Способ приготовления водосодержащей топливно-угольной суспензии

Изобретение относится к области топливной энергетики, а именно к способу приготовления водосодержащей топливно-угольной суспензии, включающему диспергирование мазута марки М40, содержащего 1 мас.% воды, в количестве 60 мас.%, измельчение сухого угля в количестве 40 мас.% или отсева его в дробилке до фракции менее 10 мм, подачу смеси вода-мазут и измельченного угля в смеситель, смешение их в смесителе, при последующем направлении смеси на следующий этап диспергирования крупного помола, доизмельчение суспензии в измельчителе тонкого помола, после чего суспензия приобретает гомогенность и стабильные реологические свойства, благодаря выделенным из угля гуминовым кислотам и гуматам. Изобретение обеспечивает повышение теплотворной способности топлива в виде суспензии. 3 табл., 1 ил.

 

Изобретение относится к области топливной энергетики, в частности к способам приготовления жидкого топлива на основе угля, пригодного для прямого сжигания в котлах, печах и различных энергетических установках; для трубопроводной транспортировки и длительного хранения, предназначенного для замены угля, мазута и газа на топливоперерабатывающих объектах.

Из уровня техники [патент RU 2178455 С1, опубл. 20.01.2002] известен способ получения водоугольного топлива, позволяющий получать высокодеминерализованное экологически чистое водоугольное топливо «эковут» на основе ископаемых углей, воды и других химических ингредиентов (в случае необходимости), предназначенного для замены газа и мазута на топливопотребляющих объектах. Технология приготовления «эковут» включает дробление угля, его мокрое измельчение с получением водоугольной суспензии, ступенчатую деминерализацию, причем деминерализации подвергают твердую фазу водоугольного топлива «эковут», измельченную до коллоидного размера (средний размер не более 3 мкм). Деминерализацию производят методом флотации, далее деминерализованный уголь обезвоживают до необходимой влажности, а затем вводят необходимые химические добавки.

К недостаткам описанного выше способа относятся: 1) большие энергозатраты на измельчение твердой составляющей до 3 мкм; 2) сложность проведения многоступенчатой деминерализации в аппаратах пенной флотации; 3) необходимость обезвоживания тонкоизмельченного продукта; 4) возможная необходимость применения различных химических добавок.

Наиболее близким технологическим решением к предлагаемому изобретению является способ приготовления кавитационного водоугольного топлива (КаВУТ) и технологическая линия для его осуществления [патент RU 2380399 С2, опубл. 27.01.2010], позволяющий получить водоугольное топливо с использованием кавитационного воздействия, включающий приготовление щелочной воды, измельчение сухого угля, смешение их в смесителе и направление смеси в кавитационный диспергатор крупного помола, при дальнейшем прохождении через три кавитационных диспергатора мелкого помола.

Недостатками данного способа являются отсутствие точной массовой концентрации веществ, которая необходима для приготовления стабильного водоугольного топлива, а также отсутствие учета итоговой удельной теплотворной способности, и как следствие, относительно небольшая (по отношению к предлагаемому способу) удельная теплотворная способность получаемого топлива.

Технический результат предлагаемого изобретения заключается в повышении теплотворной способности топлива в виде суспензии.

Технический результат достигается способом приготовления водосодержащей топливно-угольной суспензии, включающим диспергирование мазута марки М40, содержащего 1 мас.% воды, измельчение сухого угля или отсева его в дробилке до фракции менее 10 мм, подачу смеси вода-мазут и измельченного угля в смеситель, смешение их в смесителе, при последующем направлении смеси на следующий этап диспергирования крупного помола, доизмельчение суспензии в измельчителе тонкого помола, и который характеризуется тем, что мазут и уголь используются в количестве 60 мас.% и 40 мас.% соответственно.

То есть технический результат достигается тем, что в состав суспензии входит мазут (с содержанием воды 1 мас.%), обладающий высокой теплотворной способностью 41,2 МДж/кг (по справочным данным инженерного справочника таблицы tehtab.ru [http://tehtab.ru/]) в комплексе с мелкодисперсным сухим древесным углем, теплотворная способность которого составляет 29,6 МДж/кг (по справочным данным инженерного справочника таблицы tehtab.ru [http://tehtab.ru/]), которые могут диспергироваться как посредством кавитационного диспергатора, так и посредством дезинтегратора или дезмембратора.

Сухой древесный уголь был выбран исходя из анализа максимальной удельной теплоты сгорания различных видов сухого угля (данные приведены в Таблице 1 в соответствии со справочными данными инженерного справочника таблицы tehtab.ru [http://tehtab.ru/]).

Массовая концентрация компонентов предлагаемой водосодержащей топливно-угольной суспензии подобрана, исходя из расчета максимальной удельной теплотворной способности всей смеси при учете стоимости компонентов и устойчивости суспензии в зависимости от количества твердых частиц.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Мазут марки Ф5 (с содержанием воды 0,3 мас.% от мазута) отбирается в количестве 60 мас.% через объемный дозатор и направляется в смеситель, где тщательно перемешивается с сухим углем или его отсевом в количестве 40 мас.% (фракция менее 10 мм). Сухой уголь или его отсев до смешения с мазутом предварительно проходит измельчение до фракции менее 10 мм, затем ленточным или иным конвейером направляется в приемный бункер, после которого попадет в смеситель на этап гомогенизации со смесью вода-мазут. Полученная суспензия, представляющая собой водосодержащую топливно-угольную смесь, из смесителя направляется на стадию диспергирования (диспергирование может осуществляться как посредством кавитационного диспергатора, так и посредством дезинтегратора или дезмембратора) крупного помола, при которой происходит измельчение, гомогенизация, деструкция твердой составляющей топлива, выделение гуминовых кислот и образование солей гуматов и т.д. Далее суспензия направляется в следующий смеситель, а затем на стадию диспергирования тонкого помола, где происходит ее дальнейшее измельчение, гомогенизация, деструкция твердой составляющей, выделение гуминовых кислот и образование гуматов. Выходя из смесителя, суспензия направляется в приемную емкость стадии диспергирования тонкого помола первой ступени, проходя затем последовательно стадии диспергирования тонкого помола второй и третьей ступени. После обработки на последней ступени диспергирования тонкоизмельченная гомогенная и начинающая «загустевать» водосодержащая топливно-угольная суспензия направляется в приемную емкость, а затем на стадию тонкого помола четвертой ступени, в которой происходит завершение всех технологических операций измельчения, гомогенизации, разогрева, выделения гуминовых кислот и гуматов и направление в емкость для хранения.

Пример 2. Способ осуществляют в соответствии с примером 1 с отличием в том, что мазут отбирается в количестве 70 мас.%, а измельченный сухой уголь перед смешением с мазутом отбирается в количестве 30 мас.%.

Пример 3. Способ осуществляют в соответствии с примером 1 с отличием в том, что мазут отбирается в количестве 80 мас.%, а измельченный сухой уголь перед смешением с водой и мазутом отбирается в количестве 20 мас.%.

Пример 4. Способ осуществляют в соответствии с примером 1 с отличием в том, что мазут отбирается в количестве 90 мас.%, а измельченный сухой уголь перед смешением с водой и мазутом отбирается в количестве 10 мас.%.

Пример 5. Способ осуществляют в соответствии с примером 1 с отличием в том, что применяется мазут марки М40, где содержание воды в мазуте составляет 1,0 мас.%.

Пример 6. Способ осуществляют в соответствии с примером 2 с отличием в том, что применяется мазут марки М40, где содержание воды в мазуте составляет 1,0 мас.%.

Пример 7. Способ осуществляют в соответствии с примером 3 с отличием в том, что применяется мазут марки М40, где содержание воды в мазуте составляет 1,0 мас.%.

Пример 8. Способ осуществляют в соответствии с примером 4 с отличием в том, что применяется мазут марки М40, где содержание воды в мазуте составляет 1,0 мас.%.

Пример 9. Способ осуществляют в соответствии с примером 1 с отличием в том, что применяется мазут марки Ml00, где содержание воды в мазуте составляет 10 мас.%.

Пример 10. Способ осуществляют в соответствии с примером 2 с отличием в том, что применяется мазут марки Ml00, где содержание воды в мазуте составляет 10 мас.%.

Пример 11. Способ осуществляют в соответствии с примером 3 с отличием в том, что применяется мазут марки Ml00, где содержание воды в мазуте составляет 10 мас.%.

Пример 12. Способ осуществляют в соответствии с примером 4 с отличием в том, что применяется мазут марки Ml00, где содержание воды в мазуте составляет 10 мас.%.

При различном массовом соотношении компонентов по отношению к общей массе смеси образуются суспензии с различной общей удельной теплотворной способностью и различной и ценой (по данным http://www.pulscen.ru/price/040112-mazut, http://velar.ru/catalog) за полученный продукт.

По данным из таблицы 3 была построена графическая зависимость количества теплоты сгорания для суспензии с учетом стоимости компонентов (qc) от количества древесного угля для различного содержания воды в составе мазута (фиг.1).

Из представленных на фиг. 1 данных по суммарной теплоте сгорания суспензий с учетом стоимости (описаны в примерах 1-12) можно заключить, что наиболее выгодными с точки зрения достижения максимальной теплотворной способности и стоимости всей суспензии являются способы, описанные в примерах 5-8. Следовательно, целесообразнее применять мазут марки М40 в количестве 60 мас.% (с содержанием воды 1 мас.%) и древесный уголь в количестве 40 мас.%, которые дадут максимум теплотворной способности.

Способ приготовления водосодержащей топливно-угольной суспензии, включающий диспергирование мазута марки М40, содержащего 1 мас.% воды, измельчение сухого угля или отсева его в дробилке до фракции менее 10 мм, подачу смеси вода-мазут и измельченного угля в смеситель, смешение их в смесителе, при последующем направлении смеси на следующий этап диспергирования крупного помола, доизмельчение суспензии в измельчителе тонкого помола, после чего суспензия приобретает гомогенность и стабильные реологические свойства, благодаря выделенным из угля гуминовым кислотам и гуматам, характеризующийся тем, что мазут и уголь используются в количестве 60 мас.% и 40 мас.% соответственно.



 

Похожие патенты:

Изобретение относится к области теплоэнергетики, в частности к технологии сжигания нефтяного кокса. Нефтяной кокс - продукт глубокой переработки нефти, который в нашей стране в качестве топлива используют совсем недавно.
Изобретение относится к теплоэнергетике, к области сжигания ожиженного угольного топлива в топках паровых котлов и других теплогенерирующих установок. Способ сжигания жидкого угольного топлива включает подготовку твердого углеродсодержащего вещества в качестве дисперсной фазы в жидкой дисперсной среде к сжиганию, подачу топливной дисперсной системы в пневмомеханические форсунки, газовое вдувание и распыление ее на факелах в камере сгорания и съем тепловой нагрузки теплоносителем в виде нагретого водяного пара.
Изобретение относится к теплоэнергетике. Способ стабилизации жидкого угольного топлива в виде суспензионно-эмульсионной системы при его хранении и транспортировании в цистернах путем пузырькового перемешивания дисперсной фазы и дисперсной среды.

Изобретение относится к средствам генерации тепловой и электрической энергий. В водоугольном топливе нанопорошок угля смешивается с водой в необходимом стехиометрическом соотношении, пневмофорсунка подает топливо в реакционный канал, при входе в который «язык» плазмогенератора полностью разлагает воду на кислород и водород, частично разлагает зольные продукты угля на кислород и соответствующие элементы, далее образуются метан и углекислый газ, плазмогенератор отключается, т.к.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях с паросиловыми установками, работающими на твердом пылевидном (угольная пыль) или на тяжелом жидком (мазут) топливе и оборудованными системой химводоочистки (ХВО).

Изобретение относится к устройствам для сжигания жидкого, в том числе водоугольного топлива (ВУТ) в различных котельных установках промышленной теплоэнергетики, жилищно-коммунального хозяйства и других теплогенерирующих системах, и обеспечивает при его использовании однородность температур по объему топки.
Изобретение относится к области теплоэнергетики, в частности к переработке твердого топлива в жидкое, и получения беззольного водоугольного топлива (ВУТ) для сжигания в топках котлов тепловых электростанций.
Изобретение относится к угольной промышленности и может использоваться для предварительной обработки угля перед сжиганием с целью уменьшения выбросов серы и серосодержащих соединений в окружающую среду.

Изобретение относится к устройствам для сжигания жидкого, в том числе, водоугольного топлива (ВУТ) в различных котельных установках промышленной теплоэнергетики, жилищно-коммунального хозяйства и других теплогенерирующих системах.

Изобретение относится к устройствам для получения энергии посредством сжигания топлива, может быть использовано в отраслях промышленности, где требуются такие устройства, например, для получения электроэнергии.

Изобретение описывает способ получения композиционного топлива, включающий измельчение твердого компонента, смешивание измельченных частиц с жидким компонентом, при этом в качестве твердого компонента используют горючий сланец, измельчение осуществляют ударно-скалывающим воздействием ударом со сдвигом с ультратонким измельчением частиц до размеров 10,0-15,0 мкм, в качестве жидкого компонента используют водоуглеводородную эмульсию, полученную из нагретых до 60-95°C воды и тяжелого нефтяного остатка, затем производят смешивание измельченного твердого компонента с водоуглеводородной эмульсией, смесь подвергают гидроударному воздействию в кавитационном поле до получения размеров частиц твердого компонента 5,0-15,0 мкм.

Изобретение относится к экологичным способам производства органических веществ, таких как нефтяные вещества и ароматические кислоты, фенолы и алифатические поликарбоновые кислоты, с использованием процесса окислительного гидротермического растворения (ОГР).

Изобретение относится к нефтедобывающей промышленности, в частности к подготовке товарной нефти. Установка подготовки продукции скважин включает подводящий трубопровод, устройство подогрева, узел разрушения бронирующих оболочек, соединенный с концевым делителем фаз, трехфазный сепаратор с линией отвода воды, нефтяную и водяную буферные емкости, линию выхода воды, соединенную посредством кустовой насосной станции с входом узла разрушения бронирующих оболочек, при этом концевой делитель фаз снабжен двумя дозвуковыми соплами с возбудителями акустических колебаний в виде упругих пластин, закрепленных на соплах поперек потока воды, первый из которых с постоянной настройкой, а второй - с возможностью изменения длины активной части, при этом сопла соединены с кустовой насосной станцией патрубком.

Изобретение раскрывает водоуглеродное топливо, включающее углеродсодержащий компонент, гумат натрия и воду, при этом в качестве углеродсодержащего компонента используется твердый углеродный остаток пиролиза автошин с исходной зольностью 11,40-11,66%, сернистостью 1,2% мас., предварительно измельченный до крупности частиц 0,1 мм и обогащенный методом масляной агломерации, где в качестве реагента для обогащения используется жидкая фракция пиролиза автошин в количестве 4,0-6,0% к массе воды, используемой для обогащения, при следующем соотношении компонентов, мас.
Изобретение раскрывает топливную композицию, которая включает этиловый спирт, бутиловый спирт и бензин, при этом композиция содержит смесь этилового и бутилового спиртов, взятых в соотношении, об.

Изобретение раскрывает способ получения топливной композиции, включающий смешение бензина с бутиловым и этиловым спиртами, при этом этиловый спирт предварительно смешивают с бутиловым спиртом в соотношении 1:1 - 1:0,2, осуществляют гомогенизацию полученной смеси в виброкавитационном гомогенизаторе с вращающимся рабочим элементом ротором с перфорированной поверхностью и неподвижным рабочим элементом статором при удельном расходе смеси не более 2,5 г/см2 рабочей поверхности ротора в секунду и окружной скорости его вращения не менее 20 м/с, после чего полученную смесь этилового спирта с бутиловым спиртом смешивают с бензином в соотношении : смесь этилового спирта с бутиловым спиртом (90-30) об.

Изобретение описывает устройство для переработки нефтеотходов, включающее узел подготовки сырьевой смеси, диспергатор, резервуар готовой эмульсии, соединенный трубопроводом через обратный клапан с узлом подготовки сырьевой смеси, при этом резервуар готовой эмульсии снабжен обогревом, в частности резервуар готовой эмульсии обмотан нихромом, по которому пропускают электрический ток.
Изобретение описывает жидкий концентрат для защиты жидких топлив от загрязнения водой, по существу состоящий из: (A) от 0,5 до 5% масс. одного или нескольких жирно-(C8-C24)-амидо-(C1-С6)-алкилбетаиновых эмульгирующих агентов; (B) от 45 до 75% масс.
Изобретение относится к области нефтедобывающей и нефтеперерабатывающей промышленности. Изобретение касается способа переработки жидких нефтесодержащих отходов с получением водоэмульсионного топлива, включающего нагрев жидких нефтесодержащих отходов, очистку с последующей подачей очищенной смеси углеводородов с водой на трехкратную гомогенизацию смеси.
Изобретение относится к водно-топливной композиции для применения в тепловых и ракетных двигателях, работающих на жидком углеводородном топливе, которая включает дисперсионную среду - углеводородное топливо и дисперсионную фазу - водосодержащую композицию, при этом устойчивость водно-топливной композиции достигается путем установления равенства плотностей водосодержащей композиции и углеводородного топлива за счет соотношения компонентов, при этом в качестве водосодержащей композиции используется водно-спиртовой раствор.
Изобретение относится к водно-топливным эмульсиям легкого топлива, а именно к способу получения эмульсионного состава дизельного топлива, включающему постепенное введение при перемешивании воды в количестве 10 мас.% от массы всей эмульсии в анионное поверхностно-активное вещество (ПАВ), в качестве которого используется диоктилсульфосукцинат натрия в ароматическом растворителе, при массовом соотношении ПАВ в системе с водой 1:1, и добавление полученной системы в дизельное топливо, взятое в количестве 80 мас.% от массы всей эмульсии. Техническим результатом является повышение стабильности водно-топливной эмульсии обратного типа на базе легкого топлива, которая не будет обладать коррозионным действием и не предполагает каких-либо реконструкций двигателя. 1 з.п. ф-лы, 2 пр.
Наверх