Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)



Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)
Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)
Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)
Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)
Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)
Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)
Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)
Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)
Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)
Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)
Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)

 


Владельцы патента RU 2611163:

Открытое акционерное общество "Электрогорский институт нефтепереработки" (ОАО "ЭлИНП") (RU)
Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) (RU)

Группа изобретений относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дистиллятных фракций с температурой не выше 520°C. По первому варианту реализации способа нефтяной шлам, содержащий более 5% мас. минеральных примесей, для гидрогенизационной переработки приводят в контакт с растворителем в экстракторе. Осуществляют предварительную продувку экстрактора инертным газом до удаления воздуха и экстракцию при постоянном перемешивании и продувке инертным газом. Выделяют из экстракта воду, часть растворителя и фракцию легких углеводородов, кипящих до 350°C. Остальную часть экстракта отстаиванием и декантацией разделяют на жидкую органическую фазу и осадок. Последний направляют на повторную экстракцию. Осуществляют горячее фильтрование второго экстракта при избыточном давлении 0,4-0,6 МПа и температуре 45-50°C и смешивают фильтрат с жидкой органической фазой, получая подготовленное сырье. Если нефтяной шлам содержит не более 5% мас. минеральных примесей, то при его подготовке отстаивание и декантацию не осуществляют, сразу направляя часть экстракта, не содержащую легких углеводородов, на горячее фильтрование. Растворитель отделяют от фильтрата или его смеси с жидкой органической фазой ректификацией, а от осадка фильтрования - выпариванием, и возвращают его в цикл. Подготовленное для гидрогенизационной переработки по первому или второму способу сырье направляют в реактор и осуществляют гидрогенизационную переработку указанного сырья в присутствии водорода и катализатора MoS2, синтезированного in situ из водного раствора парамолибдата аммония, диспергированного в подготовленном сырье. Обеспечивается повышение степени утилизации нефтяного шлама, в том числе его наиболее тяжелых углеводородных фракций, с исключением коррозии оборудования и отравления катализатора минеральными примесями, содержащимися в нефтяном шламе, и повышением выхода дистиллятных фракций при гидрогенизационной переработке нефтяного шлама. 4 н.п. ф-лы, 7 табл., 10 пр.

 

Изобретение относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дополнительных товарных продуктов нефтепереработки, например дистиллятных фракций с температурой не выше 520°C.

Проблема переработки и утилизации тяжелых нефтешламов (нефтяных шламов) является одним из самых серьезных вопросов в сфере экологии как в нашей стране, так и за рубежом. Накапливаясь в результате хранения, транспортировки и переработки нефти, они наносят значительный вред окружающей среде, являясь загрязнителями поверхностных и подземных вод, почвенно-растительного покрова и окружающего воздуха. Скопление нефтяных шламов влечет за собой существенное загрязнение окружающей среды и чревато накоплением существенного экологического ущерба (считается, что только в развитых странах на 500 т нефти образуется около 1 т шлама). Утилизация путем захоронения в шламонакопителях, которые представляют собой открытые земельные емкости для хранения шламов и занимают большие территории, ведет к отчуждению сельскохозяйственных земель и загрязнению окружающей среды вследствие испарения нефтепродуктов и попадания их в грунтовые воды. Тяжелые ароматические углеводороды в составе шламов обладают выраженными канцерогенными и мутагенными свойствами. Сами такие шламы и отходы являются чрезвычайно устойчивыми к разложению в окружающей среде, их компоненты могут распространяться на значительные расстояния, накапливаясь в животных, растениях, почве и воде, разрушая равновесие экологических систем, приводят к гибели животных и растений, делают окружающую среду не пригодной для жизни. Попадая в организм человека, данные соединения накапливаются в жировых тканях, вызывая генетические мутации и уродства у новорожденных. Как следствие, обезвреживание и утилизация нефтяных шламов является острейшей проблемой (см., напр., Переработка отходов НПЗ (нефтешламов) // Oil and Gas Journal, 1991, 89, №1, c. 73-77; Гронь B.A., Коростовенко B.B., Шахрай С.Г., Капличенко Н.М., Галайко А.В. Проблема образования, переработки и утилизации нефтешламов // Успехи современного естествознания, 2013, №9, с. 159-162).

Отсутствие эффективных технологий выделения и переработки органической части нефтяного шлама приводит к нерациональному использованию природных ресурсов, что может нанести значительный ущерб не только экологии, но и экономике государства. Современные подходы к переработке нефтяного шлама должны предусматривать отказ не только от захоронения (которое не применимо с точки зрения охраны окружающей среды), но и сжигания. Нефтяной шлам должен быть направлен на извлечение нефтяной части отходов для ее последующего использования в нефтепереработке.

Известен способ подготовки нефтешлама для дальнейшей переработки путем ультразвуковой экстракции из нефтешлама углеводородов нефти при интенсивности ультразвука до 460 Вт/см2 (см., Селиванова Е.В., Сульман М.Г., Прутенская Е.А. Роль ультразвуковой экстракции в нефтехимической промышленности // XIX Менделеевский съезд по общей и прикладной химии. 25-30 сентября 2011 г. Т. 4. Волгоград, 2011, с. 96).

Ультразвуковая экстракция позволяет извлечь лишь около 76% углеводородов нефти. Таким образом, почти четверть содержащихся в нефтешламе углеводородов остается непригодной для переработки, а подвергнутый обработке шлам, содержащий углеводороды, остается опасным для окружающей среды.

Известен способ переработки нефтешлама, включающий экстракцию нефтешлама растворителем при нагреве, фильтрацию для отделения механических примесей, разделение прошедшего фильтрацию раствора и воды и регенерацию растворителя, возвращаемого в цикл, с получением нефтепродуктов (см., Рустамов Э.С. Разработка комплексной технологии переработки нефтяных шламов - важнейшая задача // Молодой ученый, 2014, №11, с. 109-110).

Однако степень очистки нефтяного шлама от воды и минеральных примесей по этому способу остается недостаточной.

Кроме того, при направлении подготовленного известным способом сырья на гидрогенизационную переработку часть содержащихся в сырье дистиллятных фракций будет превращена в более легкие, в том числе газообразные продукты.

Наиболее близким к заявленному (прототипом) является способ подготовки нефтяного шлама для гидрогенизационной переработки, включающий приведение в контакт тяжелого нефтяного сырья - осветленного нефтяного шлама с органическим разбавителем, состоящим из потока повторно используемого продукта - легких углеводородов, легких дистиллятов, лигроина, дизельного топлива и комбинаций двух или более из них, и водородом, подаваемым в эквивалентном количестве по меньшей мере 160 л/л (900 ст. куб. фт./бар н.), с получением смеси сырья/разбавителя/водорода, где водород растворяют в смеси для получения жидкого сырья (см., заявка RU 2013124394, кл. МПК C10G 45/08, опубл. 10.12.2014). Способ гидрогенизационной переработки подготовленного таким образом нефтяного шлама включает контакт смеси сырья/разбавителя/водорода с катализатором в заполненном жидкостью реакторе для получения смеси продуктов и повторное использование части смеси продуктов в виде потока повторно используемого продукта путем объединения потока повторно используемого продукта с сырьем для получения по меньшей мере части разбавителя при кратности рецикла в диапазоне от приблизительно 1 до приблизительно 10.

Однако известный способ не позволяет удалить воду и минеральные примеси из нефтяного шлама, что может привести к коррозии оборудования и отравлению катализаторов гидрогенизационной переработки. Также по известному способу углеводородную часть нефтяного шлама не используют полностью - тяжелые фракции остаются непереработанными, и часть нефтяного шлама, оставшаяся после его осветления, продолжает загрязнять окружающую среду. Кроме того, осветление нефтяного шлама и смешение его с частью продукта приведет к частичному превращению целевых топливных фракций в менее ценные газообразные продукты, и, таким образом, потере дистиллятных фракций.

Задача изобретения состоит в повышении степени утилизации нефтяного шлама, в том числе его наиболее тяжелых углеводородных фракций, исключении коррозии оборудования и отравления катализатора минеральными примесями, содержащимися в нефтяном шламе, и повышении выхода дистиллятных фракций при гидрогенизационной переработке нефтяного шлама.

Для решения поставленной задачи предложен способ подготовки нефтяного шлама, содержащего более 5% мас. минеральных примесей, для гидрогенизационной переработки, включающий приведение нефтяного шлама в контакт с органической жидкостью с получением жидкого сырья, причем в качестве органической жидкости используют растворитель нефтяного шлама, который приводят в контакт с нефтяным шламом в экстракторе, после чего осуществляют предварительную продувку экстрактора инертным газом до удаления воздуха и экстракцию при постоянном перемешивании и продувке инертным газом, выделяют из экстракта воду, часть растворителя и фракцию легких углеводородов, кипящих до 350°C, остальную часть экстракта, не содержащую легких углеводородов, направляют в отстойник, после отстаивания отделяют декантацией жидкую органическую фазу от осадка, содержащего минеральные примеси и незначительное количество органических соединений, который вновь направляют в экстрактор для повторной экстракции с получением второго экстракта, осуществляют горячее фильтрование второго экстракта при избыточном давлении 0,4-0,6 МПа и температуре 45-50°C, отделяют растворитель от осадка фильтрования, содержащего минеральные примеси, путем выпаривания, смешивают органический фильтрат с указанной жидкой органической фазой и отделяют растворитель от полученной смеси ректификацией с получением подготовленного сырья для гидрогенизационной переработки и возвращают в цикл растворитель, отделенный от осадка фильтрования и указанной смеси.

В случае, когда нефтяной шлам содержит не более 5% мас. минеральных примесей, способ его подготовки для гидрогенизационной переработки включает приведение нефтяного шлама в контакт с органической жидкостью с получением жидкого сырья, причем в качестве органической жидкости используют растворитель нефтяного шлама, который приводят в контакт с нефтяным шламом, содержащимся в экстракторе, после чего осуществляют предварительную продувку экстрактора инертным газом до удаления воздуха и экстракцию при постоянном перемешивании и продувке инертным газом, выделяют из экстракта воду, часть растворителя и фракцию легких углеводородов, кипящих до 350°C, осуществляют горячее фильтрование остальной части экстракта, не содержащей легких углеводородов, при избыточном давлении 0,4-0,6 МПа и температуре 45-50°C, отделяют растворитель от осадка фильтрования, содержащего минеральные примеси, путем выпаривания, а от фильтрата - ректификацией с получением подготовленного сырья для гидрогенизационной переработки, и возвращают в цикл растворитель, отделенный от осадка фильтрования и фильтрата.

Для решения поставленной задачи также предложен способ гидрогенизационной переработки нефтяного шлама, включающий указанную подготовку нефтяного шлама, направление подготовленного сырья в реактор гидрогенизационной переработки и гидрогенизационную переработку указанного сырья в присутствии водорода и катализатора, в качестве которого используют MoS2, синтезированный in situ из водного раствора парамолибдата аммония, диспергированного в подготовленном сырье.

Подготовка нефтешлама способом по изобретению позволяет получить сырье с оптимальными характеристиками для дальнейшей переработки - содержать в своем составе не более 0,035% масс. механических примесей и не менее 50% фракции более 520°C. Направляемое на гидрогенизационную переработку сырье не должно содержать фракции до 350°C, чтобы избежать превращения ценных топливных фракций в менее ценные газообразные углеводороды С1-С4.

В качестве растворителя могут использовать, например, толуол, хлороформ, бензиновые, дизельные и газойлевые фракции нефти.

В качестве инертного газа используют азот или аргон.

Гидрогенизационную переработку подготовленного сырья проводят путем гидроконверсии в автоклавном реакторе с протоком водорода со скоростью 18-20 нл/ч, при давлении 7-8 МПа и температуре 430-450°C.

Для эффективной переработки полученного из нефтешлама тяжелого сырья в качестве катализатора применяют синтезированный in situ MoS2. В качестве прекурсора катализатора используют парамолибдат аммония (NH4)6Mo7O24⋅4H2O (ПМА). Перед подачей в реактор предварительно готовят дисперсию водного раствора ПМА в углеводородной части нефтешлама.

Осуществление изобретения подтверждается следующими примерами.

Примеры. Образец нефтяного шлама помещают в экстрактор объемом 2 л, представляющий собой емкость автоклавного типа, снабженную электрообогревом, магнитной мешалкой и системой газоснабжения. При небольшом избыточном давлении в экстрактор поступает заданное количество растворителя, после чего экстрактор продувают инертным газом для удаления из системы остатков воздуха.

Затем начинают перемешивание нефтяного шлама с растворителем. Для улучшения перемешивания осуществляют продувку раствора инертным газом через выходное отверстие в дне экстрактора. Эффективные условия экстракции выбираются в зависимости от физико-химических свойств нефтяного шлама. Вынесенную из экстрактора жидкость, содержащую воду, часть растворителя и легкие фракции до 350°C собирают в сепараторе и выводят. Легкие углеводородные фракции с растворителем отделяют от воды декантацией.

При содержании в сырье более 5% масс. минеральных примесей остальную часть экстракта, содержащую растворитель, растворенные в нем тяжелые фракции нефтяных отходов и находящие во взвешенном состоянии минеральные примеси, помещают в отстойник - стеклянный сосуд с электрообогревом. В отстойнике происходит разделение раствора на жидкую и нерастворимую в растворителе твердую фазы. Жидкую органическую фазу, содержащую основную часть жидкости, отделяют от осадка декантацией и направляют в сборник продукта, а осадок с остатками органической жидкой части направляют в экстрактор для повторной экстракции.

Полученный после повторной экстракции второй экстракт направляют на горячий фильтр, где при 45-50°C происходит окончательное разделение органической и минеральной частей нефтяного остатка. Для более эффективного горячего фильтрования имеющейся смеси в фильтре создают небольшое избыточное давление - 0,4-0,6 МПа, а на выходе из фильтра при необходимости создают разрежение с помощью вакуумного насоса. Полученный фильтрат соединяют с жидкой органической фазой из отстойника. Растворитель удаляют от органической фазы нефтяного шлама (смеси фильтрата с жидкой органической фазой из отстойника) ректификацией, а от минеральной части - выпариванием.

При содержании в сырье не более 5% масс. минеральных примесей экстракт после удаления из него легких фракций сразу направляют на горячее фильтрование. Фильтрат в этом случае представляет собой органическую фазу, из которой удаляют легкие фракции и воду.

В результате получают подготовленное сырье, которое можно использовать в гидрогенизационной переработке, и минеральный осадок, не содержащий нефтепродуктов, который может быть легко утилизирован.

В подготовленном сырье диспергируют водный раствор ПМА до содержания ПМА в расчете на Мо 0,05% от массы сырья и воды - 2% от массы сырья. Для исследования дисперсного состава полученной эмульсии используют лабораторный микроскоп Полам Л-213М. Размер капель прекурсора катализатора в нефтяных отходах составляет 600-800 нм.

Эмульсию загружают в автоклавный реактор в количестве до 100 г с протоком водорода со скоростью 18-20 нл/ч, при давлении 7 МПа и температуре 430-450°C. В процессе гидроконверсии из водного раствора ПМА in situ образуется катализатор - MoS2. Парогазовую фазу непрерывно выводят из реактора, конденсируют и отбирают конденсат в приемник жидкого продукта. Несконденсировавшиеся пары сбрасывают. Эффективность гидроконверсии оценивают по степени превращения фракции сырья, выкипающей выше 520°C (далее 520°C+) и по отложению кокса на стенках реактора.

Пример 1. В качестве сырья используют резервуарный нефтешлам с низким содержанием минеральных примесей.

Физико-химические свойства нефтешлама представлены в табл.1.

В качестве растворителя используют толуол при его отношении к нефтешламу 1:1 (содержание толуола в растворе - 50%масс.). Температура в экстракторе - 100°C, давление - 0,1 МПа, число оборотов мешалки - 500 об/мин. Расход азота на продувку - 30 л/ч. Время экстракции - 0.75 часа. Результаты дистилляции воды и толуола из нефтяного шлама после экстракции см. в табл. 2.

После увеличения температуры в экстракторе до 300°C проводят дистилляцию органического остатка, удаляя при этом фракции, кипящие при 180-350°C. Получают остаток нефтешлама фракционного состава, % мас: Н.К. - 350°C - 0, 350-520°C - 37,2, более 520°C - 62,8.

Так как используемое в эксперименте сырье содержит менее 5% масс. минеральных примесей, стадии отстаивания и декантации исключаются. Экстракт, содержащий тяжелые фракции, растворитель, минеральные примеси, направляют для горячего фильтрования на фильтр высокого давления с размером пор фильтрующего элемента - 1,5 мкм и осуществляют фильтрование при температуре 45°C и давлении 0,4 МПа.

Толуол, отделенный от осадка фильтрования выпариванием, а от фильтрата - ректификацией, возвращают в цикл, повторно используя в процессе экстракции.

Пример 2

Подготовку нефтешлама проводят аналогично примеру 1, но температура в экстракторе составляет 150°C, давление - 0,4 МПа, время экстракции - 2 часа.

Результаты дистилляции воды и толуола из нефтяного шлама после экстракции представлены в таблице 2.

Фракционный состав нефтешлама после удаления легких фракций представлены в таблице 3.

Пример 3

Подготовку нефтешлама проводят аналогично примеру 1, но в качестве инертного газа используют аргон, содержание толуола в растворе составляет 33,35% мас., время экстракции - 1 час. Результаты дистилляции воды и толуола из нефтяного шлама после экстракции представлены в таблице 2.

Пример 4

Подготовку нефтешлама проводят аналогично примеру 1, но содержание толуола в растворе составляет 66,65% мас.

Результаты дистилляции воды и толуола из нефтяного шлама после экстракции представлены в таблице 2.

Пример 5

Подготовку нефтешлама проводят аналогично примеру 1, но давление составляет 1 МПа, расход азота - 5 л/ч, время экстракции - 1,75 часа.

Результаты дистилляции воды и толуола из нефтяного шлама после экстракции представлены в таблице 2.

Пример 6. В качестве сырья используют резервуарный нефтешлам с высоким содержанием минеральных примесей, физико-химические свойства которого отражены в таблице 3.

В качестве растворителя используют толуол при его отношении к нефтешламу 4:1 (содержание толуола в растворе - 80% масс.). Температура в экстракторе - 200°C, давление - 1 МПа, число оборотов мешалки - 500 об/мин. Расход азота на продувку - 15 л/ч. Время экстракции - 2 ч.

В сепараторе дистилляцией при 300°C удаляют воду и легкие фракции, кипящие при 180-350°C. Получают остаток нефтешлама фракционного состава, % мас.: Н.К. - 350°C - 0, 350- 520°C - 20, более 520°C - 80.

Так как используемое в эксперименте сырье содержит более 5% масс. минеральных примесей, часть экстракта, не содержащую легких углеводородов, направляют в отстойник. После отстаивания отделяют декантацией жидкую органическую фазу от осадка, содержащего минеральные примеси и незначительное количество органических соединений.

Результаты первой стадии экстракции представлены в таблице. 4.

Образовавшийся после первой стадии экстракции осадок, содержащий минеральную часть шлама с небольшим количеством неиспарившейся воды и неэкстрагированной углеводородной части (органических соединений), подвергают повторной экстракции в тех же условиях.

Получают второй экстракт, который направляют для горячего фильтрования на фильтр высокого давления с размером пор фильтрующего элемента - 1,5 мкм и осуществляют фильтрование при температуре 50°C и давлении 0,6 МПа.

Результаты второй стадии экстракции и фильтрования представлены в таблице 5.

Фильтрат смешивают с жидкой органической фазой, полученной на первой стадии экстракции. Получают сырье, близкое по своим свойствам к вакуумному остатку (гудрону) и пригодное для гидрогенизационной переработки.

Свойства подготовленного сырья представлены в таблице 6.

Толуол, отделенный от осадка фильтрования выпариванием, а от полученной смеси - ректификацией, возвращают в цикл, повторно используя в процессе экстракции.

Пример 7

Нефтешлам, подготовленный по примеру 6, подвергают гидрогенизационной переработке (гидроконверсии) при расходе водорода 18 нл/ч, давлении 7 МПа и температуре 430°C.

Результаты гидроконверсии приведены в таблице 7.

Пример 8

Гидрогенизационную переработку осуществляют аналогично примеру 7 при температуре 440°C.

Результаты гидроконверсии приведены в таблице 7.

Пример 9

Гидрогенизационную переработку осуществляют аналогично примеру 7 при температуре 450°C.

Результаты гидроконверсии приведены в таблице 7.

Пример 10

Нефтешлам, подготовленный по примеру 1, подвергают гидрогенизационной переработке (гидроконверсии) при расходе водорода 18 нл/ч, давлении 8 МПа и температуре 440°C.

Результаты гидроконверсии по примеру:

газообразных продуктов - 3,2% мас.,

жидких продуктов (гидрогенизат) - 96,36%,

в том числе фракции:

НК-180 - 15,2%,

180-350 - 26,6%,

350-520 - 32,5%,

520°C+ - 25,7%

кокс - 0, 44%.

Конверсия фр. 520°C+ составляет 59,1%. масс.

1. Способ подготовки нефтяного шлама для гидрогенизационной переработки, включающий приведение нефтяного шлама в контакт с органической жидкостью с получением жидкого сырья, отличающийся тем, что в качестве органической жидкости используют растворитель нефтяного шлама, который приводят в контакт с нефтяным шламом, содержащим более 5% мас. минеральных примесей, в экстракторе, после чего осуществляют предварительную продувку экстрактора инертным газом до удаления воздуха и экстракцию при постоянном перемешивании и продувке инертным газом, выделяют из экстракта воду, часть растворителя и фракцию легких углеводородов, кипящих до 350°С, остальную часть экстракта, не содержащую легких углеводородов, направляют в отстойник, после отстаивания отделяют декантацией жидкую органическую фазу от осадка, содержащего минеральные примеси и незначительное количество органических соединений, который направляют в экстрактор для повторной экстракции с получением второго экстракта, осуществляют горячее фильтрование второго экстракта при избыточном давлении 0,4-0,6 МПа и температуре 45-50°С, отделяют растворитель от осадка фильтрования, содержащего минеральные примеси, путем выпаривания, смешивают фильтрат с указанной жидкой органической фазой и отделяют растворитель от полученной смеси ректификацией с получением подготовленного сырья для гидрогенизационной переработки и возвращают в цикл растворитель, отделенный от осадка фильтрования и указанной смеси.

2. Способ подготовки нефтяного шлама для гидрогенизационной переработки, включающий приведение нефтяного шлама в контакт с органической жидкостью с получением жидкого сырья, отличающийся тем, что в качестве органической жидкости используют растворитель нефтяного шлама, который приводят в контакт с нефтяным шламом, содержащим не более 5% мас. минеральных примесей, в экстракторе, после чего осуществляют предварительную продувку экстрактора инертным газом до удаления воздуха и экстракцию при постоянном перемешивании и продувке инертным газом, выделяют из экстракта воду, часть растворителя и фракцию легких углеводородов, кипящих до 350°С, осуществляют горячее фильтрование остальной части экстракта, не содержащей легких углеводородов, при избыточном давлении 0,4-0,6 МПа и температуре 45-50°С, отделяют от осадка фильтрования, содержащего минеральные примеси, путем выпаривания, а от фильтрата - ректификацией с получением подготовленного сырья для гидрогенизационной переработки, и возвращают в цикл растворитель, отделенный от осадка фильтрования и фильтрата.

3. Способ гидрогенизационной переработки нефтяного шлама, включающий подготовку нефтяного шлама, направление подготовленного сырья в реактор гидрогенизационной переработки и гидрогенизационную переработку указанного сырья в присутствии водорода и катализатора, отличающийся тем, что подготовку нефтяного шлама осуществляют способом по п. 1, а в качестве катализатора используют MoS2, синтезированный in situ из водного раствора парамолибдата аммония, диспергированного в подготовленном сырье.

4. Способ гидрогенизационной переработки нефтяного шлама, включающий подготовку нефтяного шлама, направление подготовленного сырья в реактор гидрогенизационной переработки и гидрогенизационную переработку указанного сырья в присутствии водорода и катализатора, отличающийся тем, что подготовку нефтяного шлама осуществляют способом по п. 2, а в качестве катализатора используют MoS2, синтезированный in situ из водного раствора парамолибдата аммония, диспергированного в подготовленном сырье.



 

Похожие патенты:

Изобретение относится к способу изготовления композиции катализатора, пригодной в гидропереработке углеводородного сырья. Способ включает подготовку частиц носителя, который представляет собой неорганический оксидный материал; пропитку указанных частиц носителя первым водным пропитывающим раствором, включающим первый компонент с металлом VIII группы, первый компонент с металлом VIB группы и первый компонент с фосфором, с получением тем самым пропитанного металлами носителя; прокаливание указанного пропитанного металлами носителя с получением основного катализатора, включающего активные центры I типа и указанный первый компонент с фосфором; пропитку указанного основного катализатора вторым водным пропитывающим раствором, включающим второй компонент VIII группы, второй компонент VIB группы и второй компонент с фосфором с получением тем самым пропитанного металлами основного катализатора; сушку указанного пропитанного металлами основного катализатора в условиях без прокаливания, которые регулируют так, чтобы получить высушенный промежуточный продукт, содержащий активные центры II типа и указанный второй компонент с фосфором; и сульфидирование указанного высушенного промежуточного продукта без его предварительного прокаливания.

Изобретение относится к катализаторам гидрооблагораживания дизельных дистиллятов, способу получения катализатора и способу гидрооблагораживания дизельных дистиллятов с целью получения экологически чистых дизельных топлив и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к катализаторам гидрооблагораживания дизельных дистиллятов и способу гидрооблагораживания дизельных дистиллятов с целью получения экологически чистых дизельных топлив и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к смешанным оксидам, которые пригодны в качестве предшественников катализаторов гидроочистки на базе сульфидов металлов, к композициям, содержащим указанные смешанные оксиды, к сульфидным соединениям металлов, полученным сульфидированием указанных смешанных оксидов или композиций, к способам получения смешанных оксидов, к способам гидроочистки, гидродеароматизации, гидрокрекинга.

Изобретение относится к способу гидроочистки нефтяных фракций с содержанием серы в сырье 1,18-2,08 мас.%, который может быть использован в нефтеперерабатывающей промышленности.

Изобретение относится к способу конверсии сланцевого масла или смеси сланцевых масел, имеющих содержание азота по меньшей мере 0.1 мас. %, содержащему следующие стадии: a) сырье вводится в часть для гидроконверсии в присутствии водорода, причем указанная часть содержит, по меньшей мере, реактор с кипящем слоем, работающий в режиме газообразного и жидкого восходящего потока и содержащий по меньшей мере один катализатор гидроконверсии на подложке, b) выходящий поток, полученный на стадии а), вводится по меньшей мере частично в зону фракционирования, из которой, посредством атмосферной дистилляции, выходят газообразная фракция, фракция лигроина, фракция газойля и фракция, более тяжелая, чем фракция газойля, c) указанная фракция лигроина обрабатывается по меньшей мере частично в первой части для гидрообработки в присутствии водорода, причем указанная часть содержит по меньшей мере один реактор с фиксированным слоем, содержащий по меньшей мере один катализатор гидрообработки, d) указанная фракция газойля обрабатывается по меньшей мере частично во второй части для гидрообработки в присутствии водорода, причем указанная часть содержит по меньшей мере один реактор с фиксированным слоем, содержащий по меньшей мере один катализатор гидрообработки, e) фракция, более тяжелая, чем фракция газойля, обрабатывается по меньшей мере частично в части для гидрокрекинга в присутствии водорода.

Изобретение относится к катализаторам предгидроочистки прямогонной бензиновой фракции в смеси с бензином вторичных термических процессов. Катализатор согласно первому из вариантов содержит 6,0-10,0 мас.% оксида молибдена, 3,0-7,0 мас.% оксида никеля, 0,2-0,35 мас.% фосфора на носителе, представляющем собой твердый раствор оксида молибдена в оксиде алюминия при мольном соотношении MoO3/Al2O3 1:10-1:20 - остальное.

Изобретение относится к области нефтепереработки, а именно к способам гидроочистки бензина каталитического крекинга с получением продукта компонента товарного бензина с низким содержанием серы при минимальном снижении октанового числа, и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к способу получения катализатора селективной гидроочистки бензина каталитического крекинга, включающему в свой состав кобальт и молибден в форме оксидов; кремний в форме аморфного алюмосиликата, алюминий в форме оксида алюминия и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас.

Изобретение относится к области катализа, а именно к катализаторам гидроочистки бензина каталитического крекинга с получением компонента товарного бензина с низким содержанием серы при минимальном снижении октанового числа, и может быть использовано в нефтеперерабатывающей промышленности.
Способ включает введение в отходы цемента и сорбента, отверждение полупродукта с получением готового строительного материала. Отходы смешивают с 10-20% природного песка и 0,6-1,0% сорбента «Унисорб-Био» от массы перерабатываемых отходов.

Изобретение относится к способу и устройству для обработки катализатора, выгружаемого при гидрогенизации остаточного масла в пузырьковом кипящем слое. Способ включает этапы: (1) корректировку и контроль снижения вязкости, в процессе которых катализатор, периодически выгружаемый из реактора гидрогенизации остаточного масла в пузырьковом кипящем слое, корректируют с целью его хранения, а затем выгружают уже непрерывно, при этом катализатор подвергают температурной корректировке путем добавления воды, в результате чего снижается вязкость масла, адсорбированного на поверхностях и внутри пор частиц выгружаемого катализатора, и улучшается текучесть масла, адсорбированного на поверхностях и внутри пор частиц выгружаемого катализатора; (2) десорбцию и разделение с помощью вихревого потока, в процессе которых адсорбированное масло десорбируется и отделяется от поверхностей и изнутри пор частиц выгружаемого катализатора с помощью текучей сдвигающей силы от поля вихревого потока; (3) разделение и использование ресурсов трехфазной смеси из масла, воды и катализатора, в процессе которых смесь из масла, воды и катализатора, полученную после десорбции и разделения посредством вихревого потока, подвергают трехфазному разделению, благодаря которому достигается извлечение масла, рециркуляция воды посредством разделения и полное извлечение твердых частиц с помощью разделения.

Группа изобретений относится к установке для обезвреживания высокоминерализованных отходов бурения, содержащих нефтепродукты, тяжелые металлы, синтетические поверхностно-активные вещества и другие загрязнители, основанной на введении отверждающего состава, и способу, осуществляемому с ее использованием.

Изобретение относится к комплексной переработке зол от сжигания углей. Способ включает шихтовку золы с гидроксидом натрия, спекание при температуре 150-200°С, выщелачивание спека, разделение фаз, обескремнивание раствора путем добавки в раствор гидроалюмосиликата натрия.

Изобретение относится к экологичным способам производства органических веществ, таких как нефтяные вещества и ароматические кислоты, фенолы и алифатические поликарбоновые кислоты, с использованием процесса окислительного гидротермического растворения (ОГР).

Изобретение относится к медицине. Описан способ обработки использованных абсорбирующих гигиенических изделий, содержащий этапы: создание цилиндрического роторного автоклава, имеющего внутреннюю поверхность и два конца, по меньшей мере, один из которых заканчивается люком, который может быть открыт для обеспечения доступа в упомянутый автоклав и герметично закрыт для обеспечения создания повышенного давления в упомянутом автоклаве; загрузка упомянутого автоклава абсорбирующими гигиеническими изделиями в закрытом виде; нагрев до температуры стерилизации и создание повышенного давления в автоклаве, приводя при этом автоклав во вращение вокруг его продольной оси; при этом упомянутый этап нагрева и создания повышенного давления в автоклаве предусматривает первый температурный режим для изделий, содержащихся в автоклаве, а также второй температурный режим, более высокий, чем первый температурный режим, для упомянутой внутренней поверхности.

Изобретение относится к области охраны окружающей среды, в частности к технологическим процессам утилизации нефтесодержащих отходов и рециклизованных фильтровочных и поглотительных отработанных масс, и может быть использовано на предприятиях нефтегазового комплекса и на предприятиях по переработке отходов.

Способ переработки твердых бытовых отходов и/или производственных отходов, выбранных из природных и синтетических полимеров в газообразные, жидкие и твердые продукты посредством одновременного воздействия ускоренными электронами и температурой.

Способ утилизации твердых бытовых отходов (ТБО) на полигонах включает загрузку отходов в установку, биоразложение с образованием газообразных и твердых продуктов, обезвреживание, охлаждение и накопление продуктов переработки, Перед загрузкой проводят радиационный и дозиметрический контроль массы ТБО, утилизацию ТБО, которую проводят в две стадии, на первой стадии ТБО подвергают аэробной и анаэробной переработке для получения биогаза, который поступает на выработку тепловой и электрической энергии.

Изобретение относится к области утилизации отходов промышленности теплоэнергетического комплекса, к озеленению и обустройству городских территорий. Предложены составы грунтовых смесей, содержащие компоненты в следующем соотношении, мас.% (на сухое): песок (16-48); торф (10-19); шлам химводоочистки ТЭЦ (35-59), гумусовая добавка (перегной) (7-10).

Изобретение относится к области уничтожения и обезвреживания отравляющих веществ, в том числе боевых отравляющих веществ. Способ включает ввод токсичных органических соединений в реактор и энергетическое воздействие на эти органические соединения. Находящиеся в герметичной упаковке токсичные органические соединения вначале помещают в закрываемый контейнер, который затем вводят в реактор, после чего реактор заполняют расплавом, которым окружают контейнер со всех сторон для формирования отливки из затвердевшего расплава. После затвердевания расплава и окончания его энергетического воздействия на токсичные органические соединения сформированную отливку с контейнером внутри извлекают из реактора и помещают на экологически безопасное длительное хранение. Технический результат заключается в расширении технологических возможностей способа, удешевлении и упрощении технологии уничтожения токсичных органических соединений, а главное, в повышении безопасности персонала при работе с отравляющими веществами за счет того, что не требуется открывать первичные упаковки с отравляющими веществами. 4 з.п. ф-лы, 2 ил.
Наверх