Способ азотирования деталей в тлеющем разряде на различную глубину азотированного слоя

Изобретение относится к области химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов. Способ азотирования стальной детали в тлеющем разряде с обеспечением на упомянутой детали участков с различной глубиной упрочненного слоя включает вакуумный нагрев стальной детали в плазме азота повышенной плотности, формируемой между поверхностью детали и перфорированными экранами для получения эффекта полого катода. Получение на упомянутой детали участков с различной глубиной упрочненного слоя обеспечивают регулированием плотности плазмы посредством перфорированных экранов с заданными значениями прозрачности, имеющих разную ширину отверстий и разное расстояние между отверстиями, и регулированием расстояния от экранов до поверхности детали. Обеспечивается получение азотированных участков детали с различной глубиной упрочненного слоя за один технологический цикл с повышением производительности процесса. 3 ил., 1 пр.

 

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов.

Известен способ азотирования стальных деталей в тлеющем разряде (ионное азотирование), которое проводят в разреженной азотосодержащей атмосфере, а именно в атмосфере аммиака (NH3) при подключении обрабатываемых деталей к отрицательному электроду - катоду. Анодом является контейнер установки [Лахтин Ю.М. Металловедение и термическая обработка металлов. М.: Металлургия, 1993, 448 с.]. Между катодом - деталью и анодом возбуждается тлеющий разряд, и положительные ионы газа, бомбардируя поверхность катода, нагревают ее до температуры насыщения. Процесс ионного азотирования реализуется в две стадии: первая - очистка поверхности катодным распылением, вторая - собственно насыщение. Катодное распыление проводят в течение 50-60 мин при напряжении 1100-1400 В и низком давлении 0,13⋅102-0,26⋅102 Па. В процессе катодного распыления температура поверхности детали не превышает 250°С. Температура азотирования 470-580°С, давление 1,3⋅102-13⋅102 Па, рабочее напряжение 400-1100 В, продолжительность процесса от 1 до 24 ч.

Недостатками аналога являются:

- сложность оборудования и технологии, а также необходимость проектирования специального оборудования,

- низкая скорость процесса насыщения поверхностных слоев металла азотом.

Известен способ (Патент РФ №2058421, кл. С23С 8/36, 20.04.96) азотирования деталей из конструкционных легированных сталей, включающий высокотемпературное ионное азотирование, закалку с температуры полного растворения нитридных фаз, отпуск, чистовую механическую обработку и низкотемпературное ионное азотирование на глубину не менее глубины деазотированного слоя.

Недостатками аналога являются сложность оборудования и технологии, а также необходимость проектирования специального оборудования.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является способ (Патент РФ №2534906 С1, кл. С23С 8/36, 10.12.2014) азотирования стальной детали в тлеющем разряде, включающий вакуумный нагрев детали в плазме азота повышенной плотности, формируемой между поверхностью детали и перфорированным экраном для получения эффекта полого катода, и получение упрочненного слоя на детали.

Недостатком ближайшего аналога является:

- отсутствие возможности азотирования деталей с участками, где требуется различная глубина азотированного слоя, за один технологический цикл.

Задача изобретения - снижение основного времени обработки, а также уменьшение энергозатрат процесса.

Технический результат - получение азотированных участков с различными толщинами упрочненных слоев на одной детали за один технологический цикл. Повышение производительности процесса.

Задача решается, а технический результат достигается тем, что вакуумный нагрев изделий проводят в плазме азота повышенной плотности, формируемой между деталью и экраном за счет создания эффекта полого катода, и в отличие от прототипа экраны устанавливают на участках детали, где требуется наличие азотированного слоя, и путем регулирования параметров экрана (ширина ячейки, расстояние между ячейками, расстояние от экрана до поверхности детали) достигается получение различных толщин упрочненного слоя на различных участках детали.

Существо изобретения поясняется чертежами.

На фиг. 1 изображена схема реализации способа азотирования в тлеющем разряде с применением эффекта полого катода, где: d1, d2 - диаметры отверстий экранов; а1, а2 - расстояния между отверстиями; Н1, Н2 - расстояния между экраном и деталью; h1, h2 - глубины упрочненных слоев. На фиг. 2 и на фиг. 3 изображены примеры реализации способа в виде трехмерных моделей. На фиг. 1 : 1 - деталь; 2 - экраны.

Пример конкретной реализации способа.

Способ осуществляется следующим образом: в вакуумной камере устанавливают обрабатываемую деталь, на определенном расстоянии на деталь устанавливаются перфорированные экраны из стали с заданными значениями прозрачности. Далее, подключают их к отрицательному электроду, герметизируют камеру и откачивают воздух до давления 10 Па. Затем после эвакуации воздуха камеру продувают рабочим газом 5-15 минут при давлении 1000-1330 Па, затем откачивают камеру до давления 10 Па, подают на электроды напряжение и возбуждают тлеющий разряд. При напряжении 800-1000 В осуществляют катодное распыление. После 10-15-минутной обработки по режиму катодного распыления напряжение понижают до рабочего, а давление повышают до 50 Па, необходимое для зажигания тлеющего разряда. В качестве рабочего газа использовали аргон и смесь азота, аргона и ацетилена (N2 25% + Ar 70% + С2Н2 5%). Азотирование в тлеющем разряде производят при р=50 Па, j=1-2 мА/см2, U=550-600 В. Все процессы проходят за один технологический цикл, в одной камере и в одной атмосфере. После обработки изделие охлаждается вместе с вакуумной камерой под вакуумом. В результате можно получать азотированные участки с различной толщиной упрочненного слоя на одной детали за один технологический цикл. Это позволяет снизить основное время обработки детали и уменьшить энергозатраты процесса обработки.

Способ азотирования стальной детали в тлеющем разряде с обеспечением на упомянутой детали участков с различной глубиной упрочненного слоя, включающий вакуумный нагрев стальной детали в плазме азота повышенной плотности, формируемой между поверхностью детали и перфорированными экранами для получения эффекта полого катода, при этом получение на упомянутой детали участков с различной глубиной упрочненного слоя обеспечивают регулированием плотности плазмы посредством перфорированных экранов с заданными значениями прозрачности, имеющих разную ширину отверстий и разное расстояние между отверстиями, и регулированием расстояния от экранов до поверхности детали.



 

Похожие патенты:

Изобретение относится к машиностроительной промышленности, а именно к химико-термической обработке поверхности изделий из титанового сплава, и может быть использовано для повышения эксплуатационных характеристик изделий.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе никеля, и может быть использовано для изготовления деталей и узлов горячего тракта газотурбинных авиационных двигателей, стационарных газотурбинных установок и других изделий, работающих при высоких температурах.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе кобальта, и может быть использовано для изготовления деталей и узлов горячего тракта газотурбинных авиационных двигателей, стационарных газотурбинных установок и других изделий, работающих при высоких температурах.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения.

Изобретение относится к области вакуумно-плазменных химико-термических технологий обработки материалов и изделий и может быть использовано при химико-термической упрочняющей обработке методом азотирования конструкционных изделий из нержавеющей стали в машиностроении, приборостроении, нефтегазовой, аэрокосмической отраслях.
Изобретение относится к термоводородной обработке полуфабрикатов и изделий из пористого материала на основе титана и его сплавов для медицинских имплантатов. Способ включает термодиффузионное насыщение водородом и вакуумный отжиг.

Изобретение относится к области металлургии, а именно к химико-термической обработке металлов в плазме тлеющего разряда, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин и режущего инструмента.

Изобретение относится к области упрочняющей обработки материалов, в частности к способам химико-термической обработки изделий путем нанесения металлосодержащих покрытий различного назначения.

Изобретение относится к способу получения упрочненного сплава, имеющего металлическую основу, в объеме которой диспергированы наночастицы, из которых по меньшей мере 80% имеют средний размер от 0,5 нм до 50 нм.

Изобретение относится к области плазменной химико-термической обработки поверхности деталей и может быть использовано в авиадвигателестроении для повышения эксплуатационных свойств деталей, работающих при циклических нагрузках, а также позволяет интенсифицировать процесс азотирования. Способ азотирования изделий из титанового сплава в тлеющем разряде включает вакуумный нагрев изделий из титанового сплава в плазме азота повышенной плотности тлеющего разряда, при этом плазму азота повышенной плотности создают скрещенными электрическим и магнитным полями, а азотирование упомянутых изделий выполняют в рабочей смеси N2 15% + Ar 85% при давлении, равном 80 Па, температуре 500÷550°С в течение 1,5÷2 часов с последующей сменой смеси на N2 60% + Ar 40% при давлении, равном 40 Па, с выдержкой в течение 1 часа. Затем изделия охлаждают в вакууме. Обеспечивается интенсификация процесса азотирования, формирование развитого нитридного диффузионного слоя, повышение стойкости к износу, эрозии и коррозии при сохранении механических свойств и циклической усталости титановых сплавов. 1 ил., 1 пр.
Изобретение относится к области плазменной химико-термической обработки поверхности деталей и может быть использовано в авиадвигателестроении. Способ азотирования изделий из титанового сплава в тлеющем разряде включает вакуумный нагрев изделий из титанового сплава в тлеющем разряде в плазме азота повышенной плотности. Плазму азота повышенной плотности формируют в кольцевой области вращения электронов, захваченных магнитным полем, а азотирование упомянутых изделий выполняют в смеси газов N2 50%÷60% + Ar 50÷40% при давлении 40 Па и нагреве изделий до температуры 700÷730°С с выдержкой в течение 2-3 часов. Затем осуществляют восстановительный отжиг при 800÷830°С в аргоне с выдержкой в течение 30 мин, после чего изделия охлаждают в вакууме. Обеспечивается интенсификация процесса азотирования, формирование развитого нитридного диффузионного слоя, повышающего циклическую усталость. 1 пр.

Изобретение относится к машиностроительной промышленности, а именно к химико-термической обработке поверхности изделий из титанового сплава и может быть использовано для повышения эксплуатационных характеристик изделий. Способ азотирования изделий из титановых сплавов в тлеющем разряде включает проведение указанного азотирования в газовой смеси азот-аргон, при этом используют упомянутую газовую смесь азот-аргон с процентным соотношением 60% N2 - 40% Ar, а упомянутое азотирование в тлеющем разряде проводят в магнитном поле при температуре 650-750°C в течение 4 часов, напряжении в разрядном промежутке 450-550 В и давлении в вакуумной камере 10-1-1 Па. Обеспечивается интенсификация процесса насыщения поверхности ионами азота при ионном азотировании титановых сплавов и получение развитой диффузионной зоны на титановой основе порядка 50-70 мкм. 1 ил., 1 пр.

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа, в медицине и других отраслях промышленности. Способ низкотемпературного азотирования титановых сплавов включает использование плазмообразующей газовой смеси азот-аргон, отличающийся тем, что азотирование проводят в плазме тлеющего разряда в вакуумной камере с использованием упомянутой газовой смеси, содержащей 15 мас. % азота и 85 мас. % аргона, при температуре 420-500°C. Обеспечивается повышение твердости и контактной износостойкости титановых сплавов, при низкой температуре рабочего процесса обработки в плазме тлеющего разряда. 1 ил., 1 пр.

Изобретение относится к области металлургии, а именно к химико-термической обработке, и может быть использовано при изготовлении деталей из конструкционных сталей, работающих в условии коррозии. Способ химико-термической обработки изделий из конструкционных сталей включает нагрев в печи размещенных в реакторе изделий в азотосодержащей атмосфере, изотермическую выдержку в потоке азотосодержащего газа и последующее охлаждение с печью. Нагрев осуществляют в присутствии в объеме реактора наполнителя в качестве катализатора для создания вокруг изделий с помощью потока азотосодержащего газа слоя активных частиц. Одновременно проводят процесс диффузионного цинкования с использованием в качестве наполнителя порошкообразного цинка в смеси с кварцевым песком и с обеспечением вокруг изделий слоя активных частиц, состоящих из азото- и цинкосодержащих веществ. В частных случаях осуществления изобретения нагрев, изотермическую выдержку и охлаждение изделий проводят в атмосфере диссоциированного аммиака. Изотермическую выдержку осуществляют в интервале температур 750…850°C. Порошкообразный цинк и кварцевый песок составляют в наполнителе соотношение 1 к 10. Обеспечивается повышение коррозионной стойкости при обеспечении большей толщины упрочненного слоя и достаточной прочности. 3 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для локального поверхностного упрочнения материалов. Способ локального ионного азотирования стального изделия включает проведение вакуумного нагрева стального изделия в плазме азота повышенной плотности, при этом плазму азота повышенной плотности формируют в тороидальной области осциллирующих электронов, движущихся по циклоидальным замкнутым траекториям, образованной скрещенными электрическими и магнитными полями, посредством магнитной системы, выполненной с жидкостным охлаждением и содержащей стационарные магниты. Стальное изделие располагают с обеспечением расположения участка, подлежащего азотированию в магнитном поле, в зоне плазмы азота повышенной плотности для интенсификации диффузионного насыщения этого участка и формирования зоны азотирования в магнитном поле. Переходную зону азотирования обеспечивают на участке стального изделия, удаленном от магнитной системы и расположенном между участком упомянутого изделия с зоной азотирования в магнитном поле, на котором эффективная толщина азотированного слоя составляет 80 мкм, и участком упомянутого изделия с зоной азотирования вне магнитного поля, на котором эффективная толщина азотированного слоя составляет 40 мкм. Обеспечивается повышение контактной долговечности и износостойкости поверхности изделия за счет его локальной обработки. 3 ил., 1 пр.

Изобретение относится к металлургии, а именно к способам получения имплантатов из титановых сплавов с остеоинтегрирующим покрытием. Способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов включает термодиффузионное водородное насыщение имплантата и вакуумный отжиг. Перед термодиффузионным водородным насыщением и вакуумным отжигом на поверхность имплантата диффузионной сваркой наносят пористое покрытие путем приварки при температуре 850-950°С к поверхности имплантата из титановых сплавов волокон из титанового сплава, водородное насыщение проводят при температуре 600-650°С до концентрации водорода 0,5-0,8 мас. %, а последующий вакуумный отжиг - до концентрации водорода не более 0,008 мас. %. Повышается усилие среза покрытия с монолитной основы при сохранении ее структуры и свойств. 3 з.п. ф-лы, 1 ил., 1 табл., 8 пр.

Изобретение относится к области химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов. Способ азотирования стальной детали в тлеющем разряде с обеспечением на упомянутой детали участков с различной глубиной упрочненного слоя включает вакуумный нагрев стальной детали в плазме азота повышенной плотности, формируемой между поверхностью детали и перфорированными экранами для получения эффекта полого катода. Получение на упомянутой детали участков с различной глубиной упрочненного слоя обеспечивают регулированием плотности плазмы посредством перфорированных экранов с заданными значениями прозрачности, имеющих разную ширину отверстий и разное расстояние между отверстиями, и регулированием расстояния от экранов до поверхности детали. Обеспечивается получение азотированных участков детали с различной глубиной упрочненного слоя за один технологический цикл с повышением производительности процесса. 3 ил., 1 пр.

Наверх