Способ определения примесей в каменном и буром угле и торфе

Изобретение относится к аналитической химии, а именно к способам определения примесей в каменном и буром угле и торфе. Для этого применяют вскрытие пробы смесью концентрированных хлороводородной и азотной кислот (3:1) при соотношении навески пробы к смеси кислот 1:(100-120) при нагревании в течение 1-1,5 ч. Полученную смесь, содержащую раствор примесных элементов и нерастворимую основу, охлаждают и обрабатывают смесью концентрированных хлорной и фтороводородной кислот (3:5) при соотношении исходной навески пробы к смеси кислот 1:(110-130) при нагревании до появления паров хлорной кислоты. Затем смесь обрабатывают азотной кислотой, разбавленной деионизированной водой 1:1, при соотношении исходной навески 1:(100-120). Полученную смесь, содержащую раствор примесных элементов и нерастворимую основу анализируемой пробы, разбавляют деионизированной водой, раствор примесей отделяют от нерастворимой основы фильтрованием и определяют в нем содержание примесных элементов атомно-эмиссионным методом с индуктивно-связанной плазмой. 1 табл., 1 пр.

 

Изобретение относится к аналитической химии, а именно к способам определения примесей в каменном и буром угле и торфе.

Известен способ атомно-абсорбционного определения примесей железа, калия, кальция, магния и натрия в топливе твердом минеральном, основанный на экстрагировании определяемых элементов раствором хлороводородной кислоты при нагревании и атомно-абсорбционном анализе полученного экстракта [ГОСТ Р 32983-2014 (ИСО 1952:2008) Топливо твердое минеральное. Определение металлов, экстрагируемых разбавленной соляной кислотой]. Недостатком метода является неполное извлечение примесных элементов из анализируемой пробы, а также невозможность определения ряда примесей, в частности алюминия, бария, ванадия, иттрия, лантана, марганца, меди, скандия, стронция, титана, фосфора, хрома и циркония.

Известен способ определения минеральных компонентов твердого топлива, основанный на последовательной деминерализации угольных фракций реактивами, растворяющими определенную группу минеральных веществ, и химическом анализе получаемых продуктов. Метод включает обработку анализируемой пробы 10%-ным раствором хлорида натрия при температуре кипения в течение 1 часа, фильтрацию содержимого и определение в фильтрате кальция и магния; обработку остаточного угля концентрированной хлороводородной кислотой, фильтрацию содержимого и определение в фильтрате кальция, магния, железа и алюминия; озоление остаточного угля и химический анализ золы на содержание кальция, магния, железа и алюминия [Менковский М.А. О значении и определении фазового состава минеральных компонентов твердых горючих ископаемых // Химия твердого топлива. - 1973. - №1. - С. 14-17] - прототип. Однако при реализации этого способа не достигается одновременное извлечение алюминия, железа, кальция и магния из анализируемой пробы и данный способ не распространяется на такие элементы, как барий, ванадий, иттрий, калий, лантан, марганец, медь, натрий, скандий, стронций, титан, фосфор, хром и цирконий. Кроме того, способ является трудоемким и длительным, так как состоит из многократной обработки твердого топлива различными реактивами, химического анализа нескольких фильтратов и сложного химического анализа золы, включающего ее сплавление с плавнями при высоких температурах или растворение в смеси кислот и анализ полученного раствора примесей различными методами.

Техническим результатом изобретения является одновременное извлечение алюминия, железа, кальция и магния из анализируемой пробы в один раствор, расширение круга извлекаемых примесей, включая барий, ванадий, иттрий, калий, лантан, марганец, медь, натрий, скандий, стронций, титан, фосфор, хром, цирконий, и одновременное определение всех элементов в растворе примесей атомно-эмиссионным методом с индуктивно-связанной плазмой.

Это достигается тем, что анализируемую навеску твердого топлива (каменного или бурого угля или торфа) обрабатывают смесью минеральных кислот при нагревании, отделяют основу, получают водный раствор примесей и определяют примеси атомно-эмиссионным методом с индуктивно-связанной плазмой. Согласно изобретению обработку пробы проводят смесью концентрированных хлороводородной и азотной кислот (3:1) при соотношении навески пробы к смеси кислот 1:(100-120) при нагревании в течение 1-1,5 часа; затем содержимое сосуда охлаждают и обрабатывают смесью концентрированных хлорной и фтороводородной кислот (3:5) при соотношении исходной навески пробы к смеси кислот 1:(110-130) и нагревании до появления паров хлорной кислоты; далее охлаждают и обрабатывают азотной кислотой, разбавленной деионизированной водой 1:1, при соотношении исходной навески пробы к кислоте 1:(100-120), в результате чего получают смесь, содержащую раствор примесных элементов и нерастворимую основу анализируемой пробы; полученную смесь разбавляют деионизированной водой до соотношения исходной навески пробы к воде 1:(800-1000); раствор примесей отделяют фильтрованием от нерастворимой основы и определяют в нем содержание примесных элементов атомно-эмиссионным методом с индуктивно-связанной плазмой.

Сущность способа заключается в следующем. При обработке пробы твердого топлива смесью концентрированных хлороводородной и азотной кислот при нагревании происходит разрушение компонентов, входящих в состав органических соединений топлива, а именно гуматов натрия, калия, кальция, магния, железа и ряда микроэлементов - бария, ванадия, иттрия, лантана, марганца, меди, скандия, стронция, титана, фосфора, хрома и циркония, а также оксидов, гидроксидов и карбонатов этих элементов. При последующей обработке пробы смесью концентрированных хлорной и фтороводородной кислот происходит разрушение внешних минеральных соединений, представленных кварцем, сульфидами, глинистыми минералами и другими гидратированными силикатами, содержащими такие макрокомпоненты, как алюминий, железо, кальций и магний. При нагревании содержимого сосуда до паров хлорной кислоты отгоняется избыток фтороводородной кислоты и образуется влажный осадок фторидов и перхлоратов определяемых элементов. При последующей обработке полученной смеси азотной кислотой происходит растворение фторидов и перхлоратов и в раствор переходит 95-100% макро- и микрокомпонентов. Разбавление смеси деионизированной водой уменьшает вязкость раствора и позволяет отделить его от нерастворимой основы фильтрованием для последующего определения в нем примесных элементов атомно-эмиссионным методом с индуктивно-связанной плазмой.

Соблюдение указанных режимов обработки пробы, концентраций используемых реагентов и соотношений твердой и жидкой фаз позволяет достигнуть наилучших результатов. Например, при обработке твердого топлива смесью концентрированных хлороводородной и азотной кислот при соотношении навески пробы к смеси кислот 1:(99 и менее) не достигается полное извлечение определяемых компонентов из их гуматов, оксидов, гидроксидов и карбонатов в раствор. При соотношении пробы к смеси кислот 1:(121 и более) наблюдается перерасход кислот, что приводит к повышению значения поправки контрольного опыта и, следовательно, к ухудшению метрологических характеристик способа.

При обработке смесью концентрированных хлорной и фтороводородной кислот при соотношении исходной навески пробы к смеси кислот 1:(109 и менее) не достигается полное разрушение внешних минеральных соединений. А при соотношении пробы к смеси кислот 1:(131 и более) также наблюдается перерасход кислот, приводящий к повышению значения поправки контрольного опыта и к ухудшению метрологических характеристик способа.

При обработке смеси, содержащей влажные соли фторидов и перхлоратов определяемых элементов, разбавленной азотной кислотой при соотношении исходной навески пробы к кислоте 1:(99 и менее), ухудшаются условия растворения фторидов и перхлоратов, а при соотношении исходной навески пробы к кислоте 1:(121 и более) увеличивается кислотность раствора примесей, что нежелательно при последующем проведении атомно-эмиссионного анализа.

При разбавлении полученной смеси до соотношения исходной навески пробы к воде 1:(799 и менее) усложняется процесс отделения раствора определяемых элементов от нерастворимой основы твердого топлива фильтрованием, а разбавление смеси до соотношения 1:(1001 и более) делает невозможным определение низких содержаний микрокомпонентов и, следовательно, ухудшает метрологические характеристики способа.

Из вышеуказанного следует, что несоблюдение заявленных параметров снижает технический результат заявленного изобретения.

Пример

Навеску анализируемой пробы (каменного, бурого угля, торфа) массой 0,1 г помещают в тигель из стеклоуглерода, приливают 10 см3 смеси концентрированных хлороводородной и азотной кислот (3:1) (соотношение 1:120) и нагревают на плитке в течение 1-1,5 часа, поддерживая слабое кипение. Содержимое тигля охлаждают, приливают к нему смесь кислот, содержащую 3 см3 концентрированной хлорной кислоты и 5 см3 концентрированной фтороводородной кислоты (соотношение 1:130), нагревают на плитке до появления тяжелых паров хлорной кислоты, снова охлаждают и приливают 10 см3 азотной кислоты, разбавленной деионизированной водой 1:1 (соотношение 1:120). Далее переносят содержимое тигля в полипропиленовую колбу вместимостью 100 см3, доводят его объем до метки деионизированной водой (соотношение 1:1000), тщательно перемешивают и фильтруют через бумажный фильтр «белая лента», собирая фильтрат в сухую полипропиленовую колбу. В полученном фильтрате определяют содержание примесных элементов атомно-эмиссионным методом с индуктивно-связанной плазмой. В качестве градуировочных используют растворы, содержащие сумму определяемых элементов, приготовленные последовательным разбавлением стандартных образцов состава растворов (ГСО).

Эффективность способа оценивали по степени извлечения примесей из твердого топлива в анализируемый раствор. Содержание примесных элементов в растворе определяли на спектрометре iCAP 6300 фирмы "Thermo Electron Corporaition" (США). Правильность полученных результатов контролировали методами варьирования навесок и добавок.

Опыты показали, что способ позволяет количественно (на 95-100%) переводить макро- и микроэлементы из твердого топлива в раствор и полностью отделять раствор определяемых примесей от нерастворимой основы твердого топлива, что позволяет проводить атомно-эмиссионный анализ полученного концентрата без помех со стороны основного компонента твердого топлива.

Таким образом, при реализации предлагаемого способа достигается количественное извлечение алюминия, бария, ванадия, железа, иттрия, калия, кальция, лантана, магния, марганца, меди, натрия, скандия, стронция, титана, фосфора, хрома и циркония из твердого топлива, что обеспечивает существенное расширение круга определяемых элементов по сравнению с известным способом. Кроме того, метод последовательной деминерализации угольных фракций различными реактивами не позволяет одновременно сконцентрировать примесные элементы в одном растворе и, как следствие, является очень трудоемким и длительным. Заявленный способ позволяет одновременно извлекать алюминий, барий, ванадий, железо, иттрий, калий, кальций, лантан, магний, марганец, медь, натрий, скандий, стронций, титан, фосфор, хром, цирконий из анализируемой пробы в один раствор и проводить одновременное определение всех элементов в концентрате примесей атомно-эмиссионным методом с индуктивно-связанной плазмой, так как в этих условиях достигается полное отделение основного компонента твердого топлива.

Результатом применения предлагаемого способа является повышение комплексного селективного извлечения попутных компонентов различных видов твердого топлива в товарные продукты, снижение в 5-8 раз потерь черных и цветных металлов (ванадия, железа, марганца, меди, хрома и др.) с отходами сжигания твердого топлива за счет предварительного определения их точного содержания и возможность контроля за содержанием экотоксикантов (фосфора, хрома и др.), что особенно актуально из-за ужесточения требований при осуществлении транснациональных перевозок.

В таблице приведены результаты осуществления способа при различных значениях заявленных параметров.

Способ определения примесей в каменном и буром угле и торфе, включающий вскрытие пробы смесями минеральных кислот при нагревании, отделение основы, получение водного раствора примесей, определение примесей в полученном растворе, отличающийся тем, что вскрытие осуществляют смесью концентрированных хлороводородной и азотной кислот (3:1) при соотношении навески пробы к смеси кислот 1:(100-120) при нагревании в течение 1-1,5 ч, содержимое сосуда обрабатывают смесью концентрированных хлорной и фтороводородной кислот (3:5) при соотношении исходной навески пробы к смеси кислот 1:(110-130) при нагревании до появления паров хлорной кислоты, далее обрабатывают азотной кислотой, разбавленной 1:1, при соотношении исходной навески пробы к кислоте 1:(100-120), в результате чего получают смесь, содержащую раствор примесных элементов и нерастворимую основу анализируемой пробы, полученную смесь разбавляют деионизированной водой до соотношения исходной навески пробы к воде 1:(800-1000), раствор примесей отделяют от нерастворимой основы фильтрованием и определяют в нем содержание примесных элементов атомно-эмиссионным методом с индуктивно-связанной плазмой.



 

Похожие патенты:

Изобретение относится к аналитической химии, а именно к определению содержания массовой доли основного вещества в образце состава диэтилендисульфида. Для этого проводят количественный анализ образца диэтилендисульфида методом автоматического потенциометрического титрования.
Изобретение относится к аналитической химии, а именно к гравиметрическим методам анализа, и может быть использовано для определения содержания экстрагируемых органических соединений в пробах донных отложений.

Изобретение относится к области химической аналитики и может быть использовано для определения наличия стороннего компонента в газовой среде и его концентрации. Устройство для идентификации стороннего компонента произвольной газовой смеси и определения величины парциального давления указанного стороннего компонента газовой смеси состоит из двух объемов, образующих измерительные объемы и, соответственно, задающих условия измерения, замкнутых газовой магистралью через компрессор на одной паре штуцеров соответствующих объемов с одной стороны и через управляемый электронный клапан на другой паре штуцеров с другой стороны, на входе и выходе объемов установлены такие же управляемые электронные клапаны, в каждый объем помещены датчики, прецизионно определяющие парциальные давления по крайней мере одного из компонентов газовой смеси Pi и Pi+1…g, где i и i+1 … представляют собой компоненты исходной газовой среды, причем устройство выполнено с возможностью достижения множества устойчивых состояний, характеризующихся общим давлением в каждом из объемов, соответственно, P1 и P2, отличающихся на ΔP, которые регистрируются датчиками общего давления в каждом из объемов, при этом микропроцессор обеспечивает реализацию математически строгого алгоритма физической модели качественного и количественного определения стороннего компонента газовой смеси.

Изобретение относится к установке для исследования процесса получения синтетических жидких углеводородов, включающей в себя линию подачи газообразных потоков, нагреватель, каталитический реактор, накопительные емкости, средства контроля температуры и давления, запорно-регулирующую арматуру.

Изобретение относится к аналитической химии лекарственных средств, а именно к способу определения тимохинона в семенах чернушки посевной (Nigella Sativa). Для этого тимохинон из пробы экстрагируют, экстракт фильтруют и центрифугируют.

Изобретение относится к аналитической химии, а именно к исследованию и анализу высокомолекулярных материалов с помощью ИК-спектроскопии при определени состава сополимеров полиакрилата и полиакрилонитрила (ПАН) для обеспечения контроля качества углеродного волокна.

Изобретение относится к аналитической химии. Способ извлечения ионов индия (III) включает его экстракцию из водных растворов производным из группы пиразолонов с последующим комплексонометрическим определением индия (III).
Изобретение относится к области нефтяной промышленности и предназначено для исследования процесса внутритрубной деэмульсации. Способ исследования процесса внутритрубной деэмульсации включает в себя подготовку модели пластовой воды, состав которой соответствует ионному составу пластовой воды месторождения, формирование холостой и рабочей пробы, установление проб на возвратно-поступательный шейкер, перемещающийся со скоростью, эквивалентной скорости движения эмульсии при внутритрубной деэмульсации, при этом время и температуру перемешивания задают соответствующими внутритрубной деэмульсации, введение в рабочие пробы деэмульгатора и ингибиторов коррозии и солеотложения в последовательности, концентрациях и количестве, моделирующих локальную дозировку реагентов в точках подачи в реальной системе внутритрубной деэмульсации, выдерживание их в течение 20-24 часов при комнатной температуре, определение количественного содержания солюбилизированной нефти в водной фазе и получение вывода о влиянии ингибиторов коррозии и солеотложения на количественное содержание солюбилизированной деэмульгатором нефти.

Изобретение может быть использовано в аналитической химии для контроля полноты очистки технологических растворов от ионов ртути. Способ экстракционного извлечения ртути (II) из хлоридных растворов включает экстракцию ртути из водной фазы в органическую компоненту расслаивающей системы вода-антипирин-органическая кислота.
Изобретение относится к области аналитической химии и может быть использовано для определения следовых количеств диспрозия при анализе смеси оксидов РЗЭ и природных вод.

Изобретение относится к новому способу определения скорости генерирования пероксильных радикалов. Технический результат: разработан новый способ определения скорости генерирования пероксильных радикалов, который повышает точность, достоверность и воспроизводимость результатов, а также расширяет круг исследуемых веществ и используемых реагентов. 1 з.п. ф-лы, 4 ил., 1 пр.

Изобретение может быть использовано в аналитической химии природных вод для инструментального определения микроэлементов. Для осуществления способа группового концентрирования из кислых растворов и разделения ионов Ti, Mo, Sn, Fe к 10 мл водной фазы анализируемого кислого раствора добавляют 1 г легкоплавкого расплава ацетилсалицилата антипириния [AntH3O+]⋅[AcSal-], отделяют концентрат ионов Ti, Mo, Sn, Fe, озоляют азотной кислотой в микроволновой печи и анализируют атомно-эмиссионной спектрометрией. Для расширения спектра извлекаемых из кислого водного раствора ионов - Ti, Mo, Sn, Fe, V, Cr, Pb, Cd, Co, Sb, Mn легкоплавким расплавом ацетилсалицилата антипириния к 5 мл анализируемого раствора дополнительно прибавляют 5 мл 2,0 М раствора хлорида натрия при том же количестве – 1 г ацетилсалицилата антипириния. Полученную систему подогревают до 90оС, встряхивают 5 мин, центрифугируют, экстрагируют концентрат ионов элементов, озоляют и анализируют. Способ обеспечивает эффективное групповое извлечение широкого спектра элементов - Ti, Mo, Sn, Fe, V, Cr, Pb, Cd, Co, Sb, Mn. 2 ил., 2 табл., 1 пр.
Наверх