Доплеровский измеритель путевой скорости



Доплеровский измеритель путевой скорости
Доплеровский измеритель путевой скорости
Доплеровский измеритель путевой скорости

 


Владельцы патента RU 2611440:

Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук (RU)

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения скорости достигается тем, что в устройстве, содержащем последовательно соединенные генератор СВЧ и направленный ответвитель, последовательно соединенные антенну, циркулятор и смеситель, при этом основной выход направленного ответвителя подсоединен к входу циркулятора, а вспомогательный выход соединен со вторым входом смесителя, а также вычислительный блок, добавлены генератор пилообразного напряжения, коммутирующий блок, первый и второй блок спектральной обработки и блок вычисления взаимной корреляции, при этом генератор пилообразного напряжения соединен со входом генератора СВЧ, коммутирующий блок одним входом соединен с выходом смесителя, а другим - с управляющим выходом генератора пилообразного напряжения, первый вход блока вычисления взаимной корреляции соединен с первым выходом коммутирующего блока через первый блок спектральной обработки, второй вход соединен со вторым выходом коммутирующего блока через второй блок спектральной обработки, а выход соединен с вычислительным блоком. 4 ил.

 

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн.

В настоящее время известны и применяются радиоволновые устройства измерения путевой скорости, основанные на эффекте Доплера (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 124-132 с.). Обычно они содержат генератор СВЧ, направленный ответвитель, циркулятор, антенну, смеситель и вычислительный блок. Антенна ориентирована под углом α к направлению движения. От генератора СВЧ сигнал с частотой ƒ0 поступает через основной вывод направленного ответвителя и циркулятор на антенну и излучается в сторону подстилающей поверхности. При этом часть сигнала через вспомогательный вывод направленного ответвителя поступает на первый вход смесителя, а на второй его вход поступает СВЧ сигнал, отраженный от поверхности обратно в антенну и прошедший через циркулятор. В процессе движения отраженная частота, поступающая на смеситель, будет отличаться от частоты СВЧ генератора на доплеровскую частоту, которая выделяется на выходе смесителя:

где - длина волны в среде измерения, а ε - ее диэлектрическая проницаемость, которая для воздуха равна единице, с - скорость света в воздухе. В вычислительном устройстве эта частота измеряется, а скорость определяется по формуле:

Однако данный классический способ обладает существенным недостатком. Поскольку реальная антенна не излучает одну волну прямолинейно, а имеет некоторую диаграмму направленности с шириной главного лепестка , отраженная волна будет выглядеть не одной гармоникой, а суперпозицией волн, падающих и отраженных с разными углами от подстилающей поверхности. В результате получим некоторый спектр доплеровских частот с шириной ΔƒD:

Это приводит к ошибке в измерении доплеровской частоты, а уменьшить ее за счет уменьшения не представляется возможным из-за увеличения габаритов антенного устройства. Дополнительным фактором, влияющим на спектральный состав доплеровского сигнала, оказывает изменения отражающих свойств подстилающей поверхности в процессе движения, как например шпалы при применении на железнодорожном транспорте. Чтобы уменьшить влияние этих ошибок, применяют устройства с использованием излучения и приема электромагнитных волн из двух антенн под разными углами к поверхности (например, патент РФ №2334995 от 27.09.2008, G01S 13/58). Совместная обработка двух доплеровских сигналов позволяет частично снизить влияние ошибки от наличия ΔƒD. Однако практически кратное увеличение составных компонентов устройства, реализующего данный способ, соответственно увеличивает и ошибки, вызванные с паразитным просачиванием излучений между антеннами, циркуляторами и другими элементами устройства. Кроме этого повышается стоимость устройства.

Наиболее близким по технической сущности является устройство измерения путевой скорости (М.И. Финкельштейн. Основы радиолокации. М., Советское радио. 1973, с. 86), принятое за прототип. Устройство-прототип содержит последовательно соединенные генератор СВЧ и направленный ответвитель, а также последовательно соединенные антенну, циркулятор, смеситель и вычислительный блок, при этом основной выход направленного ответвителя подсоединен к входу циркулятора, а вспомогательный выход соединен со вторым входом смесителя. Устройство работает следующим образом. Электромагнитные колебания фиксированной частоты от генератора СВЧ через направленный ответвитель и циркулятор поступают на антенну, излучаются под углом α между направлением движения и подстилающей поверхностью. Отраженные волны принимаются антенной, затем через циркулятор поступают на первый вход смесителя, а на второй его вход поступает часть падающих электромагнитных колебаний от вспомогательного выхода направленного ответвителя. На выходе смесителя выделяется доплеровский сигнал, поступающий на вычислительный блок, где происходит вычисление путевой скорости по его частоте согласно формуле (2).

Недостатком устройства являются значительные ошибки измерения путевой скорости, обусловленные тем, что при облучении подстилающей поверхности непрерывным гармоническим сигналом, излучаемым антенной, луч которой ориентирован под углом α к направлению движения и имеет ширину главного лепестка диаграммы направленности , отраженный сигнал содержит не одну гармоническую составляющую, смещенную на частоту Доплера относительно частоты излучаемого сигнала, а сплошной спектр шириной ΔƒD, согласно формуле (3). Дополнительно на спектр сигнала оказывают влияние изменяющиеся характеристики дорожного покрытия, например наличие шпал при использовании на железнодорожном транспорте.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат достигается тем, что в устройстве, содержащем последовательно соединенные генератор СВЧ и направленный ответвитель, последовательно соединенные антенну, циркулятор и смеситель, при этом основной выход направленного ответвителя подсоединен к входу циркулятора, а вспомогательный выход соединен со вторым входом смесителя, а также вычислительный блок, добавлены генератор пилообразного напряжения, коммутирующий блок, первый и второй блок спектральной обработки и блок вычисления взаимной корреляции, при этом генератор пилообразного напряжения соединен со входом генератора СВЧ, коммутирующий блок одним входом соединен с выходом смесителя, а другим - с управляющим выходом генератора пилообразного напряжения, первый вход блока вычисления взаимной корреляции соединен с первым выходом коммутирующего блока через первый блок спектральной обработки, второй вход соединен со вторым выходом коммутирующего блока через второй блок спектральной обработки, а выход соединен с вычислительным блоком.

На Фиг. 1 представлена структурная схема устройства.

На Фиг. 2а и Фиг. 2б изображены временные диаграммы сигналов на выходах генератора СВЧ и смесителя.

На Фиг. 3 представлены огибающие спектров сигналов разностной частоты при нулевой скорости S0(ƒ) и при движении со скоростью V при росте S1(ƒ) и спаде S2(ƒ) частоты на выходе генератора СВЧ.

На Фиг. 4 изображена взаимно-корреляционная функция между этими огибающими S1(ƒ) и S2(ƒ).

Устройство расположено на транспортном средстве и содержит генератор линейно изменяющегося напряжения 1, генератор СВЧ 2, направленный ответвитель 3, циркулятор 4, антенну 5, смеситель 6, коммутирующий блок 7, блоки спектральной обработки 8 и 9, блок вычисления взаимной корреляции 10 и вычислительный блок 11. Антенна ориентирована под углом α между направлением движения и подстилающей поверхностью 12.

Устройство работает следующим образом. Генератор 1 пилообразного напряжения линейно модулирует частоту генератора СВЧ 2 в диапазоне Δƒ1221, где ƒ1 и ƒ2 его начальная и конечная частота (см. Фиг. 2). Сначала за время TМ частота растет от ƒ1 до ƒ2, затем за это же время линейно уменьшается от ƒ2 до ƒ1. Соответственно в это время с помощью коммутирующего блока 10, управляемого от генератора пилообразного напряжения 1, сигнал с выхода смесителя обрабатывается блоками спектральной обработки 8 и 9. Если скорость транспортного средства равна нулю, за счет временной задержки между падающей СВЧ волной и отраженной от поверхности 12 на выходе смесителя образуется сигнал разностной частоты или сигнал биений

где R - высота расположения антенны устройства над поверхностью. Далее этот сигнал в блоках 8 и 9 преобразуется в частотный спектр, синхронно с модулирующим сигналом периодичностью Тm. В идеальном случае это была бы единственная гармоника согласно формуле (4), однако антенна имеет некоторую диаграмму направленности с шириной главного лепестка , поэтому отраженная волна является суперпозицией i волн, падающих и отраженных с разными углами между направлением движения и подстилающей поверхностью и, таким образом, прошедших разные расстояния. В результате, спектр сигнала разностной частоты будет состоять из i гармоник. Огибающую кривую этого спектра S0(ƒ), представленную на Фиг. 3 пунктирной линией, можно представить формулой:

При нулевой скорости спектры на выходе блоков 8 и 9 будут одинаковы. При начале движения со скоростью V все частоты этого спектра на растущем участке несущей частоты от ƒ1 до ƒ2, обработанные в блоке 8 будут смещаться на доплеровскую частоту ƒD, согласно формуле (1) и с сохранением формы огибающей спектра S1(ƒ)=S0(ƒ)+ƒD, поскольку расстояние до подстилающей поверхности и угол α при этом не меняются. В то же время на падающем участке при изменении несущей ƒ2 до ƒ1 частоты спектра S2(ƒ), получаемые в блоке 9 будут смещены в другую сторону - S2(ƒ)=S0(ƒ)-ƒD. Вид графиков приведен на Фиг. 3 сплошными линиями. При вычислении взаимно-корреляционной функции двух массивов данных огибающих этих спектров S1(ƒ) и S2(ƒ) максимальное значение этой функции будет достигаться при таком сдвиге частоты, когда графики функций совпадут. Очевидно, что этот сдвиг, определяемый в вычислительном блоке 11, будет соответствовать удвоенной доплеровской частоте, по которой в этом же блоке определяется скорость в соответствии с формулой (2). График взаимно-корреляционной функции C(ƒ/ƒmax) в относительных единицах, где ƒ - разностная частота, а ƒmах - максимально возможная доплеровская частота при максимально возможной скорости, представлен на Фиг. 4.

Таким образом, ошибка, связанная с неточным определением доплеровской частоты из-за наличия в сигнале спектральной полосы из-за неидеальной диаграммы направленности, устраняется. Чувствительность измерителя возрастает в два раза по сравнению с устройством-прототипом. Точность устройства мало зависит от степени линейности перестройки частоты генератора СВЧ, что сильно уменьшает его стоимость. Не влияет на точность определения скорости также и изменение отражающих свойств подстилающей поверхности, поскольку в каждом из спектров в блоках 9 и 10 будут происходить одинаковые изменения. Дополнительно устройство приобретает возможность определять направление движения. Так, отрицательное значение частотного сдвига при достижении максимума взаимно-корреляционной функции означает движение транспортного средства задним ходом. Все это в совокупности позволяет говорить об увеличении точности в определении скорости описанного устройства по сравнению с прототипом.

Доплеровский измеритель путевой скорости, содержащий последовательно соединенные генератор СВЧ и направленный ответвитель, последовательно соединенные антенну, циркулятор и смеситель, при этом основной выход направленного ответвителя подсоединен к входу циркулятора, а вспомогательный выход соединен со вторым входом смесителя, а также вычислительный блок, отличающийся тем, что устройство содержит генератор пилообразного напряжения, коммутирующий блок, первый и второй блок спектральной обработки и блок вычисления взаимной корреляции, при этом генератор пилообразного напряжения соединен со входом генератора СВЧ, коммутирующий блок одним входом соединен с выходом смесителя, а другим - с управляющим выходом генератора пилообразного напряжения, первый вход блока вычисления взаимной корреляции соединен с первым выходом коммутирующего блока через первый блок спектральной обработки, второй вход соединен со вторым выходом коммутирующего блока через второй блок спектральной обработки, а выход соединен с вычислительным блоком.



 

Похожие патенты:

Изобретение относится к способам и устройствам обработки радиолокационных (РЛ) сигналов в радиолокационных станциях (РЛС) и может быть использовано для измерения скорости полета воздушного объекта (ВО).

Изобретение относится к области радиолокационного наблюдения траекторий баллистических объектов и может быть использовано в прицельных системах летательных аппаратов.

Изобретение относится к области радиолокационного наблюдения траекторий баллистических объектов. Достигаемый технический результат - расширение информативности.

Изобретение относится к радиолокации. Технический результат изобретения - повышение точности определения модуля скорости баллистического объекта (БО) в наземных радиолокационных станциях (РЛС) с грубыми измерениями угла места, азимута и дальности.

Изобретение относится к радиолокации и предназначено для обнаружения когерентно-импульсных неэквидистантных радиосигналов и измерения радиальной скорости движущегося объекта; может быть использовано в радиолокационных системах управления воздушным движением для обнаружения и измерения скорости летательных аппаратов.

Изобретение относится к радиотехнике и может быть использовано в системах ближней радиолокации для измерения курсовой скорости объекта. Достигаемый технический результат - измерение курсовой скорости объекта при визировании объекта к его курсу под углами больше нуля и меньше 90°.

Изобретение относится к радиотехнике и может быть использовано в системах ближней радиолокации для измерения курсовой скорости объекта. Достигаемый технический результат - измерение курсовой скорости объекта при угле визирования к курсу больше нуля.

Изобретение относится к области радиолокации и может быть использовано в системах безопасности для обнаружения и измерения в режиме реального времени параметров траекторий движущихся объектов при контроле больших по площади территорий, акваторий и воздушного пространства.

Изобретение относится к радиотехнике и может быть использовано в системах ближней радиолокации. Достигаемый технический результат - увеличение точности измерения скорости объекта за счет измерения набега фазы.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях обнаружения и целеуказания, а также в радиолокационных станциях (РЛС) сопровождения для измерения истинного значения радиальной скорости цели.

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения скорости достигается тем, что в способе измерения путевой скорости, при котором СВЧ волны излучают под углом α между направлением движения и поверхностью, принимают отраженные волны, выделяют сигнал разностной частоты на смесителе между частью падающей волны и принятой. Дополнительно СВЧ волны линейно модулируют по частоте, определяют огибающую спектра сигнала разностной частоты до начала движения и в текущий момент, вычисляют между ними взаимно-корреляционную функцию, а путевую скорость определяют по частотному смещению, при котором достигается ее максимум. 3 ил.

Изобретение относится к вычислительной технике и предназначено для вычисления на основе корреляционного принципа радиальной скорости движущегося объекта; может использоваться в автоматизированных системах управления воздушным движением для обнаружения и измерения скорости летательных аппаратов. Достигаемый технический результат - повышение точности измерения скорости за счет меньшего числа функциональных преобразований и расширение диапазона однозначно измеряемой радиальной скорости при сохранении однозначного измерения дальности. Указанный результат достигается за счет того, что вычислитель радиальной скорости движущегося объекта содержит блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения, блок вычисления фазы, блок коррекции пределов измерения, умножитель, ключ, блок вычисления модуля, первый блок памяти, блок управления, пороговый блок, второй блок памяти, синхрогенератор, первый и второй двухканальные ключи, дополнительный блок усреднения, дополнительный блок задержки, дополнительный блок комплексного сопряжения и дополнительный блок комплексного умножения, соединенные определенным образом и осуществляющие межпериодную корреляционную обработку исходных отсчетов. 11 ил.
Наверх