмещенной установки для утилизации газа и факельной установки утилизации нефти с воздушным компрессором подачи воздуха. Между собой указанные модули и блоки обвязаны технологическими линиями продукции скважины, нефти, газа, сжатого воздуха, оборудованными запорной и запорно-регулирующей арматурой. Вход мерной емкости в модуль тестового сепаратора и учета продукции скважины соединен жидкостной транспортной линией нефти с выходом тестового сепаратора, а выход соединен с линией подачи нефти в накопительную емкость и линией замера дебита нефти, связанной линией подачи отсепарированной нефти с факельной установкой утилизации нефти, на которой расположен массовый расходомер, и трубопроводной линией продукции скважин для подачи ее в модуль накопительной емкости. Обеспечивается расширение функциональных возможностей мобильного комплекса. 7 з.п. ф-лы, 2 ил.
Группа изобретений относится к горному делу и может быть применена для осуществления гидравлического разрыва множества продуктивных интервалов подземного пласта и количественного мониторинга количества флюидов, добываемых во множестве продуктивных интервалов подземного пласта. Можно осуществлять мониторинг флюидов, добываемых из подвергнутого гидравлическому разрыву пласта, путем закачивания в скважину жидкости для гидравлического разрыва, которая содержит индикатор. Способ может применяться для мониторинга как добытых углеводородов, так и добытой воды. Индикатор также можно использовать при борьбе с поступлением в скважину песка, при гидравлическом разрыве, совмещенном с установкой гравийного фильтра, или при осуществлении операции кислотного гидравлического разрыва пласта. Индикатор является компонентом композита, в котором он может быть иммобилизован внутри матрицы (такой как эмульсия), или пористых частиц, на носителе, или прессован со связующим веществом в твердые частицы. Индикатор может медленно высвобождаться из композита. Технический результат заключается в повышении эффективности количественного мониторинга количества флюидов, добываемых во множестве продуктивных интервалов, подвергнутых гидравлическому разрыву. 3 н. и 29 з.п. ф-лы.

Изобретение относится к области добычи природного газа и, в частности, к оперативному контролю выноса воды и песка из скважины в автоматизированной системе управления технологическими процессами (АСУ ТП) нефтегазоконденсатных месторождений Крайнего Севера. Способ включает измерение расхода, давления и температуры газа на устье скважины с параллельным контролем в реальном масштабе времени фактического давления и температуры газа в конце шлейфа-газопровода, по которому газ поступает на вход установки комплексной подготовки газа (УКПГ). Использование текущих значений контролируемых параметров для вычисления расчетного значения давления газа в конце шлейфа-газопровода в реальном масштабе времени средствами АСУ ТП. Сравнение динамики его изменения во времени с динамикой изменения фактического давления газа в конце шлейфа-газопровода. Начало процесса выноса песка и воды из скважины определяют по появлению разности в динамике поведения давлений расчетного и фактического. Фактические параметры газа измеряют на устье каждой скважины, подключенной к газосборному шлейфу (ГСШ) по схеме с путевой подкачкой газа, и по этим параметрам производят расчет давления в конце ГСШ на входе УКПГ, которое используют в качестве оперативной модели для контроля функционирования шлейфа, при непрерывном контроле фактического давления и температуры в конце ГСШ. При появлении разности в динамике поведения давлений расчетного и фактического АСУ ТП начинает анализировать динамику поведения давления на устьях всех скважин и выбирает ближайшую к УКПГ из всех, у которых выявлен подъем давления на устье скважины. После чего, в рамках технологических ограничений, регулирует работу этой скважины. 1 ил.

Изобретение относится к исследованию скважин, а именно к выбору скважин с закольматированной призабойной зоной пласта (ПЗП). Способ включает геофизические исследования скважин, а также лабораторные исследования керна, систематический замер дебита нефти, жидкости. В скважинах проводят гидродинамические исследования с выявлением скважин с повышенным скин-фактором. При этом для поиска проблемных скважин с закольматированной ПЗП используется графическая корреляция текущих значений фактического дебита жидкости скважины (ось Y) и показателя ее потенциала (ось X), рассматривающая сразу все добывающие скважины залежи, запущенные в работу за один период времени. При этом показатель потенциала скважины рассчитывается как произведение величин вскрытой начальной нефтенасыщенной толщины пласта, средней проницаемости ПЗП, разности между текущими пластовым давлением и забойным давлением в скважине, деленное на вязкость добываемой жидкости в пластовых условиях, а вязкость добываемой жидкости рассчитывается как среднее арифметическое от вязкости нефти и воды в пластовых условиях с учетом их содержания в продукции. Проблемными скважинами с вероятной кольматацией ПЗП признаются скважины, точки которых расположены на корреляции заметно ниже прямой, интерполирующей точки, подчиняющиеся прямой зависимости дебита жидкости скважины от ее показателя потенциала. При этом для отмеченных проблемных скважин строятся динамики дебита жидкости, нефти и воды за последний период эксплуатации и для проведения обработки призабойной зоны (ОПЗ) отбираются лишь те проблемные скважины, для которых падение дебита жидкости сопровождается падением дебита нефти. 1 з.п. ф-лы, 3 ил.

Изобретение относится к способам эксплуатации газовых и газоконденсатных скважин и может быть использовано для сокращения потерь ретроградного конденсата и предотвращения аккумулирования жидкости в стволе скважины. Способ включает замер термобарических параметров, таких как давление устьевое и устьевая температура, определение коэффициента сверхсжимаемости газа, поддержание регулированием устьевого штуцера дебита скважины не менее критического, обеспечивающего вынос пластовой жидкости с забоя. При этом критический дебит скважины определяют по формуле: , где: Q - дебит газа скважины, необходимый для выноса жидкости по подъемной трубе, Руст - давление устьевое; D - внутренний диаметр подъемной трубы; Tуст - устьевая температура; Z - коэффициент сверхсжимаемости газа, соответствующий устьевым и критическим значениям давления и температуры. 1 пр.

Изобретение относится к области нефтедобычи и может быть использовано в измерительных установках для корректировки данных при определении дебита продукции нефтяных скважин. Техническим результатом предлагаемого изобретения является повышение точности определения содержания доли пластовой воды в сырой нефти за счет прямых измерений плотности расслоенной сырой нефти. Способ заключается в том, что накапливают сырую нефть из скважины в вертикальной цилиндрической емкости, в течение заданного времени доводят отстоем до состояния расслоения на пластовую воду, водонефтяную смесь и сырую нефть с малым содержанием пластовой воды. В процессе слива расслоенной сырой нефти из вертикальной цилиндрической емкости определяют плотность пластовой воды и нефти и, используя их значения, определяют массовую долю пластовой воды в сырой нефти. Сливают насосом сырую нефть из вертикальной цилиндрической емкости по жидкостной линии с установленными массомером и влагомером, в течение цикла слива измеряют массу и плотность расслоенной сырой нефти, а также объемную долю пластовой воды в слое сырой нефти с малым содержанием пластовой воды. Выбирают значения массы и плотности в моменты времени начала и окончания цикла слива и моменты времени начала и окончания изменения измеряемого значения плотности расслоенной сырой нефти, при этом массовую долю пластовой воды в сырой нефти определяют по формуле , где М - значение массы сырой нефти, МВ - значение массы пластовой воды, МНВ - значение массы водонефтяной смеси и сырой нефти с малым содержанием пластовой воды, - значение средней плотности сырой нефти, - значение средней плотности пластовой воды, - значение средней плотности водонефтяной смеси, - значение средней плотности сырой нефти с малым содержанием пластовой воды, - значение средней объемной доли пластовой воды в сырой нефти с малым содержанием пластовой воды, измеренное влагомером, значения которых вычисляют на основе измеренных значений массы, плотности и доли воды в течение цикла слива.

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке месторождений углеводородов. Технический результат - повышение эффективности разработки месторождений углеводородов. По способу предусматривают разработку залежи углеводородов в условиях низкопроницаемых, маломощных коллекторов. Залежь углеводородов вскрывают многозабойной скважиной с одним вертикальным стволом и несколькими горизонтальными стволами. Вертикальным стволом вскрывают начальное положение флюидальных контактов. Искусственный забой вертикального ствола располагают на 10-15 м ниже флюидальных контактов. Горизонтальными стволами увеличивают зону дренирования залежи углеводородов. Из горизонтального ствола добывают углеводородное сырье. Вертикальный ствол служит для проведения геофизических исследований скважины. Входную воронку лифтовой колонны располагают выше технологического «окна» горизонтального ствола. Этим обеспечивают возможность использования геофизического оборудования для вертикальных скважин. В результате из одной скважины добывают углеводородное сырье и одновременно проводят геофизический контроль за внедрением подошвенных вод. 1 ил., 1 пр.

Изобретение относится к измерительной технике, используемой в нефтедобывающей промышленности для замера и учета продукции нефтяных скважин. Технический результат: повышение точности и качества замера дебита нефтяных скважин, подключенных к групповой замерной установке, за счет эффективности суммарного и поочередного измерения дебита каждой скважины, а также обеспечение достаточного времени для достоверного замера дебита каждой скважины и обеспечение постоянного контроля по дебиту в режиме реального времени всех скважин, подключенных к групповой замерной установке. Способ измерения дебита нефтяных скважин на групповых замерных установках, включающий измерение дебита нефтяных скважин, подключенных к групповой замерной установке, посредством переключателя скважин одновременно у всех подключенных скважин без одной поочередно и последовательно, далее определяют результаты вычисления дебита каждой скважины. При этом полученный косвенным путем общий дебит группы скважин, подключенных к замерной установке, подтверждают и постоянно контролируют и прямым измерением с установкой узла переключения на контрольный входной патрубок. По результатам полученных отклонений от измеренного и контролируемого общего дебита группы скважин запускают поочередное измерение всех подключенных скважин без одной, последовательно определяют результаты измерения дебита каждой скважины и затем по результатам измерения определяют отклонения работы каждой скважины. Устройство для измерения дебита содержит узел переключения скважин, измерительную установку и общий выходной трубопровод, при этом вход измерительной установки соединен с общим выходным коллектором узла переключения скважин, а измерительной трубопровод узла переключения скважин соединен байпасным трубопроводом с общим выходным трубопроводом измерительной установки. Узел переключения скважин содержит контрольный входной патрубок, перекрывающий вход измерительного трубопровода узла переключения скважин с одновременным подключением всей группы скважин к измерительной установке. 2 н.п. ф-лы, 1 ил.

Изобретение относится к способу измерения обводненности скважинной продукции. В скважине, оборудованной глубинным электроцентробежным насосом и частотным регулятором тока электропитания погружного электродвигателя, в интервале от забоя скважины до глубинного насоса стационарно располагают не менее двух датчиков давления с определенным расстоянием между ними по вертикали. Датчики с заданной периодичностью передают информацию по давлению на контроллер станции управления работы скважины, находящийся на поверхности земли. При этом выбирают такой режим работы ЭЦН, который обеспечивает давление в зоне измерительных датчиков выше, чем давление насыщения нефти газом. Обводненность скважинной продукции определяется по математической формуле, в которой плотность нефти и воды закладываются как известные величины при давлении, равном средней величине давлений по двум ближайшим датчикам. Данные по плотностям пластовых флюидов получаются по предварительным исследованиям глубинных проб нефти и воды нефтедобывающих скважин. 1 ил., 2 табл.

Наверх