Способ обнаружения утечек нефти и нефтепродуктов

Изобретение относится к области трубопроводного транспорта нефти и нефтепродуктов и предназначено для оперативного обнаружения утечек транспортируемой жидкости из трубопроводов. Способ обнаружения утечек нефти и нефтепродуктов, включающий измерение давления по трассе трубопровода, по результатам замеров строят прогноз давления в момент времени следующего замера, вычисляют разности между прогнозируемым и измеренным значением давления, принимают решение о факте возникновения или отсутствия утечки по значению решающей функции непараметрического метода скорейшего обнаружения разладки. Технический результат - повышение скорости обнаружения утечек. 4 ил.

 

Изобретение относится к области трубопроводного транспорта нефти и нефтепродуктов и может использоваться для обнаружения утечек транспортируемой жидкости из трубопроводов.

Известен способ обнаружения утечек, основанный на сравнении расходов в двух контрольных сечениях трубопровода [Алиев Т.М., Карташева Р.И., Тер-Хачатуров А.А., Фукс В.Л. Методы и средства контроля малых утечек на магистральных нефте- и продуктопроводах. М., ВНИИОЭНГ, 1981. - с. 8-10]. Недостатком известного способа является большое количество ложных срабатываний при нестационарных режимах эксплуатации трубопровода.

Известен способ обнаружения утечек [RU 2368843], основанный на сравнении разности масс жидкости, поступившей в контролируемый участок и вышедшей из него за определенный промежуток времени, с изменением массы, рассчитанной по замерам давления на концах контролируемого участка. Недостатками известного способа являются плохая чувствительность к малым объемам утечки, а также необходимость установки измерителей расхода на обоих концах контролируемого участка.

Известны способы обнаружения утечек, основанные на регистрации акустического шума, сопровождающего наличие утечки [RU 2053436, RU 2221230, RU 2241174, US 6389881, US 6668619]. Недостатками известных способов являются необходимость оснащения трубопроводной системы дорогостоящим оборудованием, а также ложные срабатывания при наличии посторонних шумов (например, возникающих при эксплуатации трубопроводного оборудования).

Известен способ обнаружения утечек, основанный на вычислении вариации волны давления, возникающей в момент образования утечки, и сравнении ее с эмпирически определенным стандартным отклонением. Если вариация волны превышает стандартное отклонение, проверяется наличие падения давления. Если оно присутствует, подается сигнал об утечке. Недостатком известного способа является необходимость обнаружения волны давления. Чтобы уменьшить вероятность необнаружения волны, в RU 2525369 предлагается измерять давление и обрабатывать полученные значения с высокой частотой (например, 1 раз в 50 мс), что требует наличия надежных высокоскоростных сетей, мощных вычислительных систем и хранилищ данных большой емкости.

Известен способ идентификации утечек, основанный на определении распределения давления по длине трубопровода в течение определенного промежутка времени [RU 2421657]. Недостатком способа является необходимость измерения расхода, из-за ошибок измерения которого известный способ не позволяет идентифицировать утечку малого объема или определяет факт возникновения утечки спустя некоторое время, необходимое для накопления рассогласования между объемом жидкости, поступившей в контролируемый участок трубопровода и вышедшей из него. Более того, измерение расходов требует установки на обоих концах контролируемого участка измерителей расхода.

Наиболее близким способом идентификации утечек к заявляемому изобретению является техническое решение, описанное в патенте RU 2291345. Известный способ основан на обнаружении волн давления, возникающих в момент образования утечки и распространяющихся от места возникновения утечки к концам трубопровода. Недостатками этого способа являются ложные срабатывания, вызванные нестационарными процессами в трубопроводной системе, не связанными с утечкой, невозможность обнаружения утечек с малым расходом, а также необходимость оснащения датчиков давления вспомогательным оборудованием.

В основу предлагаемого изобретения положена задача создания способа обнаружения утечек нефти и нефтепродуктов, в т.ч. утечек малого объема, не требующего установки дополнительного измерительного оборудования, обеспечивающего высокую скорость идентификации момента возникновения утечки и не вызывающего ложных срабатываний в случае нестационарного режима функционирования трубопроводной системы. Поставленная задача решается тем, что по измерениям давления вдоль трассы трубопровода прогнозируется динамика изменения давления в предстоящий временной интервал. Прогнозируемое и фактическое (измеренное) значения давления сравниваются между собой с помощью непараметрического метода скорейшего обнаружения разладки, по результатам сравнения принимается решение о факте возникновения утечки.

Сущность предлагаемого способа заключается в следующем.

Обрабатываются замеры давления за интервал времени, в течение которого утечка не наблюдалась. На их основе прогнозируются значения давления в моменты следующих замеров. Тот факт, что при поступлении очередного замера фактическое значение давления оказалось значительно меньше прогнозируемого, служит сигналом о возникновении утечки.

Прогноз давления в момент времени следующего замера (для определенности tk+1) строится с помощью процедуры нахождения тренда f(t) по замерам давления P(t) в моменты времени t1, t2, …, tk [Сухарев М.Г. Методы прогнозирования. Учебное пособие. М.: РГУ нефти и газа, 2009 г., 208 с.].

Для принятия решения о наличии/отсутствии утечки в момент времени tk+1 используется непараметрический метод скорейшего обнаружения разладки, частными формами реализации которого являются метод кумулятивных сумм, метод Гиршика-Рубина-Ширяева, экспоненциального сглаживания и т.д. [Бродский Б.Е. Проблемы и методы вероятностной диагностики / Бродский Б.Е., Дарховский Б.С. // Автоматика и телемеханика. 1999. Вып. 8. С. 3-55]. С этой целью вычисляется разность между прогнозируемым значением давления P(tk+l) и измеренным ƒ(tk+1): y(tk+l)=P(tk+1)-ƒ(tk+1). Затем значение y(tk+1) используется для нахождения значения решающей функции непараметрического метода скорейшего

обнаружения разладки d(tk+1). По значению d(tk+1) принимается решение о факте возникновения или отсутствия утечки: если d(tk+1)=1, то в момент времени tk+1 произошла утечка, подается сигнал об утечке, иначе - в момент времени tk+1 утечки не было, проверяется наличие утечки в момент времени tk+2.

Предлагаемый способ обладает следующими преимуществами:

- обнаруживает утечки с высокой скоростью,

- идентифицирует утечки малого объема,

- не требует установки дополнительного оборудования,

- может быть использован при нестационарных режимах работы трубопровода.

Сущность способа поясняется чертежами, где на фиг. 1 представлена структурная схема, иллюстрирующая предлагаемый способ обнаружения утечек, на фиг. 2-4 приведены графики, иллюстрирующие примеры реализации способа.

По трассе трубопровода (фиг. 1) установлен измеритель давления (Р) 1, данные с которого по системе телеметрии непрерывно поступают на вычислительное устройство 2.

Ниже приведены примеры конкретного выполнения предлагаемого способа.

На фиг. 2 представлены данные о замерах давления, производящихся с периодичностью 0,5 с. В момент времени t=581 (t - номер замера) происходит утечка.

Для каждого t находится значение тренда ƒ(t). Тренд ƒ(t) строится с помощью ортогональных полиномов по 20 предыдущим замерам давления. Вычисляются значения y(t). Данные о величинах y(t), 0≤t≤582 представлены на фиг. 3.

В примере для принятия решения о наличии/отсутствии утечки используется одна из частных форм реализации непараметрического метода скорейшего обнаружения разладки - метод кумулятивных сумм, решающая функция которого имеет вид d(tk+1)=I{y(tk+1)<N}, где I - индикатор, N<0 - критическое число. Значение N полагается равным -0,001.

Способ идентифицирует утечку в момент времени t=582 (фиг. 3), т.е. практически мгновенно, спустя 0,5 с после ее возникновения.

Рассмотрим другой пример - закрытие линейного крана на продуктопроводе, которое также сопровождается падением давления. Амплитуда изменения давления сопоставима с изменением давления при возникновении утечки. Замеры давления проводятся с периодичностью 0,5 с. Данные о замерах давления представлены на фиг. 4.

Для каждого t определяется тренд ƒ(t). Тренд ƒ(t) строится с помощью ортогональных полиномов по 20 предыдущим замерам давления. Вычисляются значения y(t).

Для принятия решения о наличии/отсутствии утечки используется метод кумулятивных сумм - частная форма реализации непараметрического метода скорейшего обнаружения разладки. Критическое число N полагается равным -0,001.

Моментов разладки предлагаемый способ не обнаруживает (сигнал о возникновения утечки не генерируется), т.е. ложного срабатывания при закрытии линейного крана не возникает.

Способ может быть применен в системах транспорта нефти и нефтепродуктов, а также в трубопроводных системах транспорта воды, газового конденсата, жидких химикатов и др.

Способ обнаружения утечек нефти и нефтепродуктов, включающий измерение давления по трассе трубопровода, причем по результатам замеров строят прогноз давления в момент времени следующего замера, вычисляют разности между прогнозируемым и измеренным значением давления, принимают решение о факте возникновения или отсутствия утечки по значению решающей функции непараметрического метода скорейшего обнаружения разладки.



 

Похожие патенты:

Изобретение относится к защите трубопроводного транспорта, предназначено для наблюдения, обнаружения и локализации утечек, в т.ч. от несанкционированных врезок, а также гидратных или парафиновых пробок, и может быть использовано в различных отраслях народного хозяйства.

Заявляемое изобретение относится к области неразрушающего контроля трубопроводного транспорта, в частности к устройствам внутритрубной диагностики, и предназначено для пространственной привязки результатов их измерений, привязки координат обнаруженных дефектов к координатам земной поверхности.

Изобретение относится к области теплоэнергетики и может быть использовано при эксплуатации оборудования тепловых электростанций для мониторинга прочности ответственного оборудования.

Изобретение относится к области очистки внутренней полости и внутритрубного диагностирования технологических трубопроводов перекачивающих станций жидких углеводородов и нефтеперерабатывающих предприятий.

Изобретение относится к системам мониторинга состояния основного и вспомогательного оборудования. Технический результат заключается в повышении эффективности и безопасности эксплуатации промышленного оборудования.

Изобретение относится к нефтяной промышленности и может быть использовано на трубопроводах в качестве централизованной системы автоматических защит от превышения давления, обеспечивающей безаварийность технологического процесса транспортировки нефти (нефтепродуктов).

Группа изобретений относится к трубопроводному транспорту. Для защиты от коррозии в трубопроводе используется катодная защитная система, которая содержит множество расположенных в почве стержней заземления, которые электрически соединены каждый с почвой и электрически связаны с находящимся в соединении с почвой трубопроводом.

Изобретение относится к области инженерной геодезии и может быть использовано для контроля положения трубопроводов надземной прокладки. На сваи опор трубопровода устанавливают деформационные марки.

Способ предназначен для обеспечения промышленной безопасности технологического оборудования установок. Способ включает анализ требований нормативных документов на технические устройства и занесение сведений об их характеристиках в информационную базу данных, оценку технического состояния технических устройств в разные периоды эксплуатации их с учетом их технического состояния до начала эксплуатации, формирование общей информационной базы данных о фактическом техническом состоянии устройств в разные периоды времени и динамики развития технического состояния в будущем на основе сведений, полученных при оценке технического состояния на предыдущих стадиях.

Изобретение относится к области автоматизированных систем мониторинга и диагностики технического состояния металлических подземных сооружений. Технический результат - повышение качества комплексного дистанционного мониторинга и анализа уровня коррозионной защиты подземных сооружений для определения причин возникновения коррозии и принятие своевременных мер по ее предотвращению.
Наверх