Способ ионного азотирования титановых сплавов

Изобретение относится к машиностроительной промышленности, а именно к химико-термической обработке поверхности изделий из титанового сплава, и может быть использовано для повышения эксплуатационных характеристик изделий. Способ ионного азотирования титановых сплавов в газовой смеси азот-аргон с процентным соотношением 60% N2-40% Ar включает ионное азотирование в магнитном поле при температуре в вакуумной камере 650-750°C и напряжении в разрядном промежутке 500-600 В сначала при низком давлении упомянутой газовой смеси, составляющем 10-1-1 Па, в течение 4 часов, а затем при давлении упомянутой газовой смеси 100-300 Па в течение 1 часа. Обеспечивается получение развитой диффузионной зоны с повышенной микротвердостью и глубиной азотированного слоя на титановой основе. 1 ил., 1 пр.

 

Изобретение относится к машиностроительной промышленности, а именно к химико-термической обработке поверхности изделий из титанового сплава, и может быть использовано для повышения эксплуатационных характеристик изделий.

Известен способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления технически чистого титана ВТ-0 (RU №2434075 С1, МПК С23С 8/24, 2011 г.). В данном способе азотирование реализовано в плазме несамостоятельного дугового разряда низкого давления за счет использования в качестве плазмообразующей смеси газов азот-аргон. При этом азотирование выполняется при температуре 400°C и используют ионную и электронную компоненту плазмы. Время азотирования и количество аргона в плазмообразующей смеси устанавливается в зависимости от требуемой толщины модифицированного слоя.

Недостатком аналога является невысокая производительность и малая глубина азотированного слоя, необходимость использования сложного оборудования и специальных источников ионов, а также потребность в высоком вакууме (10-2 Па).

Известен способ азотирования в плазме тлеющего разряда (RU №2409700 С1, МПК С23С 8/36, 2011), включающий азотирование в тлеющем разряде и закалку, для осуществления которого проводят вакуумный нагрев изделий в плазме азота повышенной плотности. Плазму азота повышенной плотности формируют в кольцевой области вращения электронов, захваченных магнитным полем, силовые линии которого параллельны обрабатываемой поверхности, при этом электронное облако максимально локализовано у детали-катода.

Недостатком аналога является отсутствие возможности азотирования титановых сплавов.

Наиболее близким по технической сущности является способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов ВТ-6 и ВТ-16 (RU №2434074 С1, МПК С23С 8/24, 2011 г.). Данный способ реализуется за счет пластической деформации, которую проводят до азотирования для формирования наноструктурированного или субмикрокристаллического состояния в объеме материала. Азотирование проводят на ионно-плазменной установке типа ННВ-6.6-И1. Процесс проводят при температуре 400°C в смеси газов азот-аргон с процентным соотношением 60% N2 - 40% Ar, давление в камере 10-2 Па, напряжение 70 В. Время азотирования 40 минут. После азотирования поверхностная микротвердость повысилась на 5,5%, при этом на поверхности сформировался слой с мелкодисперсными частицам нитрида титана глобулярной формы. Дальнейшее увеличение времени азотирования до 120 минут приводит к увеличению глубины модифицированного слоя до 10 мкм.

Недостатком прототипа является невысокая производительность и малая глубина азотированного слоя, необходимость использования сложного оборудования и специальных источников ионов, а также потребность в высоком вакууме (10-2 Па).

Задачей предлагаемого изобретения является повышение производительности и улучшение эксплуатационных свойств поверхности детали из титановых сплавов.

Техническим результатом способа является получение развитой диффузионной зоны с повышенной микротвердостью и глубиной азотированного слоя на титановой основе.

Поставленная задача решается, а технический результат достигается тем, что в способе ионного азотирования титановых сплавов в смеси газов азот-аргон с процентным соотношением 60% N2 - 40% Ar, согласно изобретению, процесс проводят в магнитном поле сначала при низком давлении порядка 10-1-1 Па в течение 4 часов, а затем при давлении 100-300 Па в течение 1 часа, температура в вакуумной камере 650-750°C, напряжение в разрядном промежутке 500-600 В.

Наличие магнитного поля при определенных соотношениях между напряжением разряда и давлением плазмообразующего газа приводит к значительному увеличению разрядного тока при некотором снижении напряжения. Увеличение тока разряда обусловлено тем, что в катодной области увеличивается генерация заряженных частиц осциллирующими электронами, захваченными магнитным полем; при этом возрастает число ионов, бомбардирующих поверхность, и число электронов, эмитируемых катодом. Также наложение магнитного поля заметно ускоряет формирование азотированного слоя, а низкое давление способствует более глубокому проникновению диффузии азота вглубь металла. Дальнейшее ионное азотирование при давлении 100-300 Па приводит к формированию защитного диффузионного слоя с высокой концентрацией азота и повышенной микротвердостью.

Существо изобретения поясняется чертежом. На чертеже изображена схема проведения ионного азотирования на установке ЭЛУ-5.

Установка состоит из вакуумной камеры 1, магнитной системы 2, системы ввода рабочего газа 3, системы откачки 4 и рабочего стола 5 с образцом 6.

Процесс азотирования осуществляется при температуре 650-750°C, которая существенно превышает точку температуры Кюри. Поэтому предусмотрена система охлаждения магнитной системы, обеспечивающая захват и удержание электронов над образцом.

Пример конкретной реализации способа.

В качестве материала для проведения испытаний был выбран титановый сплав ВТ-6. Способ реализовали на модернизированной установке ЭЛУ-5. В вакуумной камере на рабочем столе устанавливают предварительно очищенный образец, который подключают к отрицательному электроду. Затем создают рабочее давление в диапазоне от 10-1 до 1 Па, после чего вакуумную камеру прокачивают смесью газов азот-аргон (60% N2 - 40% Ar), подают напряжение 500-600 В. Образец, установленный в вакуумной камере, нагревают до температуры 650-750°C и азотируют в течение 4 часов. После этого рабочее давление в вакуумной камере повышают до 100-300 Па и выдерживают в течение 1 часа. Все процессы проходят за один вакуумный цикл, т.е. в одной камере и в одной и той же газовой среде (60% N2 - 40% Ar), что позволяет максимально снизить вспомогательное время, затрачиваемое на подготовительные операции, которые связаны с использованием разного оборудования и оснастки. При этом глубина азотированного слоя достигает 60-70 мкм, а микротвердость 20-30 ГПа.

Необходимо отметить следующие преимущества заявленного способа: большая глубина азотированного слоя, высокая твердость поверхности, высокая производительность процесса, простота установки, не требующая проектирования специальных приспособлений.

Таким образом, предлагаемый способ ионного азотирования титановых сплавов позволяет получить изделие из титанового сплава с большой глубиной азотированного слоя и высокой микротвердостью.

Способ ионного азотирования титановых сплавов в газовой смеси азот-аргон с процентным соотношением 60% N2-40% Ar, отличающийся тем, что ионное азотирование проводят в магнитном поле при температуре в вакуумной камере 650-750°C и напряжении в разрядном промежутке 500-600 В сначала при низком давлении упомянутой газовой смеси, составляющем 10-1-1 Па, в течение 4 часов, а затем при давлении упомянутой газовой смеси 100-300 Па в течение 1 часа.



 

Похожие патенты:
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе никеля, и может быть использовано для изготовления деталей и узлов горячего тракта газотурбинных авиационных двигателей, стационарных газотурбинных установок и других изделий, работающих при высоких температурах.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе кобальта, и может быть использовано для изготовления деталей и узлов горячего тракта газотурбинных авиационных двигателей, стационарных газотурбинных установок и других изделий, работающих при высоких температурах.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения.

Изобретение относится к области вакуумно-плазменных химико-термических технологий обработки материалов и изделий и может быть использовано при химико-термической упрочняющей обработке методом азотирования конструкционных изделий из нержавеющей стали в машиностроении, приборостроении, нефтегазовой, аэрокосмической отраслях.
Изобретение относится к термоводородной обработке полуфабрикатов и изделий из пористого материала на основе титана и его сплавов для медицинских имплантатов. Способ включает термодиффузионное насыщение водородом и вакуумный отжиг.

Изобретение относится к области металлургии, а именно к химико-термической обработке металлов в плазме тлеющего разряда, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин и режущего инструмента.

Изобретение относится к области упрочняющей обработки материалов, в частности к способам химико-термической обработки изделий путем нанесения металлосодержащих покрытий различного назначения.

Изобретение относится к способу получения упрочненного сплава, имеющего металлическую основу, в объеме которой диспергированы наночастицы, из которых по меньшей мере 80% имеют средний размер от 0,5 нм до 50 нм.

Изобретение относится к прецизионным износостойким антифрикционным покрытиям, полученным путем вакуумно-дугового осаждения, и может быть использовано в машиностроении, авиастроении, при создании конструкций с повышенными антиэрозионными, антифрикционными и защитными свойствами.

Изобретение относится к области химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов. Способ азотирования стальной детали в тлеющем разряде с обеспечением на упомянутой детали участков с различной глубиной упрочненного слоя включает вакуумный нагрев стальной детали в плазме азота повышенной плотности, формируемой между поверхностью детали и перфорированными экранами для получения эффекта полого катода. Получение на упомянутой детали участков с различной глубиной упрочненного слоя обеспечивают регулированием плотности плазмы посредством перфорированных экранов с заданными значениями прозрачности, имеющих разную ширину отверстий и разное расстояние между отверстиями, и регулированием расстояния от экранов до поверхности детали. Обеспечивается получение азотированных участков детали с различной глубиной упрочненного слоя за один технологический цикл с повышением производительности процесса. 3 ил., 1 пр.

Изобретение относится к области плазменной химико-термической обработки поверхности деталей и может быть использовано в авиадвигателестроении для повышения эксплуатационных свойств деталей, работающих при циклических нагрузках, а также позволяет интенсифицировать процесс азотирования. Способ азотирования изделий из титанового сплава в тлеющем разряде включает вакуумный нагрев изделий из титанового сплава в плазме азота повышенной плотности тлеющего разряда, при этом плазму азота повышенной плотности создают скрещенными электрическим и магнитным полями, а азотирование упомянутых изделий выполняют в рабочей смеси N2 15% + Ar 85% при давлении, равном 80 Па, температуре 500÷550°С в течение 1,5÷2 часов с последующей сменой смеси на N2 60% + Ar 40% при давлении, равном 40 Па, с выдержкой в течение 1 часа. Затем изделия охлаждают в вакууме. Обеспечивается интенсификация процесса азотирования, формирование развитого нитридного диффузионного слоя, повышение стойкости к износу, эрозии и коррозии при сохранении механических свойств и циклической усталости титановых сплавов. 1 ил., 1 пр.
Изобретение относится к области плазменной химико-термической обработки поверхности деталей и может быть использовано в авиадвигателестроении. Способ азотирования изделий из титанового сплава в тлеющем разряде включает вакуумный нагрев изделий из титанового сплава в тлеющем разряде в плазме азота повышенной плотности. Плазму азота повышенной плотности формируют в кольцевой области вращения электронов, захваченных магнитным полем, а азотирование упомянутых изделий выполняют в смеси газов N2 50%÷60% + Ar 50÷40% при давлении 40 Па и нагреве изделий до температуры 700÷730°С с выдержкой в течение 2-3 часов. Затем осуществляют восстановительный отжиг при 800÷830°С в аргоне с выдержкой в течение 30 мин, после чего изделия охлаждают в вакууме. Обеспечивается интенсификация процесса азотирования, формирование развитого нитридного диффузионного слоя, повышающего циклическую усталость. 1 пр.

Изобретение относится к машиностроительной промышленности, а именно к химико-термической обработке поверхности изделий из титанового сплава и может быть использовано для повышения эксплуатационных характеристик изделий. Способ азотирования изделий из титановых сплавов в тлеющем разряде включает проведение указанного азотирования в газовой смеси азот-аргон, при этом используют упомянутую газовую смесь азот-аргон с процентным соотношением 60% N2 - 40% Ar, а упомянутое азотирование в тлеющем разряде проводят в магнитном поле при температуре 650-750°C в течение 4 часов, напряжении в разрядном промежутке 450-550 В и давлении в вакуумной камере 10-1-1 Па. Обеспечивается интенсификация процесса насыщения поверхности ионами азота при ионном азотировании титановых сплавов и получение развитой диффузионной зоны на титановой основе порядка 50-70 мкм. 1 ил., 1 пр.

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа, в медицине и других отраслях промышленности. Способ низкотемпературного азотирования титановых сплавов включает использование плазмообразующей газовой смеси азот-аргон, отличающийся тем, что азотирование проводят в плазме тлеющего разряда в вакуумной камере с использованием упомянутой газовой смеси, содержащей 15 мас. % азота и 85 мас. % аргона, при температуре 420-500°C. Обеспечивается повышение твердости и контактной износостойкости титановых сплавов, при низкой температуре рабочего процесса обработки в плазме тлеющего разряда. 1 ил., 1 пр.

Изобретение относится к области металлургии, а именно к химико-термической обработке, и может быть использовано при изготовлении деталей из конструкционных сталей, работающих в условии коррозии. Способ химико-термической обработки изделий из конструкционных сталей включает нагрев в печи размещенных в реакторе изделий в азотосодержащей атмосфере, изотермическую выдержку в потоке азотосодержащего газа и последующее охлаждение с печью. Нагрев осуществляют в присутствии в объеме реактора наполнителя в качестве катализатора для создания вокруг изделий с помощью потока азотосодержащего газа слоя активных частиц. Одновременно проводят процесс диффузионного цинкования с использованием в качестве наполнителя порошкообразного цинка в смеси с кварцевым песком и с обеспечением вокруг изделий слоя активных частиц, состоящих из азото- и цинкосодержащих веществ. В частных случаях осуществления изобретения нагрев, изотермическую выдержку и охлаждение изделий проводят в атмосфере диссоциированного аммиака. Изотермическую выдержку осуществляют в интервале температур 750…850°C. Порошкообразный цинк и кварцевый песок составляют в наполнителе соотношение 1 к 10. Обеспечивается повышение коррозионной стойкости при обеспечении большей толщины упрочненного слоя и достаточной прочности. 3 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для локального поверхностного упрочнения материалов. Способ локального ионного азотирования стального изделия включает проведение вакуумного нагрева стального изделия в плазме азота повышенной плотности, при этом плазму азота повышенной плотности формируют в тороидальной области осциллирующих электронов, движущихся по циклоидальным замкнутым траекториям, образованной скрещенными электрическими и магнитными полями, посредством магнитной системы, выполненной с жидкостным охлаждением и содержащей стационарные магниты. Стальное изделие располагают с обеспечением расположения участка, подлежащего азотированию в магнитном поле, в зоне плазмы азота повышенной плотности для интенсификации диффузионного насыщения этого участка и формирования зоны азотирования в магнитном поле. Переходную зону азотирования обеспечивают на участке стального изделия, удаленном от магнитной системы и расположенном между участком упомянутого изделия с зоной азотирования в магнитном поле, на котором эффективная толщина азотированного слоя составляет 80 мкм, и участком упомянутого изделия с зоной азотирования вне магнитного поля, на котором эффективная толщина азотированного слоя составляет 40 мкм. Обеспечивается повышение контактной долговечности и износостойкости поверхности изделия за счет его локальной обработки. 3 ил., 1 пр.

Изобретение относится к металлургии, а именно к способам получения имплантатов из титановых сплавов с остеоинтегрирующим покрытием. Способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов включает термодиффузионное водородное насыщение имплантата и вакуумный отжиг. Перед термодиффузионным водородным насыщением и вакуумным отжигом на поверхность имплантата диффузионной сваркой наносят пористое покрытие путем приварки при температуре 850-950°С к поверхности имплантата из титановых сплавов волокон из титанового сплава, водородное насыщение проводят при температуре 600-650°С до концентрации водорода 0,5-0,8 мас. %, а последующий вакуумный отжиг - до концентрации водорода не более 0,008 мас. %. Повышается усилие среза покрытия с монолитной основы при сохранении ее структуры и свойств. 3 з.п. ф-лы, 1 ил., 1 табл., 8 пр.

Изобретение относится к машиностроительной промышленности, а именно к химико-термической обработке поверхности изделий из титанового сплава, и может быть использовано для повышения эксплуатационных характеристик изделий. Способ ионного азотирования титановых сплавов в газовой смеси азот-аргон с процентным соотношением 60 N2-40 Ar включает ионное азотирование в магнитном поле при температуре в вакуумной камере 650-750°C и напряжении в разрядном промежутке 500-600 В сначала при низком давлении упомянутой газовой смеси, составляющем 10-1-1 Па, в течение 4 часов, а затем при давлении упомянутой газовой смеси 100-300 Па в течение 1 часа. Обеспечивается получение развитой диффузионной зоны с повышенной микротвердостью и глубиной азотированного слоя на титановой основе. 1 ил., 1 пр.

Наверх