Способ измерения скорости движения пасоки в древесных растениях



Способ измерения скорости движения пасоки в древесных растениях
Способ измерения скорости движения пасоки в древесных растениях
Способ измерения скорости движения пасоки в древесных растениях

 


Владельцы патента RU 2611404:

Федеральное государственное бюджетное учреждение науки Институт леса Карельского научного центра Российской академии наук (RU)

Изобретение относится к лесному хозяйству, а именно к биофизике древесных растений. Способ основан на формировании теплового воздействия в ксилемной ткани и измерении температуры пасоки. Способ осуществляют с помощью двух игольчатых температурных датчиков, совмещенных с нагревательными элементами. Датчики-нагреватели размещают в ксилемной ткани один над другим на заданном расстоянии по высоте. Тепловые импульсы формируются в датчиках-нагревателях последовательно, через заданные промежутки времени. Определение скорости потока пасоки осуществляют анализом полученных температурных кривых. Достигается повышение точности измерения скорости пасоки при низких и высоких значениях скорости. При этом факт нулевой скорости потока выявляется без каких-либо дополнительных измерительных процедур и устройств. 3 ил.

 

Изобретение относится к лесному хозяйству, а именно к биофизике древесных растений, в т.ч. способам динамического измерения физиологических параметров древесных растений и, в частности, определения скорости движения пасоки и ее изменения с течением времени.

Измерение скорости движения пасоки у древесных растений является важной задачей при оценке их водного статуса и исследовании таких важных физиологических процессов, как транспирация и фотосинтез, а также при верификации параметров современных экофизиологических и климатических математических моделей.

Предлагаемый способ основан на использовании игольчатых датчиков, размещаемых в стволе дерева радиально, поэтому он применим для исследования движения пасоки в стволах диаметром 4 см и более. Также данный способ позволяет вести круглосуточное наблюдение за динамикой изменения скорости движения пасоки.

Известен способ определения скорости пасоки в проводящих пучках травянистых растений в ювенильном возрасте, который позволяет оценивать скорость движения пасоки методом оптической регистрации скорости распространения окрашенного питательного раствора в ксилемной ткани растения. Недостатком данного способа является невозможность применить его в отношении древесных растений с непроницаемыми для световых лучей тканями ствола, а также невозможность осуществлять непрерывную регистрацию скорости движения пасоки по стволу, поскольку в нем не предусмотрена возможность быстрого удаления красителя из ткани исследуемого растения и повторного измерения скорости (авторское свидетельство СССР SU 1644810 А1, опубликовано в 1988 г.).

Известен способ измерения скорости движения пасоки, основанный на использовании одного комбинированного датчика-нагревателя и одного референсного температурного датчика. Особенностями известного способа являются непрерывный нагрев датчика-нагревателя, большая дистанция между датчиками, устраняющая возможное влияние температурного воздействия датчика-нагревателя на референсный датчик. Оценка скорости потока получается в результате использования эмпирического соотношения (патент США US 4745805 А, опубликовано в 1986 г.).

Недостатками данного способа являются низкая точность измерения скорости движения пасоки при ее малых значениях, а также повышенный расход энергии, затрачиваемой на непрерывный нагрев датчика-нагревателя, сокращающий возможность автономной работы измерительного прибора без внешнего источника электроэнергии. Основным недостатком существующего способа является невозможность калибровки и вычисления абсолютных значений скорости в случаях, когда за период измерений не возникли условия, при которых скорость потока была равна нулю, и этот факт не выявлен дополнительными измерительными приборами.

Задачей предлагаемого изобретения является создание эффективного и экономичного способа измерения скорости движения пасоки, а также точного выявления факта нулевой скорости движения пасоки.

Техническим результатом является повышение точности измерения скорости пасоки при низких и высоких значениях скорости. При этом факт нулевой скорости потока выявляется без каких-либо дополнительных измерительных процедур и устройств.

Технический результат достигается тем, что в способе измерения скорости движения пасоки у древесных растений, включающем тепловое воздействие в ксилемной ткани ствола и измерение температуры, с использованием двух игольчатых датчиков, закрепленных один над другим на определенном расстоянии, согласно изобретению тепловое воздействие осуществляют импульсно с использованием двух игольчатых температурных датчиков, совмещенных с нагревательными элементами и размещенных на расстоянии не более 8 см, при этом первый датчик-нагреватель осуществляет тепловое импульсное воздействие, а второй датчик-нагреватель в это время осуществляет измерение температуры, через заданный промежуток времени осуществляют автоматическую смену режима работы датчиков, а именно второй датчик-нагреватель осуществляет тепловое импульсное воздействие, а первый датчик-нагреватель осуществляет измерение температуры, с последующим анализом полученных температурных кривых, которые идентичны по форме и по максимальному значению при нулевой скорости потока и различны по этим показателям при ненулевом потоке, причем скорость ненулевого потока определяют по регрессионному соотношению на основании результатов калибровочного измерения.

Способ осуществляют следующим образом.

На стволе дерева диаметром не менее 4 см устанавливают два игольчатых датчика-нагревателя один над другим на расстоянии 1,5 см. Схема расположения датчиков-нагревателей приставлена на фигуре 1.

При нагреве датчиков осуществляется формирование последовательных коротких тепловых импульсов. В момент, когда на одном из датчиков-нагревателей формируется тепловой импульс, второй датчик не производит нагрев и осуществляет регистрацию кривой изменения температуры в точке своего расположения. Через заданный промежуток времени режимы работы датчиков изменяются. При этом датчик, который формировал тепловой импульс, автоматически переводится в режим регистрации температурной кривой, а датчик, регистрировавший температуру, переводится в режим формирования теплового импульса. В процессе смены режимов работы датчиков регистрируются температурные кривые, представленные на фиг. 2, которые в последующем автоматически анализируются. В ситуации, когда скорость потока равна нулю, кривые оказываются идентичными по форме и по максимальному значению, что позволяет выявить факт нулевого потока. В ситуации ненулевого потока кривые отличаются по форме и максимальному значению. Скорость ненулевого потока определяется по регрессионному соотношению, получаемому по результатам калибровочного измерения. Зависимость индекса отношения амплитуд к скорости ксилемного потока показана на фиг. 3.

Предложенный способ позволяет добиться повышения точности выявления нулевого потока и обеспечивает надежность измерений как при низких, так и при высоких скоростях движения пасоки, обладая при этом низким энергопотреблением благодаря работе в импульсном режиме нагрева.

Преимуществом способа является возможность круглосуточного измерения скорости движения пасоки без дополнительных работ по переустановке датчиков-нагревателей для подзарядки, что позволяет использовать его в лесном хозяйстве, а именно в лесопитомниках, в ботанических садах, в научных исследованиях при исследовании физиологических процессов древесных растений.

Способ измерения скорости движения пасоки в древесных растениях, включающий тепловое воздействие в ксилемной ткани ствола и измерение температуры, с использованием двух игольчатых датчиков, закрепленных один над другим на определенном расстоянии, отличающийся тем, что тепловое воздействие осуществляют импульсно с использованием двух игольчатых температурных датчиков, совмещенных с нагревательными элементами и размещенных на расстоянии не более 8 см, при этом первый датчик-нагреватель осуществляет тепловое импульсное воздействие, а второй датчик-нагреватель в это время осуществляет измерение температуры, через заданный промежуток времени осуществляют смену режима работы датчиков, а именно второй датчик-нагреватель осуществляет тепловое импульсное воздействие, а первый датчик-нагреватель осуществляет измерение температуры, с последующим анализом полученных температурных кривых, которые идентичны по форме и по максимальному значению при нулевой скорости потока и различны по этим показателям при ненулевом потоке, причем скорость ненулевого потока определяют по регрессионному соотношению на основании результатов калибровочного измерения.



 

Похожие патенты:

Изобретение относится к устройствам для исследования и анализа свойств материалов путем определения величины сопротивления их просверливанию и может быть использовано для определения физико-механических характеристик древесины растущих деревьев, пиломатериалов, деревянных строительных конструкций различного назначения.

Изобретение относится к области хранения и учету круглых лесоматериалов в штабелях на лесопромышленных складах и лесных терминалов предприятий лесопромышленного комплекса.

Изобретение относится к экологии и может быть использовано для сбора, обработки и измерения листьев березы для проведения индикации загрязненности воздуха по флуктуирующим листьям березы.

Изобретение относится экологии и может быть использовано для сравнительной индикации загрязненности воздуха по флуктуирующей асимметрии листьев березы. Способ включает взятие листьев от учетных деревьев березы, растущих в одинаковых экологических условиях местопроизрастания, причем все листья, собранные для одной выборки, следует сложить в полиэтиленовый пакет.

Изобретение относится к экологии, а именно биомониторингу и биоиндикации качества состояния окружающей среды (воздуха) в малых, средних и крупных поселениях с использованием количественного индекса лихеноиндикации - лишайникового индекса. Для этого вычисляют лишайниковый индекс (L), выражающийся отношением суммарной площади визуально доступных слоевищ к площади поверхности ствола дерева по формуле: , где L - лишайниковый индекс, d1 - минимальный размер диаметра слоевища лишайников (лишайниковой куртины (см)), d2 - максимальный размер диаметра слоевища лишайников (лишайниковой куртины (см)), D - обхват дерева (см), Н - расстояние от земли, выше которого нет двух талломов, расположенных друг от друга ближе чем на 10 d2, N - число талломов модельных видов лишайников на дереве.

Изобретение относится к области древесиноведения и деревообрабатывающей промышленности и касается оценки механических свойств натуральной и модифицированной древесины.

Изобретение относится к заготовке, обработке и транспортировке лесоматериалов и может быть использовано для определения объемов круглого леса. Согласно способу производят фотосъемку торцов штабеля бревен цифровым устройством.

Изобретение относится к области исследования материалов строительных конструкций здания с помощью тепловых средств. Способ выявления параметров локального пожара включает проведение технического осмотра строительных конструкций деревянного перекрытия здания, подвергавшихся действию термического градиента в условиях локального пожара; выявление схемы огневого воздействия на составные элементы перекрытия; установление породы и сорта строительной древесины, показателей ее плотности и влажности в естественном состоянии, массивности элементов деревянного перекрытия, нахождение нормативного сопротивления строительной древесины на изгиб и скорости ее выгорания, отличающийся тем, что технический осмотр деревянного перекрытия здания дополняют инструментальными измерениями геометрических размеров площади горения, назначают контрольную ячейку перекрытия в очаге пожара, измеряют площадь поперечного сечения проемов ячейки перекрытия, вычисляют показатель проемности ячейки перекрытия; определяют толщину слоя обугливания поперечного сечения элементов деревянного перекрытия; вычисляют величину горючей загрузки, массовую скорость выгорания строительной сосновой древесины в ячейке перекрытия и коэффициент снижения скорости выгорания сосновой древесины, затем выявляют длительность локального пожара и максимальную температуру локального пожара, которые вычисляют из заданных соотношений.

Изобретение может быть использовано для автоматического измерения объема пучка лесоматериалов, находящегося на движущемся объекте. В способе движущийся объект пропускают через измерительное устройство - измерительную рамку, оснащенную лазерными сканерами, которые измеряют внешний контур пучка, его длину и суммарную площадь торцов лесоматериалов.

Изобретение относится к способам определения содержания лигнина Класона. Способ определения лигнина заключается в том, что к лигноцеллюлозному материалу добавляют водно-диоксановый раствор, полученный смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), реакционную смесь нагревают на кипящей водяной бане в течение 15 минут, затем добавляют 2 М раствор гидроксида натрия, объем реакционной смеси доводят дистиллированной водой и фильтруют, измеряют оптическую плотность фильтрата при 440 нм, и по величине оптической плотности судят о содержании лигнина в целлюлозном полуфабрикате.

Изобретение относится к области измерительной техники, а именно к тепловым микрорасходомерам для измерения расхода газа в диапазоне (0÷5) мг/с. Микрорасходомер работает в режиме переменной мощности внутреннего тепловыделения.

Изобретение относится к области измерительной техники, а именно к тепловым расходомерам для измерения расхода газа в диапазоне 0÷20 мг/с. Расходомер содержит: цилиндрическую камеру 1; канал 2 подачи в камеру газового потока и канал 2′ для его вывода; диафрагму 3 с отверстием для прохода газа, вставляемую в канал (каналы) со стороны начала канала; нагреваемую электрическим током нихромовую проволочную спираль 4 (диаметр проволоки 0,2 мм); шесть каналов 5 для оптических окон-световодов 6, вклеиваемых в каналы высокотемпературным клеем К-500; шесть идентичных преобразователей оптического излучения.

Изобретение относится к диагностике технического состояния систем контроля технологических процессов. Предложен способ проверки работоспособности системы контроля течи трубопровода, который включает воспроизведение системой параметров эталонного имитатора измеряемых системой физических величин, сравнение воспроизведенных параметров с заданными параметрами эталонного имитатора и выработку заключения о работоспособности системы.

Изобретение относится к области приборостроения, а именно к устройствам для измерения потоков жидкостей и газов с использованием микроэлектромеханических датчиков.

Изобретение относится к газовым счетчикам. Газовый счетчик содержит корпус счетчика с впускным отверстием для газа с относящимся к нему присоединительным штуцером для подводящего газопровода и выпускным отверстием для газа с относящимся к нему присоединительным штуцером для отводящего газопровода.

Изобретение относится к области теплоэнергетики, а именно к задаче энергосбережения в системах потребления пара и может быть использовано для контроля рационального использования пара в теплообменниках путем определения эффективности конденсатоотводчика.

Изобретение относится к области приборостроения и может быть использовано для учета тепловой энергии. Способ измерения тепловой энергии реализуется на измерении текущих значений температуры и переноса их значений на показатели расхода теплоносителя посредством деления потока на две составляющие и распределения теплоносителя в два выходных канала - Tmin канал начала отсчета и Tmax информационный канал, согласованные со шкалой термометра.

Изобретение относится к области микросенсоров, а именно к микроэлектромеханическим системам (МЭМС) для измерения потоков жидкостей и газов - МЭМС-термоанемометрам.

Изобретение относится к области приборостроения и может быть использовано при выполнении анемометрических измерений. Заявлен анемометрический зонд с проволочкой или с n (n≥1) проволочками, параллельными между собой, для измерения вблизи стенки, содержащий для каждой проволочки два стержня (4, 6) крепления проволочки.

Изобретение касается датчика (102) и блока (602) управления для взаимодействия с датчиком. Датчик (102) служит для измерения скорости жидкости (308), протекающей через канал (306).

Изобретение относится к весовым методам определения влажности древесины при вакуумно-диэлектрической сушке. Уложенную в штабель древесину на подштабельной тележке с тензометрическими датчиками помещают в герметичную сушильную камеру между электродами, подключенными к высокочастотному генератору. Датчики подключают к системе измерения веса. В вычислительный блок вводят значения задаваемых параметров древесины и требуемое остаточное давление. Перед вакуумированием измеряют начальное давление в камере, затем включают вакуумный насос и измеряют массу удаленного воздуха. При достижении требуемого остаточного давления насос выключают и измеряют температуру и влажность среды. По измеренным величинам в вычислительном блоке определяют объем древесины в абсолютно сухом состоянии. Затем включают высокочастотный генератор и интенсифицируют процесс сушки путем диэлектрического нагрева древесины. В процессе сушки непрерывно или периодически измеряют текущую массу штабеля и определяют текущую влажность древесины. До загрузки в камеру из штабеля отбирают образцы, по которым в течение 4 суток по установленным стандартам определяют свойства древесины, а штабель выдерживают в помещении, где установлена камера, при температуре 10-20°C и относительной влажности воздуха 70-90%. Непосредственно перед загрузкой измеряют начальную влажность, а после загрузки в вычислительный блок вносят предварительно измеренные свойства древесины, значения начальной влажности и требуемого остаточного давления. При этом давление в камере понижают до 8-10 кПа, а диэлектрический нагрев производят до температуры 45-60°C, которую поддерживают неизменной в течение всего процесса сушки регулированием мощности высокочастотного генератора. Достигается повышение точности измерения текущей влажности древесины и эффективности контроля влажности в процессе сушки. 1 ил.
Наверх