Способ получения пленок и пластинок оксида титана iv тio2 -рутил

Изобретение относится к нанотехнологиям и наноструктурам, а именно к методам получения слоя рутила в виде пленки или пластинки. Способ получения включает процесс, происходящий в окислительной газовой среде, причем поверхность титана разогревают с помощью резистивного, индукционного или лучевого воздействия до температуры ниже температуры плавления вблизи точки фазового перехода 800-900°С в окислительной газовой среде, содержащей кислород и инертный газ или смесь инертных газов, при давлении, превышающем 100 Па, при этом происходит окисление приповерхностных слоев титана с одновременной перестройкой в структуру, соответствующую ТiO2 - рутилу. Технический результат заключается в устранении технических трудностей получения рутила, упрощении технологии извлечения конечного продукта, а также в устранении загрязнения конечного продукта. 4 пр.

 

Изобретение относится к нанотехнологиям и наноструктурам, а именно к методам получения пленок и пластинок рутила.

Известен способ изготовления нанокристаллических пленок рутила (патент "Способ получения нанокристаллических пленок рутила", RU 2436727 С2, 29.01.2010), включающий формирование методом магнетронного распыления или электронно-лучевого испарения нанокристаллической пленки титана на оксидированной поверхности пластины из кремния и оксидирование пленки. Оксидирование осуществляют в окислительной газовой среде при импульсном облучении пленки титана фотонами с использованием импульсных ксеноновых ламп с диапазоном излучения 0,2-1,2 мкм в течение 1,6-1,8 с при длительности импульсов 10-2 с и дозе поступающего на пленку излучения от 230 до 260 Дж⋅см-2.

Недостатком прототипа является то, что слой формируется в виде нанокристаллической пленки оксида титана на поверхности пластинки кремния, поэтому извлечение конечного продукта (рутила) из-за адгезии к кремнию сопряжено с техническими трудностями, т.к. титан является геттерным материалом, поэтому в процессе распыления его в газовой среде на кремниевую подложку происходит загрязнение конечного продукта; сложная техническая реализация, требующая строгого соблюдения всех технологических условий и предъявляющая высокие требования к оборудованию и персоналу.

Технической задачей является устранение технических трудностей получения рутила, упрощенная технология извлечения конечного продукта, устранение загрязнения конечного продукта.

Технический результат достигается тем, что поверхность титана разогревают с помощью резистивного, индукционного или лучевого (лазерного, электронно-лучевого) воздействия до температуры ниже температуры плавления вблизи точки фазового перехода 800-900°С. Далее в окислительной газовой среде, содержащей кислород в объеме 10-40% и остальной объем - из инертного газа или смеси инертных газов, под давлением в интервале от 100 Па до 5⋅105 Па происходит окисление приповерхностных слоев титана с одновременной перестройкой в структуру, соответствующую TiO2 - рутилу. Регулируя время, в течение которого длится процесс окисления, можно получать пленки TiO2 - рутила толщиной от единиц до сотен нанометров или пластинки толщиной до 0,1 мм, свободные от посторонних примесей и загрязнений.

Способ осуществляется следующим образом.

Профилированная заготовка из чистого беспримесного титана устанавливается в специальных креплениях, обеспечивающих ее надежную фиксацию на опорной плите вакуумной установки. В вакууме порядка 10-3 Па при температуре 550°С производится предварительный отжиг поверхности титана для очистки ее от загрязнений. В камеру напускается окислительная газовая среда необходимого состава до достижения рабочего давления в камере. Поверхность титана разогревают с помощью резистивного, индукционного или лучевого (лазерного, электронно-лучевого) воздействия до температуры ниже температуры плавления вблизи точки фазового перехода (800-900°С). Выбор способа нагрева не оказывает никакого влияния на свойства и скорость получения TiO2 - рутила. Далее в окислительной газовой среде, содержащей кислород в объеме 10-40% и остальной объем - из инертного газа или смеси инертных газов, под давлением в интервале от 100 Па до 5⋅105 Па происходит окисление приповерхностных слоев титана с одновременной перестройкой в структуру, соответствующую TiO2 - рутилу. При остывании профилированной титановой заготовки со сформированным на ней слоем TiO2 - рутила происходит самопроизвольное отделение слоя TiO2 - рутила от титановой заготовки из-за различия в их коэффициентах теплового расширения. Регулируя время, в течение которого длится процесс окисления, можно получать пленки TiO2 - рутила толщиной от единиц до сотен нанометров или пластинки толщиной до 0,1 мм, свободные от посторонних примесей и загрязнений.

Как видно из изложенного, техническая задача реализуется полностью и в сравнении с известным техническим решением - прототипом имеет преимущества:

1. Получаемые пленки и пластинки оксида титана легко отделяются от титановой подложки, на которой происходит окисление и структурирование;

2. Так как получение рутила происходит в газовой среде кислорода и инертных газов на поверхности металлического титана, исключается загрязнение формируемого оксида титана посторонними примесями;

3. Предлагаемый способ получения рутила прост в реализации по сравнению с прототипом.

Пример 1. Титановая лента разогревается с помощью резистивного, индукционного, лазерного или электронно-лучевого воздействия в газовой среде до температуры ниже температуры плавления вблизи точки фазового перехода (800-900°С) и начала роста оксидной пленки, выдерживается в этом состоянии в течение 3 секунд. Выбор способа нагрева не оказывает никакого влияния на свойства и скорость получения TiO2 - рутила. Образуется сплошная устойчивая пленка толщиной порядка 50 нм с высокой адгезией к титановой ленте, состоящая из диоксида титана в виде рутила, свободного от посторонних примесей и загрязнений.

Пример 2. Титановая лента разогревается с помощью резистивного, индукционного, лазерного или электронно-лучевого воздействия в газовой среде до температуры ниже температуры плавления вблизи точки фазового перехода (800-900°С) и начала роста оксидной пленки, выдерживается в этом состоянии в течение 15 секунд. Выбор способа нагрева не оказывает никакого влияния на свойства и скорость получения TiO2 - рутила. Образуется пористая пленка толщиной порядка 500 нм со слабой адгезией к титановой ленте, состоящая из диоксида титана в виде рутила, свободная от посторонних примесей и загрязнений.

Пример 3. Титановая лента разогревается с помощью резистивного, индукционного, лазерного или электронно-лучевого воздействия в газовой среде до температуры ниже температуры плавления вблизи точки фазового перехода (800-900°С) и начала роста оксидной пленки, выдерживается в этом состоянии в течение 3 минут. Выбор способа нагрева не оказывает никакого влияния на свойства и скорость получения TiO2 - рутила. На поверхности образуется сплошная пластинка диоксида титана в виде рутила толщиной порядка 0,06 мм со слабой адгезией к титановой ленте, свободная от посторонних примесей и загрязнений, которая может быть легко отделена от исходной титановой ленты пинцетом без разрушения.

Пример 4. Титановая лента разогревается с помощью резистивного, индукционного, лазерного или электронно-лучевого воздействия в газовой среде до температуры ниже температуры плавления вблизи точки фазового перехода (800-900°С) и начала роста оксидной пленки, выдерживается в этом состоянии в течение 5 минут. Выбор способа нагрева не оказывает никакого влияния на свойства и скорость получения TiO2 - рутила. На поверхности образуется сплошная пластинка диоксида титана в виде рутила толщиной порядка 0,08 мм со слабой адгезией к титановой ленте, свободная от посторонних примесей и загрязнений, которая может быть легко отделена от исходной титановой ленты пинцетом без разрушения.

Способ получения слоя оксида титана ТiO2 - рутила в виде пленки или пластинки, включающий процесс, происходящий в окислительной газовой среде, отличающийся тем, что поверхность титана разогревают с помощью резистивного, индукционного или лучевого воздействия до температуры ниже температуры плавления вблизи точки фазового перехода 800-900°С в окислительной газовой среде, содержащей кислород и инертный газ или смесь инертных газов, при давлении, превышающем 100 Па, при этом происходит окисление приповерхностных слоев титана с одновременной перестройкой в структуру, соответствующую ТiO2 - рутилу.



 

Похожие патенты:

Группа изобретений относится к высокоэмиссионным покровным композициям и способам их получения. Термоэмиссионная покровная композиция для подложки включает сухую смесь из веществ, повышающих эмиссионную способность покрытия, при этом вещества, повышающие эмиссионную способность покрытия, содержат диоксид титана, и веществ, повышающих механическую прочность.

Изобретение может быть использовано в производстве эффективных электродных материалов в химических источниках тока, сорбентов. Для получения композита диоксид титана/углерод TiO2/C проводят термическое разложение титансодержащего прекурсора в инертной атмосфере.

Изобретение может быть использовано в производстве гетерогенных катализаторов, обладающих высокоразвитой поверхностью, и электродов в литий-ионных батареях. Электрохимический способ получения наноразмерных структур оксида титана (IV) включает анодное окисление титанового электрода в ионной жидкости с добавлением воды или пропиленгликоля в атмосфере воздуха.

Настоящее изобретение относится к усовершенствованиям в области химии, относящимся к получению оксида алюминия путем экстракции алюминия из материалов и/или оксида титана путем экстракции титана из материалов, содержащих титан.

Изобретение может быть использовано в химической, добывающей, пищевой отраслях промышленности и в медицине. Для получения сверхвысокомолекулярного полиэтилена (СВМПЭ), модифицированного наноразмерными частицами оксида титана, к исходному СВМПЭ при интенсивном перемешивании добавляют тетрахлорметан-бензольную смесь.

Изобретение может быть использовано в химической промышленности. Для получения наночастиц диоксида титана проводят откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом.

Изобретение может быть использовано в химической промышленности. Для получения образцов наноразмерного диоксида титана со структурами рутила или смеси анатаза и рутила в разном соотношении получают реакционную смесь диспергированием порошкообразного гидратированного сульфата титанила с пероксосоединением.
Изобретение может быть использовано в производстве солнцезащитных продуктов. Частицы диоксида титана обладают медианным средневзвешенным диаметром частиц более 70 нм, а также Е524 менее 9 л/г/см, E360 от 25 до 50 л/г/см и отношением Е360/Е308 от 0,5 до 1,0.

Изобретение относится к области материалов полупроводниковой электроники и может быть использовано для создания элементов спинтронных устройств, сочетающих источник и приемник поляризованных спинов носителей заряда в тройной гетероструктуре ферромагнитный полупроводник/немагнитный полупроводник/ферромагнитный полупроводник.

Изобретение относится к способам определения механических свойств материалов путем вдавливания индентора в поверхность образца с заданной нагрузкой, а именно к способам определения статического модуля упругости Юнга (ниже модуль упругости).

Изобретение относится к фармацевтической промышленности, а именно к композиции для визуализации и повреждения опухолевых клеток-мишеней, содержащей неорганические наночастицы размером 10-100 нм и размерной дисперсностью до 6% состава NaYF4, солегированные ионами иттербия (Yb) и эрбия (Er) или иттербия (Yb) и тулия (Tm), и включающей цитотоксический компонент, представленный бета-изотопом, которым является изотоп иттрия-90 (90Y), при этом наночастицы переведены в гидрофильную форму путем использования покрытия, представленного по крайней мере одним из соединений, выбранных из полималеинового ангидрида октадецена, полиэтиленимина, поли(D,L-лактида), поли(лактид-гликолида), диоксида кремния, тетраметиламмония гидроксида, при этом наночастицы связаны с гуманизированным мини-антителом scFv 4D5 или высокоаффинным пептидом неиммуноглобулиновой природы DARPin-29, которые специфичны к раковоассоциированному антигену HER-2/new.

Изобретение относится к способу получения медьсодержащих нанокатализаторов с развитой поверхностью, который заключается в том, что сначала из раствора электролита на металлический носитель методом электроосаждения наносят медь, затем носитель с нанесенным активным металлом подвергают термообработке.

Изобретение относится к нанотехнологиям и может быть использовано для оценки количества гидроксильных групп на внутренней поверхности стеклянных фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС), в том числе с селективно запаянными внешними оболочками, используемых для изготовления конструктивных элементов сенсоров, при химической модификации их внутренней поверхности.

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения стабильных водных растворов полупроводниковых квантовых точек, покрытых оболочками оксида кремния, модифицированных активной группой для биоконъюгирования и стабилизированных полиоксиэтиленом.
Изобретение относится к нанотехнологиям. Сначала получают раствор квантовых точек на основе селенида кадмия в хлороформе с их концентрацией 4⋅10-8 М и смешивают его с раствором дендримера в метаноле так, чтобы мольное соотношение квантовых точек к дендримеру составляло от 1:700 до 1:1100.

Изобретение относится к области нанотехнологий. Для получения наночастиц серебра смешивают фруктозо-глюкозный сироп из клубней топинамбура с раствором нитрата серебра.

Изобретение относится к дисперсиям проводящих нанонаполнителей в полимерных матрицах, к композитам, полученным из указанных дисперсий, и к способам их получения. Способ получения композиции включает смешивание или диспергирование первой композиции, содержащей один или более проводящих нанонаполнителей и один или более полиарилэфирсульфоновых термопластичных полимеров (A), с или в одном или более предшественниках (P) неотвержденной термореактивной смолы и необязательно одном или более отверждающих агентах для указанной смолы.

Изобретение может быть использовано в электронной и химической промышленности, медицине и оптике. Сначала получают полиакрилонитрил гомополимеризацией нитрила акриловой кислоты или его сополимеризацией с винильными сомономерами с долей сомономеров не более 20% в сополимере.

Настоящее изобретение касается пастообразного состава, содержащего проводящие углеродные наполнители, способа получения ее, а также применения ее для получения тонких проводящих пленок, красок или покрытий, в частности для изготовления Li-ионных батарей или суперконденсаторов, или для получения проводящих композиционных материалов.

Изобретение относится к медицине и представляет собой нанокомпозит нуль-валентного серебра, обладающий одновременно антимикробными свойствами и противоопухолевой активностью в виде стабильных водорастворимых порошков, сохраняющий свои свойства в течение длительного времени, содержащий в качестве стабилизатора наночастиц природный биоконъюгат арабиногалактана с флавоноидами, с размером наночастиц серебра 1.7-90.0 нм и их содержанием в композите - 1.3-17.5%. Изобретение также относится к способу получения нанокомпозита нуль-валентного серебра. Технический результат – простота в исполнении, сохранение природной структуры арабиногалактана, использование нейтрального рН и комнатной температуры при получении, стабильность нанокомпозита, одновременная антимикробная и противоопухолевая активность. 2 н.п. ф-лы, 6 пр., 2 табл., 1 ил.

Изобретение относится к нанотехнологиям и наноструктурам, а именно к методам получения слоя рутила в виде пленки или пластинки. Способ получения включает процесс, происходящий в окислительной газовой среде, причем поверхность титана разогревают с помощью резистивного, индукционного или лучевого воздействия до температуры ниже температуры плавления вблизи точки фазового перехода 800-900°С в окислительной газовой среде, содержащей кислород и инертный газ или смесь инертных газов, при давлении, превышающем 100 Па, при этом происходит окисление приповерхностных слоев титана с одновременной перестройкой в структуру, соответствующую ТiO2 - рутилу. Технический результат заключается в устранении технических трудностей получения рутила, упрощении технологии извлечения конечного продукта, а также в устранении загрязнения конечного продукта. 4 пр.

Наверх