Цифровое фазосмещающее устройство

Изобретение относится к импульсной технике, в частности к устройствам для задания фазового сдвига электрических сигналов, и может быть использовано в цифровых системах управления полупроводниковыми преобразователями. Цифровое фазосмещающее устройство включает формирователь прямоугольных импульсов 1, первый 2 и второй 3 формирователи коротких импульсов, логический элемент НЕ 4, первый 5 и второй 6 логический элемент И, суммирующий счетчик 7, вычитающий счетчик 8, числовой компаратор 9, блок памяти 10, генератор 11 импульсов стабильной частоты, задающий регистр 12 и диод 13. На выходе задающего регистра 12 устанавливается код угла управления. Устройство с высокой точностью обеспечивает компенсацию искажения кривой переменного напряжения. Устройство обеспечивает практически плавное изменение заданного угла управления и высокую его стабильность в условиях нестабильности частоты питающей сети. Технический результат заключается в расширении функциональных возможностей. 2 ил.

 

Изобретение относится к импульсной технике, в частности к устройствам для задания фазового сдвига электрических сигналов, и может быть использовано в цифровых системах управления полупроводниковыми преобразователями.

Известны аналоговые фазосмещающие устройства (ФСУ) различного типа /1/, наиболее совершенными из которых являются ФСУ вертикального типа.

Их недостатками являются необходимость настройки и погрешности, вызванные дрейфом и нестабильностью элементов.

Известно цифровое ФСУ вертикального типа, содержащее числовой компаратор, генератор импульсов, счетчик и узел синхронизации /2/.

Его недостатком является погрешность задания углов управления в условиях нестабильности частоты напряжения при питании от источников ограниченной мощности.

Наиболее близким по технической сущности к изобретению является цифровое фазосдвигающее устройство, содержащее формирователь прямоугольных импульсов, делитель частоты на два, два формирователя коротких импульсов, пять логических элемента И, логический элемент НЕ, генератор стабильных импульсов, два реверсивных счетчика, RS-триггер, два блока сдвига разрядов и счетчик /3/.

Недостатком прототипа являются невозможность равномерного изменения заданного угла и погрешность задания угла управления при нестабильности частоты питающего напряжения.

Цель изобретения - расширение функциональных возможностей.

Цель изобретения достигается тем, что цифровое фазосмещающие устройство, содержащее формирователь прямоугольных импульсов, первый формирователя коротких импульсов, выход которого подключен к входу записи исходного числа вычитающего счетчика, логический элемент НЕ, выход которого подключен к входу второго формирователя коротких импульсов и к первому входу второго логического элемента И, связанного вторым входом с выходом генератора импульсов стабильной частоты и вторым входом первого логического элемента И, снабжено числовым компаратором, задающим регистром, блоком памяти и суммирующим счетчиком, счетный вход которого подключен к выходу второго логического элемента И, сбросовый вход - к выходу второго формирователя коротких импульсов, а разряды выхода - к соответствующим разрядам входа исходного числа вычитающего счетчика и входа адреса первой координаты блока памяти, к разрядам входа адреса второй координаты которого подключены соответствующие разряды выхода задающего регистра, а разряды выхода блока памяти соединены с соответствующими разрядами второго входа числового компаратора, выход РАВНО которого является выходом устройства и который разрядами первого входа связан с соответствующими разрядами выхода вычитающего счетчика, вычитающий вход которого подключен к выходу первого логического элемента И, первый вход которого связан с входом логического элемента НЕ, входом первого формирователя коротких импульсов и выходом формирователя прямоугольных импульсов, вход которого через диод подключен к сети.

Суммирующий счетчик и связанные с ним по входам элементы обеспечивают формирование кода полупериода питающего напряжения. Вычитающий счетчик и связанные с ним по входам элементы обеспечивают формирование кода опорного напряжения, снижающегося по линейному закону. Задающий регистр устанавливает код угла управления (сдвига). Блок памяти выдает код управляющего напряжения в зависимости от частоты питающей сети и необходимого угла управления. Числовой компаратор с его связями по входам вырабатывает управляющий импульс с заданным углом управления.

На фиг. 1 представлена схема цифрового фазосмещающего устройства, на фиг. 2 - эпюры сигналов на элементах устройства.

Цифровое фазосмещающее устройство (фиг. 1) включает формирователь прямоугольных импульсов 1, первый 2 и второй 3 формирователи коротких импульсов, логический элемент НЕ 4, первый 5 и второй 6 логический элемент И, суммирующий счетчик 7, вычитающий счетчик 8, числовой компаратор 9, блок памяти 10, генератор 11 импульсов стабильной частоты, задающий регистр 12 и диод 13. На выходе задающего регистра 12 устанавливается код угла управления. По адресам двухмерного блок памяти 10 записаны коды задающего напряжения соответствующие частоте питающего напряжения и заданному углу α(j) управления

где - i-тый адрес по первой координате, который формируется на выходе счетчика 7 и равен коду частоты питающего напряжения ;

ƒ11 - частота генератора 11 импульсов стабильной частоты;

- i-тое значение частоты питающего напряжения, которая изменяется в диапазоне

Δƒном - номинальная частота;

Δƒ - отклонение частоты;

i - номер адреса по первой координате i=1, 2, 3…n, при этом соответствует а соответствует ;

j-тый адрес по второй координате , который задается регистром 12;

j - номер адреса по второй координате j=1, 2, 3…m, при этом соответствует , а соответствует α(m)=180°.

Фазосмещающее устройство работает следующим образом. В момент времени t1 (фиг. 2) появляется отрицательной полуволна питающего напряжения uc. Сигнал X1 на выходе формирователя 1 исчезает, а на выходе логического элемента НЕ 4 сигнал Х4 появляется. По фронту импульса Х4 формирователь 3 коротких импульсов вырабатывает импульс Х3, который обнуляет счетчик 7. Одновременно импульсом Х4 с выхода элемента НЕ 4, длительность которого равна половине периода TC питающего напряжения uc, подготавливается по первому входу элемент И 6. С выхода генератора импульсов 11 через элемент И 6 на счетный вход счетчика 7 начинают поступать импульсы Х6. На его выходе начинает формироваться код Х7 полупериода TC/2 питающего напряжения. Его формирование завершается в момент времени t2 (фиг. 2), когда через диод 13 проходит на вход формирователя 1 положительная полуволна питающего напряжения uc. При этом исчезает сигнал Х4 на выходе элемента НЕ 4, предотвращая дальнейшее поступление импульсов X11 на счетчик 7, и появляется сигнал X1 на выходе формирователя 1. По фронту сигнала X1 формирователь 2 вырабатывает импульс Х2 и в счетчик 8 записывается код Х7 полупериода питающего напряжения с выхода счетчика 7. Одновременно сигналом X1 с выхода формирователя 1 подготавливается элемент И 5 по первому входу. Через элемент И 5 с выхода генератора 11 на вычитающий вход счетчика 8 проходят импульсы Х5. Код Х8 на выходе счетчика 8 начинает уменьшаться. Этот код Х8 поступает на первый вход компаратора 9. На второй вход числового компаратора 9 подан код X10 управляющего напряжения с выхода блока памяти 10, который выбран из ячеек блока 10 в зависимости от кода Х7 полупериода, сформированного на выходе счетчика 7, и кода X12 угла управления, установленного на выходе регистра 12. Коды Х8 и X10, поступающие на входы компаратора 9, сравниваются. В момент времени t3 (фиг. 2), когда наступает равенство входных кодов компаратора 9, на выходе компаратора 9 появляется управляющий сигнал Х9, поступающий на выходной формирователь системы управления, который открывает соответствующий вентиль вентильного комплекта (на схеме не показаны). Момент t3 появления управляющего импульса Х9 соответствует углу управления α и мгновенному значению Uα питающего напряжения uc.

Если к моменту времени t5 (фиг. 2) частота питающего напряжения изменилась, например увеличилась, то к моменту времени t6 (фиг. 2) на выходе счетчика 7 будет сформирован меньший код Х7, который поступит на вход адреса первой координаты блока памяти 10. На выходе блока памяти 10 появится меньший код X10. Равенство кодов Х8 и X10 наступит раньше в момент времени t7 (фиг. 2). Однако управляющий импульс Х9 на выходе компаратора появится при прежнем угле управления α, которому, как и прежде, соответствует мгновенное значение Uα питающего напряжения uc, что указывает на стабильность угла управления в условиях нестабильности частоты, которая наблюдается при питании от источника электроэнергии ограниченной мощности.

Таким образом, предложенное устройство обеспечивает практически плавное изменение заданного угла управления и высокую его стабильность в условиях нестабильности частоты питающей сети. Ступень Δα изменения заданного угла управления α зависит от разрядности m регистра 12 и составляет Δα=180°/m. Погрешность δα угла управления α определяется соотношением частот сети и генератора импульсов 11 δα<ƒ11/(2ƒC) и разрядностью k счетчиков 7, 8, компаратора 9 и блока памяти 10, которая связана с упомянутыми частотами соотношением .

Источники информации

1. Горбачев Г.Н., Чаплыгин Е.Е. Промышленная электроника: Учебник для вузов / Под ред. В.А. Лабунцова. – М.: Энергоатомиздат, 1988. С. 275-287.

2. Там же. С. 284-285, рис. 8.7.

3. Описание изобретения к авторскому свидетельству SU 1622835 A1, 1991.

Цифровое фазосмещающее устройство, содержащее формирователь прямоугольных импульсов, первый формирователь коротких импульсов, выход которого подключен к входу записи исходного числа вычитающего счетчика, логический элемент НЕ, выход которого подключен к входу второго формирователя коротких импульсов и к первому входу второго логического элемента И, связанного вторым входом с выходом генератора импульсов стабильной частоты и вторым входом первого логического элемента И, отличающееся тем, что с целью расширения функциональных возможностей снабжено числовым компаратором, задающим регистром блоком памяти и суммирующим счетчиком, счетный вход которого подключен к выходу второго логического элемента И, сбросовый вход - к выходу второго формирователя коротких импульсов, а разряды выхода - к соответствующим разрядам входа исходного числа вычитающего счетчика и входа адреса первой координаты блока памяти, к разрядам входа адреса второй координаты которого подключены соответствующие разряды выхода задающего регистра, а разряды выхода блока памяти соединены с соответствующим разрядам второго входа числового компаратора, выход РАВНО которого является выходом устройства и который разрядами первого входа связан с соответствующими разрядами выхода вычитающего счетчика, вычитающий вход которого подключен к выходу первого логического элемента И, первый вход которого связан с входом логического элемента НЕ, входом первого формирователя коротких импульсов и выходом формирователя прямоугольных импульсов, вход которого через диод подключен к сети.



 

Похожие патенты:

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) неэквидистантных когерентно-импульсных радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской скорости летательных аппаратов.

Изобретение относится к измерительной технике, в частности к способам измерения фазового сдвига фильтра низкой частоты синхронного детектора. Сущность изобретения состоит в двукратном измерении напряжения выходного сигнала U1, U2 детектора, получая первоначально значение U1 при модуле разности частот ωпр опорного и информационного сигналов, подаваемых на его входы, равной частоте, на которой необходимо определение фазового сдвига, а затем при изменении одной из входных частот до значения, соответствующего максимальному значению U2 выходного сигнала детектора, фиксируют модуль разности ωр подаваемых при этом на входы частот, с последующим расчетом фазового сдвига φ в соответствии с выражением Неравномерность Δ амплитудно-частотной характеристики детектора сигналов определяется в соответствии с выражением Технический результат заключается в повышении точности измерения фазового сдвига.

Изобретение относится к измерительной технике и может использоваться в радиотехнике, метрологии и других отраслях промышленности для прецизионного измерения приращений фазы или разности фаз пары сигналов и их изменения во времени.

Изобретение относится к области радиоизмерений и предназначено для определения фазового сдвига как синусоидальных сигналов, так и последовательностей импульсов.

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фазы пассивных помех; может быть использовано в адаптивных устройствах режектирования пассивных помех для измерения тригонометрических функций (косинуса и синуса) текущих значений доплеровской фазы многочастотных пассивных помех.

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) неэквидистантных когерентно-импульсных радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской скорости летательных аппаратов.

Изобретение относится к радиотехнике. Способ заключается в том, что посредством двух АЦП и двух распределителей отсчетов сигналов на четные и нечетные из первого и второго сигналов формируют третий и четвертый сигналы путем задержки первого и второго сигналов на один фиксированный временной интервал, все произведения четных и нечетных сигналов, первую величину как разность произведения второго сигнала на третий и первого сигнала на четвертый, вторую величину как сумму произведения первого сигнала на второй и третьего сигнала на четвертый и оценку фазового сдвига между первым и вторым сигналами как арктангенс отношения усредненных по времени значений первой и второй величин.

Изобретение относится к радиотехнике, а именно измерительной технике. Формируют третий и четвертый сигналы путем задержки первого и второго сигналов на один интервал, все произведения четных и нечетных сигналов, из которых формируют первую и вторую величины, оценку измеряемого сдвига фаз между первым и вторым сигналами как арктангенс отношения усредненных по времени значений первой и второй величин.

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) когерентно-импульсных периодических радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской скорости летательных аппаратов.

Изобретение относится к измерительной технике и может использоваться в радиотехнике, метрологии и других отраслях промышленности для прецизионного измерения разности фаз пары сигналов и ее изменения во времени.

Изобретение относится к радиоизмерительной технике и может быть использовано для измерения отношения уровней и разности фаз двух гармонических сигналов. Заявлен способ измерения разности фаз и отношения уровней двух гармонических сигналов, согласно которому измеряют синхронно мгновенные значения двух сигналов через равные промежутки времени. В результате измерений получают по три мгновенных значения опорного и измерительного сигналов. Применяя аналитическое соотношение, связывающее первое, второе и третье мгновенные значения измерительного сигнала с его амплитудой, вычисляют значение амплитуды измерительного сигнала, а применяя аналитическое соотношение, связывающее первое, второе и третье мгновенные значения измерительного сигнала с его мгновенной фазой, вычисляют значение мгновенной фазы измерительного сигнала. Аналогично вычисляют значение амплитуды и мгновенной фазы опорного сигнала. Разделив вычисленное значение амплитуды измерительного сигнала на вычисленное значение амплитуды опорного сигнала, находят отношение уровней двух сигналов. Аналогично находят разность фаз двух сигналов. Технический результат - повышение точности измерения разности фаз двух гармонических сигналов и расширение возможностей способа. 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для преобразования аналоговых электрических сигналов эквивалентно позиционному или модулярному представлению. Сущность изобретения заключается в реализации метода вычисления разности фаз гармонического колебания. Наряду с возможностью получения как позиционного, так и модулярного эквивалента входного сигнала положительным эффектом является функционирование преобразователя по произвольному основанию pi не только выбранной, но и произвольной системы остаточных классов. Технический результат выражается в возможности преобразования уровня входного сигнала пропорционально заданному модулю системы остаточных классов, а также сдвига фазы гармонического сигнала пропорционально позиционному и модулярному представлению через реализацию единого метода измерения разности фаз. 5 табл., 5 ил.

Изобретение относится к измерительной технике, в частности к способам контроля и определения параметров определения синфазности или противофазности двух анализируемых сигналов, например, для фазировки обмоток трансформаторов. Раскрыт способ автоматизированного определения синфазности или противофазности двух сигналов произвольной формы. Для реализации способа с помощью цифрового осциллографа в автоматическом режиме снимают осциллограммы сигналов, перемножают полученные значения в одни и те же моменты времени и определяют среднее значение массива произведений за заданный интервал времени. Для определения фазировки двух анализируемых сигналов произвольной формы достаточно учитывать только знак полученного среднего значения, при этом положительное значение соответствует синфазным сигналам, отрицательное значение соответствует противофазным сигналам. Степень синфазности определяется из отношения полученного среднего значения к произведению действующих значений исследуемых сигналов: чем ближе оно к +1 или -1, тем ближе синфазность или противофазность соответственно к идеальным. Техническим результатом является автоматизация определения и контроля синфазности или противофазности сигналов. 9 ил.

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) когерентных неэквидистантных импульсов на фоне шума и может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской скорости летательных аппаратов. Фазометр когерентных неэквидистантных импульсов содержит блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения, блок вычисления фазы, ключ, блок вычисления модуля, пороговый блок, блок памяти, синхрогенератор, первый и второй двухканальные ключи, дополнительный блок усреднения, блок управления, дополнительный блок задержки, дополнительный блок комплексного сопряжения, дополнительный блок комплексного умножения, дополнительный умножитель и дополнительный блок памяти, осуществляющие межпериодную обработку исходных отсчетов с целью однозначного измерения доплеровской (радиальной) скорости движущегося объекта. Технический результат - применение фазометра когерентных неэквидистантных импульсов позволяет получить требуемый диапазон однозначно измеряемых доплеровских скоростей при сохранении однозначного измерения дальности, что и является достигаемым техническим результатом. 10 ил.

Группа изобретений относится к измерениям параметров электросетей, в частности к определению фазоров напряжения и тока в электрической сети среднего напряжения точным образом без необходимости в усложненных датчиках, и к определению и мониторингу мощности, развиваемой каждым из проводников, с использованием средств, обычно имеющихся в электрических сетях среднего напряжения. Раскрыты способ и соответствующее устройство для мониторинга параметров электрической сети среднего напряжения, включая определение силы тока, напряжения и мощности каждой фазы для электрической сети среднего напряжения. Текущие параметры электрической сети среднего напряжения, то есть фазоры тока и напряжения, а также мощности, определяются на основе измерений, выполненных датчиками (12, 14, 16), обычно установленными в электрической сети (5, 7) на уровне трансформатора (8). Конкретно определение фазора напряжения на каждом проводнике электрической сети (5) среднего напряжения выполняется с помощью амплитуды, выведенной из измеренной в электрической сети (7) низкого напряжения, и фазового угла, измеренного в электрической сети (5) среднего напряжения. Составления пар между фазорами тока среднего напряжения, углом, измеренным на среднем напряжении и выведенной амплитудой низкого напряжения выполняются с помощью сравнения с коэффициентом мощности cos ϕ электрической сети. Технический результат заключается в обеспечении приемлемой точности измерений мощности без применения усложненных датчиков за счет измерений трехфазных напряжений и мощностей в подстанциях MV/LV с особенностью обращения к информации о напряжениях, измеренных на стороне LV. 4 н. и 11 з.п. ф-лы, 2 ил.

Предложен способ измерения фазовых сдвигов между двумя гармоническими сигналами одинаковой частоты, обеспечивающий высокую точность измерения за счет использования свойства симметрии гармонического напряжения. Он может быть использован при разработке измерителей фазовых сдвигов различных устройств высокочастотного и сверхвысокочастотного диапазонов. Сущность способа заключается в том, что в опорном канале задается время выборки, следующей непосредственно перед переходом напряжения через нуль, измеряется и запоминается напряжение, соответствующее этой выборке. Далее определяется время второй выборки, следующей сразу после перехода напряжения через нуль, соответствующее напряжению, равному с обратным знаком напряжению первой выборки. Время перехода напряжения опорного канала через нуль определяется как среднее арифметическое времени появления первой и второй выборок. Аналогично в измерительном канале задается время первой выборки, следующей непосредственно перед переходом напряжения через нуль, измеряется и запоминается напряжение, соответствующее этой выборке. Далее определяется время второй выборки, следующей сразу после перехода напряжения через нуль, соответствующее напряжению, равному с обратным знаком напряжению первой выборки. Время перехода напряжения измерительного канала через нуль определяется как среднее арифметическое времени появления первой и второй выборок. Искомый фазовый сдвиг между двумя гармоническими сигналами одинаковой частоты определяется как разность между временем перехода через нуль напряжений измерительного и опорного каналов, умноженная на круговую частоту исследуемых сигналов. Технический результат - повышение точности определения фазовых сдвигов между двумя гармоническими сигналами одинаковой частоты. 3 ил.

Изобретение относится к оптике, фотонике и другим областям физики, в которых значимой является задача измерения разности фаз двух сигналов, в частности при измерении расстояний в дальнометрических системах, системах связи, при определении геометрических параметров объектов и т.п. Заявляемый способ измерения разности фаз двух квазигармонических сигналов основан на измерении амплитуд трех сигналов: двух исходных сигналов, фазовый сдвиг которых измеряется, и третьего сигнала, формируемого как сумма двух исходных сигналов. Исходные не искаженные шумом значения этих амплитуд оцениваются известными методами анализа райсовских данных, например, предложенными в патентах РФ 2555501, 2556318, 2556319. Амплитуды трех анализируемых сигналов формируют треугольник, что позволяет рассчитать искомую разность фаз двух сигналов из простых геометрических соображений. Технический результат состоит в существенном упрощении процедуры расчета фазового сдвига двух квазигармонических сигналов и обеспечении высокой точности измерений.
Наверх