Шихта для получения люминесцентного материала


 


Владельцы патента RU 2611861:

Щепочкина Юлия Алексеевна (RU)

Изобретение относится к химической промышленности. Шихта для получения люминесцентного материала содержит следующие компоненты, мас.%: YF3 26,0-29,0; Y2O3 26,0-28,5; V2O5 20,0-30,0; Gd2O3 15,0-25,5. Изобретение позволяет расширить ассортимент люминесцентных материалов. 1 табл.

 

Изобретение относится к составам шихты для получения люминесцентного материала.

Известна шихта для получения люминесцентного материала, содержащая YF3, Y2O3, V2O5 и оксид редкоземельного элемента из группы Nd, Eu, Tb [1].

Задачей изобретения является расширение ассортимента люминесцентных материалов, сокращение продолжительности отжига.

Технический результат достигается тем, что шихта для получения люминесцентного материала содержит YF3, Y2O3, V2O5 и оксид редкоземельного элемента, в качестве которого она включает Gd2O3, при следующем соотношении компонентов, мас. %: YF3 26,0-29,0; Y2O3 26,0-28,5; V2O5 20,0-30,0; Gd2O3 15,0-25,5.

В таблице приведены составы шихты для получения люминесцентного материала.

Шихту для получения люминесцентного материала можно получить следующим образом.

Компоненты шихты измельчают, перемешивают с добавкой этилового (метилового) спирта до получения однородной массы, формуют в таблетки и отжигают в атмосфере инертного газа, например аргона. Отжиг может быть проведен по стадиям при 850°С в течение 6 ч, при 500°С в течение 1 ч и при 800°С в течение 8 ч. Свечение материала обеспечивается при воздействии УФ-излучения.

Источник информации

1. SU 1613477, С09K 11/82, 1990.

Шихта для получения люминесцентного материала, содержащая YF3, Y2O3, V2O5 и оксид редкоземельного элемента, отличающаяся тем, что в качестве оксида редкоземельного элемента она включает Gd2O3, при следующем соотношении компонентов, мас. %: YF3 26,0-29,0; Y2O3 26,0-28,5; V2O5 20,0-30,0; Gd2O3 15,0-25,5.



 

Похожие патенты:

Изобретение может быть использовано для изготовления люминесцентных источников света, люминесцентных панелей, экранов и индикаторов, оптических квантовых генераторов.

Изобретение относится к области люминофоров, применяемых для изготовления светодиодных систем с белым свечением, близким к спектру солнечного света. Люминофор на основе двойного ванадата цезия цинка CsZnVO4 дополнительно содержит оксиды церия и самария и имеет состав, мас.%: CsZnVO4 99,94-99,98; Sm2O3 0,03-0,01; СеO2 0,03-0,01.

Изобретение относится к области люминофоров, применяемых для изготовления светодиодных систем, включая органические светоизлучающие OLED системы с белым спектром свечения, а также люминофоров, используемых для изготовления индикаторов фотонного и корпускулярного излучения и рентгеновских люминесцентных экранов.
Изобретение относится к способу получения наночастиц с диаметром менее 30 нм, содержащих ванадат металла(III). .

Изобретение относится к шихте для получения люминофора желтого цвета свечения на основе ванадата лантаноида, содержащего рубидий, используемого Для изготовления люминесцентных ламп.

Изобретение относится к люминесцентным составам красного цвета свечения, используемым для визуализации рентгеновского, электронного излучения и света ультрафиолетового диапазона.

Изобретение относится к технике люминофоров, а именно к люминесцентному материалу на основе оксидов редкоземельного элемента, иттрия и ванадия, используемому в электронной промышленности.

Изобретение относится к химической промышленности и может быть использовано при изготовлении изделий для регистрации модулированного излучения полиспектрального состава.

Изобретение относится к материалам квантовой электроники и оптики и может быть использовано в устройствах для отображения информации, электронно-лучевых приборах, люминесцентных лампах, в частности, светоизлучающих диодах белого свечения, сцинтилляторах, катодо- и рентгенолюминофорах.

Изобретение может быть использовано при изготовлении светоизлучающих приборов, испускающих ультрафиолетовое излучение. Люминесцентный материал имеет химическую формулу (Y1-xLux)9LiSi6O26:Ln, где Ln - трехвалентный редкоземельный металл, выбранный из Pr, Nd или их смеси; 0,0≤x≤1,0.

Изобретение предназначено для светотехники и может быть использовано в светодиодах белого свечения, лампах дневного света, светильниках, автомобильных фарах и дизайне освещения.

Изобретение предназначено для осветительной техники и медицины. Преобразующий длину волны материал включает соединение формулы (Y1-w-x-y-zScwLaxGdyLuz)2-a(SO4)3:Mea, где Me - трехвалентный катион или смесь трехвалентных катионов, способных испускать УФ-C излучение, например, Pr3+, Nd3+ и Bi3+; каждый из w, x, y и z находится в диапазоне от 0,0 до 1,0; w+x+y+z≤1,0; 0,0005≤a≤0,2.
Изобретение может быть использовано для визуализации света ультрафиолетового диапазона в системах светодиодов белого света (WLED) и оптических дисплеях. Люминофор синего свечения представляет собой силикат редкоземельных элементов в наноаморфном состоянии состава Ca2Gd8(1-x)Eu8xSi6O26, где 0,001≤х≤0,5, характеризующийся широкой полосой синего излучения с максимумом при 455 нм, полушириной 77 нм, интенсивностью 14000-14263 отн.
Изобретение относится к синтезу гептатанталатов европия EuTa7O19 или тербия TbTa7O19, которые могут быть использованы в качестве рентгеноконтрастных веществ, люминофоров, покрытий рентгеновских экранов, оптоматериалов, материалов для электроники.

Изобретение относится к области светотехники и может быть использовано при изготовлении светодиодов и систем преобразования света. Нитридный люминофор с красным свечением, возбуждаемый излучением в диапазоне длин волн 200-570 нм, имеет общую формулу Lis(M(1-x)Eux)1MgmAlnSipNq, где M=Sr, Ca, Ba, взятые отдельно или их смесь, 0,045≤s≤0,60; 0,005≤х≤0,12; 0≤m≤0,12; 0≤n≤1,0; 1,0≤р≤2,40; 3,015≤q≤4,20; причём для всех композиций 2,0≤р+n≤2,40 и q≠4.

Изобретения могут быть использованы для проверки подлинности и защиты от подделок ценных бумаг или документов, а также высококачественных товаров. Защитный признак содержит люминесцентное вещество общей формулы В0,5ХО3:Z, в котором В является щелочноземельным металлом, Х является Nb и/или Та, Z является люминесцентным активатором, например редкоземельным металлом степени окисления +3, или Ti3+, или V4+, или Cr2+, или Cr3+, или Cr4+, или Cr5+, или Mn3+, или Mn4+, или Mn5+, или Mn6+.

Изобретение может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений, в частности нейтронов. Сцинтилляционное стекло получают из композиции SiO2, Li2CO3, MgO, Al2O3, AlF3, CeO2, а для подавления окисления ионов церия в стекло вводят добавку металлического кремния (Si) в количестве 0,001-10 мас.%.

Изобретение относится к новым неорганическим кристаллическим сцинтилляционным материалам на основе бромида лантана, легированного церием, и может быть использовано для регистрации ионизирующего излучения – гамма-квантов, рентгеновского излучения, космических излучений, элементарных частиц в фундаментальной физике, технике и медицине. Неорганический монокристаллический сцинтиллятор имеет состав La(1-m)CemBr(3-2k)Оk, где m - мольная доля церия, замещающего La, больше 0, но меньше или равно 1; k - мольная доля кислорода, замещающего бром, находится в пределах от 1.5⋅10-4 до 8⋅10-4. Технический результат заключается в повышенной механической прочности (повышение трещиностойкости, уменьшение хрупкости) кристаллического сцинтиллятора, в особенности диаметром 15 мм и более, с сохранением высоких сцинтилляционных характеристик. 1 табл., 8 пр.

Изобретение относится к технологии получения соединений, относящихся к группе сложных оксидов со структурой граната, легированных щелочными и щелочноземельными элементами и элементами 3d группы, которые могут быть применены для изготовления различных люминесцентных материалов в оптоэлектронике, в том числе для изготовления светодиодных источников освещения. Способ осуществляют диспергированием твердого алюмоиттриевого оксидного производного в азотнокислых водных растворах солей легирующих элементов и последующей обработкой и выделением конечного продукта. При этом в качестве исходного алюмоиттриевого производного используют продукт, предварительно полученный совместным осаждением из азотнокислых водных растворов алюминия и иттрия. Полученный осажденный продукт затем подвергают фильтрации и промывке деионизированной водой. После этого выделенный продукт диспергируют при воздействии ультразвука в растворе легирующих элементов, выбранных из группы щелочных и щелочноземельных металлов и элементов 3d группы, образовавшуюся пульпу сушат при постоянном перемешивании, высушенный продукт измельчают и прокаливают при 1200°C до 1600°C. Изобретение позволяет получать алюмоиттриевый гранат с равномерным распределением легирующих элементов в количестве от 1⋅10-4 до 1 масс. %. 2 з.п. ф-лы, 4 ил., 3 табл., 4 пр.
Наверх