Быстрый импульсный реактор с модуляцией реактивности

Изобретение относится к области преобразования ядерной энергии. Быстрый импульсный реактор содержит активную зону, корпус реактора (5), модулятор реактивности, защитный экран (4). Активная зона помещается в корпус реактора (5). Модулятор реактивности, охватывающий по всей высоте активную зону, установлен за корпусом реактора (5) коаксиально с ним и состоит из двух частей, подвижной и неподвижной (8). Неподвижная часть модулятора реактивности выполнена из одного отражателя нейтронов. Подвижная часть модулятора реактивности выполнена из металлической цилиндрической оболочки (6) с накладкой из поглотителя нейтронов (7) и содержит вкладыш (1) из делящегося материала высотой на полную высоту активной зоны и на полную толщину металлической цилиндрической оболочки (6) подвижной части модулятора реактивности в азимутальном направлении. Вкладыш чередуется с накладкой из поглотителя нейтронов (7). Подвижная часть модулятора реактивности расположена между корпусом реактора (5) и неподвижной частью модулятора реактивности (8) с зазором по отношению к ним. Технический результат - получение более мощных и коротких импульсов в реакторе. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к области преобразования ядерной энергии и может быть использовано в реакторно-лазерной установке импульсного периодического действия с прямой накачкой осколками деления.

Известен ядерный реактор с модуляцией реактивности, содержащий модулятор реактивности для периодического изменения реактивности ядерного реактора (модуляции), состоящий из трех коаксиальных цилиндров с дискретно нанесенным на боковые поверхности поглотителем нейтронов [Устройство для модуляции реактивности ядерного реактора. А.с. СССР на изобретение SU 387621, 10.04.1972]. В модуляторе реактивности один цилиндр неподвижен, а остальные могут вращаться с различными угловыми скоростями. При совместном вращении цилиндров периодически меняется эффективная поверхность поглощения. Меняя количество вращающихся цилиндров и их скорость вращения, можно получать импульсы генерации нейтронов в реакторе с различными характеристиками.

Недостатком известного устройства является относительно невысокая модуляция реактивности реактора, обеспечиваемая модулятором реактивности, вследствие нанесения на боковые поверхности коаксиальных цилиндров модулятора реактивности только поглощающего нейтроны материала без использования делящегося и отражающего нейтроны материалов. В результате снижаются нейтронные потоки в активной зоне реактора, приводя к неэффективному использованию данного реактора в качестве импульсного источника нейтронов для накачки лазера.

Наиболее близким по технической сущности к заявляемому объекту является ядерный реактор с модуляцией реактивности, содержащий активную зону, модулятор реактивности, выполненный в виде двух вращающихся металлических цилиндров, коаксиальных с активной зоной и охватывающих ее по высоте, и два отражателя нейтронов [Гулевич А.В., Дьяченко П.П., Кухарчук О.Ф., Фокина О.Г. Быстрый импульсно-периодический реактор для мощных лазеров с ядерной накачкой. Атомная энергия, т. 113, вып. 4, октябрь 2012]. В модуляторе реактивности каждый цилиндр снабжен двумя секторными накладками из нейтронопоглощающего материала чередующимися с двумя сквозными каналами по всей высоте цилиндра модулятора реактивности. Внешний цилиндр модулятора реактивности вращается с постоянной угловой скоростью, а у внутреннего цилиндра скорость вращения можно варьировать. В результате при вращении цилиндров и совмещении каналов с отражателями нейтронов можно получать импульсы в реакторе с различными характеристиками.

Недостатком известного устройства является отсутствие делящегося материала в модуляторе реактивности, что приводит к недостаточной модуляции реактивности реактора и, соответственно, к относительно невысокому нейтронному потоку в импульсе реактора, что не позволяет эффективно использовать данный реактор в качестве импульсного источника нейтронов для накачки лазера.

Задача изобретения состоит в исключении указанного недостатка, а именно в увеличении потока нейтронов в импульсе реактора.

Сущность изобретения поясняется фигурами, где на фиг. 1 представлена схема быстрого импульсного реактора с модуляцией реактивности в поперечном сечении, а на фиг. 2 - продольное сечение реактора. На фиг. 1 и 2 приняты следующие обозначения: 1 - вкладыш; 2 - впускной коллектор; 3 - защитная оболочка; 4 - защитный экран; 5 - корпус реактора; 6 - металлическая цилиндрическая оболочка; 7 - накладка из поглотителя нейтронов; 8 - неподвижная часть модулятора реактивности; 9 - несущая труба; 10 - опорная плита; 11 - органы регулирования и защиты; 12 - тепловыделяющая сборка.

Быстрый импульсный реактор с модуляцией реактивности содержит активную зону, корпус реактора 5, модулятор реактивности, защитный экран 4.

Активная зона набирается из тепловыделяющих сборок 12 и расположена в корпусе реактора 5.

Модулятор реактивности состоит из двух частей, из подвижной части модулятора реактивности и неподвижной части модулятора реактивности 8. Модулятор реактивности установлен за корпусом реактора 5, коаксиально с ним. Высота модулятора реактивности равна высоте активной зоны для обеспечения требуемой модуляции реактивности в реакторе.

Подвижная часть модулятора реактивности выполнена из металлической цилиндрической оболочки 6.

На внешнюю поверхность металлической цилиндрической оболочки 6 нанесена накладка из поглотителя нейтронов 7, покрытая защитной оболочкой 3. Защитная оболочка 3 предотвращает рассыпание материала, из которого изготовлена накладка из поглотителя нейтронов 7. В качестве материала накладки из поглотителя нейтронов 7 используют кадмий, карбид бора, оксид европия.

Подвижная часть модулятора реактивности снабжена вкладышем 1 из делящегося материала. Вкладыш 1 расположен на полную высоту активной зоны и по всей толщине металлической цилиндрической оболочки 6 подвижной части модулятора реактивности в азимутальном направлении, чередуется с накладкой из поглотителя нейтронов 7 и находится, по меньшей мере, в одной области подвижной части модулятора реактивности. Использование вкладыша 1, выполненного из делящегося материала, увеличивает нейтронный поток в импульсе реактора.

Неподвижная часть модулятора реактивности 8 выполнена, по меньшей мере, из одного отражателя нейтронов. Толщина отражателя нейтронов определяется требуемой модуляцией реактивности. Неподвижная часть модулятора реактивности 8 устанавливается с зазором между защитным экраном 4 и подвижной частью модулятора реактивности. Зазоры необходимы для охлаждения реактора во время генерации импульсов нейтронов. В качестве делящегося материала вкладыша 1 используют уран, плутоний, торий, их сплавы и соединения.

Защитный экран 4 окружает снаружи весь реактор.

Пример конкретного исполнения устройства

Все реакторное оборудование быстрого импульсного реактора с модуляцией реактивности устанавливается на несущей трубе 9, выполненной из стали, с внешним диаметром 56 мм и толщиной стенки 5 мм. Активная зона набирается из тепловыделяющих сборок (ТВС) 12, которые вставлены в нижнюю опорную плиту 10 и дистанционируются дополнительными решетками по высоте. Зазор между ТВС ~1 мм. В каждой ТВС, представляющей из себя правильный шестигранник из стали с толщиной стенки 0,5 мм, установлено по семь тепловыделяющих элементов (твэлов) диаметром 6,9 мм. Твэлы дистанционированы друг от друга проволокой диаметром 0,4 мм. Активная часть твэла набирается из таблеток спеченной двуокиси плутония с внутренней газовой полостью, заполненной гелием. Плотность топлива - 11,46⋅103 кг/м3. Высота активной части твэла составляет 1480 мм, по обоим ее торцам установлены блочки из бериллия высотой 40 мм, при этом полная высота всей активной зоны реактора равна 1560 мм. В верхней части твэла топливные таблетки прижаты пружиной. Общее количество ТВС в активной зоне реактора составляет 102 шт., твэлов - 714 шт., общая загрузка реактора по топливу ~300 кг.

Активная зона размещена внутри корпуса реактора 5, выполненного из стали, диаметром 274 мм с толщиной стенки 4 мм. Снаружи реактор по высоте активной зоны окружен защитным экраном 4, представляющим из себя двустенную стальную оболочку диаметром 350 мм с толщиной стенки 2 мм, внутри которой помещен кадмий толщиной 5 мм. Охлаждается реактор жидким натрием, который из впускного коллектора 2 нагнетается в каждую ТВС через специальные технологические отверстия. Между корпусом реактора 5 и защитным экраном 4 осуществляется продув газовой смеси Не-Хе.

Неподвижная часть модулятора реактивности 8 выполнена из бериллия и имеет ширину 12 см, высоту 156 см и толщину 10 см. Металлическая цилиндрическая оболочка 6 подвижной части модулятора реактивности выполнена из молибдена толщиной 5 мм. Накладка из поглотителя нейтронов 7 нанесена на внешнюю поверхность металлической цилиндрической оболочки 6 и выполнена из карбида бора толщиной 10 мм (обогащение по изотопу бор-10 не менее 80%). Накладка из поглотителя нейтронов 7 покрыта защитной оболочкой 3, выполненной из стали толщиной 1 мм. Зазоры между корпусом реактора 5, подвижной и неподвижной 8 частями модулятора реактивности, защитным экраном 4 равны 1 мм. Также на подвижной части модулятора реактивности по всей его высоте и толщине в азимутальном направлении находится один вкладыш 1 из спеченной двуокиси плутония плотностью 11,46⋅103 кг/м3, шириной 100 мм, высотой 1560 мм и толщиной 5 мм, чередующийся с одной накладкой из поглотителя нейтронов 7.

Органы регулирования и защиты 11 расположены в центре активной зоны. Все стержни изготавливаются из карбида бора с обогащением по изотопу бор-10 не менее 80%.

Генерация импульсов делений в реакторе происходит при совмещении вкладыша 1 из делящегося материала с неподвижной частью модулятора реактивности 8 из бериллия в ходе вращения модулятора реактивности. Длительность импульса генерации нейтронов деления варьируется скоростью вращения модулятора реактивности.

Расчетные исследования рассмотренного в примере конкретного исполнения устройства показали, что в сравнении с реактором из статьи [Гулевич А.В., Дьяченко П.П., Кухарчук О.Ф., Фокина О.Г. Быстрый импульсно-периодический реактор для мощных лазеров с ядерной накачкой. Атомная энергия, т. 113, вып. 4, октябрь 2012] пиковая мощность реакторного импульса в 1,6 раза выше при одинаковом уровне энерговыделения в обоих реакторах, эффективность модулятора реактивности в 1,5 раз больше и равна 0,09 против 0,06, а длительность нейтронного импульса на полувысоте равна 100 мкс при скорости вращения модулятора реактивности 4800 об/мин (частота следования импульсов 80 Гц).

Технический результат состоит в улучшении нейтронно-физических и энергетических характеристик импульса генерации нейтронов в реакторе, в получении более мощных и коротких импульсов в реакторе.

1. Быстрый импульсный реактор с модуляцией реактивности, содержащий активную зону, помещенную в корпус реактора, модулятор реактивности, охватывающий по всей высоте активную зону и установленный за корпусом реактора коаксиально с ним, с подвижной и неподвижной частями, причем неподвижная часть модулятора реактивности выполнена, по меньшей мере, из одного отражателя нейтронов, подвижная часть модулятора реактивности выполнена из металлической цилиндрической оболочки с нанесенной на нее накладкой из поглотителя нейтронов, покрытой защитной оболочкой, подвижная часть модулятора реактивности расположена между корпусом реактора и неподвижной частью модулятора реактивности с зазором по отношению к ним, и защитный экран, окружающий снаружи реактор, отличающийся тем, что подвижная часть модулятора реактивности дополнительно снабжена вкладышем из делящегося материала, чередующимся с накладкой из поглотителя нейтронов, расположенным по всей высоте активной зоны реактора, по меньшей мере, в одной области подвижной части модулятора реактивности.

2. Быстрый импульсный реактор по п. 1, отличающийся тем, что вкладыш из делящегося материала расположен в азимутальном направлении по всей толщине подвижной части модулятора реактивности.

3. Быстрый импульсный реактор по п. 1, отличающийся тем, что в качестве делящегося материала вкладыша используют уран, плутоний, торий, их сплавы и соединения.

4. Быстрый импульсный реактор по п. 1, отличающийся тем, что в качестве поглощающего нейтроны материала накладки из поглотителя нейтронов используют кадмий, карбид бора, оксид европия.



 

Похожие патенты:

Изобретение относится у конструкции управляющего стержня ядерного реактора. Между оболочкой и столбиком таблеток из материала-поглотителя нейтронов В4С, по меньшей мере, по высоте этого столбика помещают промежуточную прокладку (3) из материала, прозрачного для нейтронов, в виде структуры (3), имеющей повышенную теплопроводность и открытую пористость.

Изобретение относится к эксплуатации реакторов на бегущей волне. Способ эксплуатации реактора включает стадию, на которой фронт горения бегущей волны распространяют вдоль первого и второго измерений в нескольких тепловыделяющих подсборках в активной зоне реактора, и стадию, на которой управляемо перемещают эти подсборки вдоль первого направления, что определяет форму фронта горения.

Изобретение относится к формированию активной зоны ядерного реактора. Предложена система для перемещения тепловыделяющих сборок в ядерном реакторе на бегущей волне, содержащая электрические схемы, предназначенные для определения требуемой формы волны горения в нескольких тепловыделяющих подсборках ядерного деления, а также для определения перемещения выбранных нескольких подсборок.

Изобретение относится к ядерным реакторам деления на бегущей волне. Изобретение характеризует систему для управления реактивностью, способ для управления реактивностью в реакторе и программируемое устройство, обеспечивающее определение по меньшей мере двух параметров реактивности и результатов применения регулируемо подвижного стержня.

Изобретение относится к конструкциям ядерных реакторов и системам их управления и защиты. .

Изобретение относится к исследовательским импульсным ядерным реакторам на тепловых нейтронах. .

Изобретение относится к ядерной энергетике, а именно к способам останова энергетического ядерного реактора, и может быть использовано для повышения радиационной безопасности и снижения дозозатрат при проведении ремонтных работ на реакторном оборудовании, для снижения дефектности оболочек ядерного топлива.

Изобретение относится к исполнительным органам системы управления и защиты ядерного реактора. .

Изобретение относится к области атомной энергетики и может быть использовано при разработке твэлов реакторов и обосновании их работоспособности в условиях циклических нагрузок.

Изобретение относится к ядерной энергетике, а именно к системам прямодействующей аварийной защиты ядерных реакторов по превышению допустимого уровня температуры, и может быть использовано также для защиты по уровню температуры химического, технологического и энергетического оборудования.

Изобретение относится к ядерным реакторам, а более точно к их конструктивным элементам, применяемым для фиксации трубного пучка, закрепленного на поверхности ядерного реактора, испытывающей при эксплуатации вибрационные и термические нагрузки.

Изобретение относится к ядерной энергетике, а именно к разработке реактора-конвертера с расплавленным уран-плутониевым топливом, работающим со средним коэффициентом воспроизводства, достаточным для самообеспечения топливом.

Изобретение относится к области ядерной техники, в частности к области очистки жидкометаллического теплоносителя. Технической задачей является создание горячей ловушки, размещаемой в активной зоне ядерного реактора и использующей для подогрева очищаемого теплоносителя ее тепловыделения.

Изобретение относится к ядерным реакторам с контуром циркуляции жидкого ядерного топлива, в которых не используется контур циркуляции топлива для одновременного отвода тепла.

Изобретение относится к устройству ядерного реактора. Устройство включает в себя комбинацию расщепляющегося материала, расплава солей и материала замедлителя, включающего в себя один или более гидридов, один или более дейтеридов или комбинацию двух или более из них.

Изобретение относится к инициаторам деления ядер для ядерных реакторов и способам их применения. Способ инициирования деления ядер включает инициирование по меньшей мере одной дефлаграционной волны деления ядер по меньшей мере в одной активной зоне реактора с дефлаграционной волной деления ядер, содержащей первый материал ядерного топлива, с помощью по меньшей мере одного вставляемого и извлекаемого инициатора деления ядер, содержащего второй материал ядерного топлива.

Изобретение относится к области ядерной техники. Способ формирования импульсов мощности импульсного ядерного реактора обеспечивает модуляцию реактивности в импульсном ядерном реакторе при движении модулятора реактивности импульсного ядерного реактора в пределах активной зоны реактора.

Изобретение относится к ядерной технике, а именно к конструкции ядерных реакторов канального типа. Активная зона реактора состоит из ячеек, содержащих в центре их симметрии канал с ядерным топливом и теплоносителем, окруженный замедлителем нейтронов.

Изобретение относится к способам эксплуатации ядерных реакторов, предназначенных для наработки делящихся химических элементов. Способ эксплуатации ядерного реактора в топливном цикле с расширенным воспроизводством делящихся изотопов включает первоначальную загрузку активной зоны топливными сборками, содержащими делящийся материал и сырьевые изотопы, формирование интенсивности нейтронного потока и его энергетического распределения, при которых сырьевые изотопы переходят в способные к ядерному делению изотопы, управление работой реактора на мощности путем удержания его в критическом состояния, обеспечивая баланс между вырабатывающимися нейтронами и поглощением нейтронов.

Изобретение относится к ядерной технике. Устройство пассивного регулирования давления в оболочке ядерной энергетической установки содержит агрегат (40) распыления жидкости в оболочке и трубопровод (42) подачи жидкости, предназначенный для подачи жидкости в распыляющий агрегат (40).

Изобретение относится к натриевым контурам ядерных установок с реактором на быстрых нейтронах. Отдельные модули парогенератора (1) подключены по отдельности к стороне впуска натрия впускными соединительными трубопроводами (7), которые снабжены встроенным защитным элементом (9), одновременно присоединенным к разгрузочному трубопроводу (8) и к впускному коллектору (5), и дополнительно соединены с впускным патрубком натрия (6). На выпускной стороне натрия отдельные модули парогенератора (1) отдельно соединены через выпускную камеру (18) с выпускной соединительной трубой (10), которая заведена в буферную емкость (2), которая далее соединяется с патрубком выпускной ветви натрия (16). Далее, одновременно разгрузочные трубки (8) присоединены к первому резервуару (3) системы аварийной защиты. Этот резервуар (3) связан как с буферной емкостью (2) облегченной ветвью (12) с как минимум одной первой мембраной (11), так и со вторым резервуаром (4) системы аварийной защиты с по меньшей мере одной второй мембраной (13). На втором резервуаре (4) системы аварийной защиты предусмотрен выпуск (15). Технический результат – повышение безопасности ядерной установки. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области преобразования ядерной энергии. Быстрый импульсный реактор содержит активную зону, корпус реактора, модулятор реактивности, защитный экран. Активная зона помещается в корпус реактора. Модулятор реактивности, охватывающий по всей высоте активную зону, установлен за корпусом реактора коаксиально с ним и состоит из двух частей, подвижной и неподвижной. Неподвижная часть модулятора реактивности выполнена из одного отражателя нейтронов. Подвижная часть модулятора реактивности выполнена из металлической цилиндрической оболочки с накладкой из поглотителя нейтронов и содержит вкладыш из делящегося материала высотой на полную высоту активной зоны и на полную толщину металлической цилиндрической оболочки подвижной части модулятора реактивности в азимутальном направлении. Вкладыш чередуется с накладкой из поглотителя нейтронов. Подвижная часть модулятора реактивности расположена между корпусом реактора и неподвижной частью модулятора реактивности с зазором по отношению к ним. Технический результат - получение более мощных и коротких импульсов в реакторе. 3 з.п. ф-лы, 2 ил.

Наверх