Способ подготовки горячекатаного проката для изготовления метизных крепежных изделий


C21D1/20 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2612101:

федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) (RU)

Изобретение относится к области термомеханической обработки сортового горячекатаного проката из конструкционных сталей перлитного класса и может быть использовано при изготовлении из него высокопрочных крепежных изделий. Для обеспечения необходимых прочностных, пластических и прочностных характеристик калиброванного проката осуществляют отжиг проката при температуре 770-790°С с выдержкой 3-4 ч, охлаждение с печью до 660-680°С с выдержкой в печи 3-4 ч, охлаждение с печью до температуры 160-170°С с выдержкой 2-3 ч, охлаждение до температуры окружающей среды, первичное волочение со степенью обжатия 17-19%, изотермическую обработку патентированием в ванне со свинцом при температуре 360-370°С, охлаждение на воздухе, вторичное волочение со степенью обжатия 5-6%. 1 табл., 1 пр.

 

Изобретение относится к области термомеханической обработки сортового горячекатаного проката из конструкционных сталей перлитного класса и может быть использовано при изготовлении из него высокопрочных крепежных изделий, удовлетворяющих требованиям по механическим характеристикам изделий, изготовленных методом холодной объемной штамповки, согласно ГОСТ Р 52627-2006 «Болты, винты и шпильки. Механические свойства и методы испытаний».

Крепежные метизные изделия, соответствующие классу прочности 12.9, изготавливаемые из легированных, углеродистых и хромистых марок сталей, подвергаются термической обработке методом объемной закалки и последующему отпуску после окончательного их изготовления объемной холодной штамповкой, что может способствовать обезуглероживанию поверхности и появлению закалочных трещин на готовых крепежных изделиях, повышению их себестоимости, а также трудоемкости и энергоёмкости технологического процесса.

В качестве прототипа принят способ обработки горячекатаного проката под высадку болтов (патент на изобретение №2486260, С21D8/06, опубл. 27.06.2013 г.).

Способ обработки горячекатаного проката включает его отжиг при температуре 770-790ºС 3-4 ч, охлаждение с печью до 660-680ºС, выдержку 3-4 ч, охлаждение с печью до температуры окружающей среды, первичное волочение, изотермическую обработку в течение 5 мин с последующим охлаждением на воздухе, вторичное калибрование. После выдержки в печи 3-4 ч охлаждение проката проводят с печью до температуры окружающей среды, первичное волочение осуществляют со степенью обжатия 12-13%, а вторичное – со степенью обжатия 7-8%, изотермическую обработку проводят путем патентирования при температуре 540-560ºС.

Однако, после выдержки в печи 3-4 ч, охлаждение проката прзводят с печью до температуры окружающей среды, что затягивает технологический процесс отжига, первичное волочение проводится с низкими степенями обжатия (12-13%), что не способствует формированию требуемых механических характеристик в калиброванном прокате, соответствующих высокопрочному крепежу класса прочности 12.9. Изотермическую обработку калиброванного проката проводят патентированием при высоких значениях температур от 540ºС до 560ºС. После изотермической обработки

проката второе волочение осуществляют со степенями обжатия 7-8%, что способствует завышенным нагрузкам на волочильный инструмент при повторном волочении проката. Данный способ подготовки горячекатаного проката может быть использован только для изготовления из него крепежных изделий холодной объемной штамповкой класса прочности 8.8 (ув ≥ 800 МПа) и не более.

Предлагаемым изобретением решается задача создание способа изготовления высокопрочных крепежных метизных изделий класса прочности 12.9 без их дальнейшей объемной закалки и последующего отпуска после изготовления холодной объемной штамповкой и накатки резьбы на готовых изделиях.

Технический результат - получение прочностных и пластических характеристик калиброванного проката согласно требованиям ГОСТ 10702-78 «Сталь качественная конструкционная углеродистая и легированная для холодного выдавливания и высадки» за счет равномерной мелкодисперсной структуры пластинчатого сорбита по всей площади поперечного сечения и длине проката с сохранением требуемых прочностных и пластических характеристик и твердости. Данная технологическая процедура обеспечивает сокращение времени выдержки при охлаждении с печью, используются более низкие температуры изотермической обработки патентированием и применяются оптимальные степени обжатия при первичном и вторичном волочении калиброванного проката. Эти технологические операции обеспечивают отсутствие трещин и обезуглероживание на поверхности изготовленного крепежа, а также снижается себестоимость готовых изделий.

Этот технический результат достигается тем, что в способе подготовки горячекатаного проката для изготовления метизных крепежных изделий, включающем его отжиг при температуре 770-790°С 4-3 ч, охлаждение с печью до 660-680°С, выдержка в печи 3-4 ч, охлаждение до температуры окружающей среды, первичное волочение, изотермическую обработку патентированием, вторичное волочение; после выдержки в печи 3-4 ч перед охлаждением на воздухе проводят дополнительное охлаждение с печью до температуры 160-170ºС, выдерживают с печью 2-3 ч; первичное волочение осуществляют со степенью 17-19%, вторичное - со степенью 5-6%, при этом изотермическую обработку патентированием ведут при температуре 360-370ºС.

Отжиг позволяет перевести структуру горячекатаного проката «перлит + феррит» в структуру «зернистый перлит», которая способствует оптимальному первичному волочению горячекатаного проката со степенью обжатия 17-19%. Охлаждение с печью до 160-170°С, выдержка с печью 2 3 ч и далее на воздухе до температуры окружающей среды обеспечивает образование равномерной по площади поперечного сечения и длине проката структуры «зернистый перлит», исключает образование поверхностных упрочнений и сокращает время отжига проката.

Первичное волочение, с учетом степени обжатия горячекатаного проката, позволяет получать требуемые механические характеристики калиброванного проката и исключает эллипсоидность для промежуточного геометрического размера (диаметр) по сечению проката и длине мотка.

Изотермическая обработка патентированием позволяет получить микроструктуру, представляющую собой равномерно распределенного по поперечному сечению и по всей длине мотка проката структуру мелкодисперсного пластинчатого сорбита. Данная технологическая операция обеспечивает механические характеристики, которые необходимы калиброванному прокату при вторичном волочении.

Вторичное волочение обеспечивает получения окончательного геометрического размера по диаметру проката под последующую холодную объемную штамповку крепежных метизных изделий при требуемых пластических и прочностных характеристиках и твердости. Режимы обоснованы экспериментально.

Способ осуществляют следующим образом.

Проводят отжиг горячекатаного проката при температуре 770-790°С в течение 3-4 ч, охлаждают с печью до 660-680°С, выдерживают с печью в течение 3-4 ч, охлаждают с печью до 160-170°С, выдерживают с печью 2-3 ч и далее на воздухе до температуры окружающей среды; затем проводят первичное волочение на волочильном стане со степенями обжатия 17-19%, а после волочения проводят изотермическую обработку патентированием при температуре нагрева проката (аустенизации) 880°С в течение 4,0 мин, выдержке в ванне со свинцом, нагретым до температуры 370°С в течение 5,0 мин (300 с), далее охлаждение на воздухе. Затем на волочильном стане проводят вторичное волочение со степенью обжатия 5-6%. После проведения данной технологической операции калиброванный прокат используется для высадки метизных изделий методом холодной объемной штамповки.

Пример осуществления способа

Обрабатывали горячекатаный прокат - конструкционную сталь перлитного класса марки 38ХА под последующее изготовление крепежных метизных изделий класса прочности 12.9 (ГОСТ Р 52627-2006) с диаметром резьбы М8, М10 и М12 без последующей объемной закалки и отпуска. Химический состав стали марки 38ХА соответствовал ГОСТ 10702-78.

Отжиг одного мотка горячекатаного проката проводили нагревом при температуре 780°С в течение 3,0 ч, охлаждали с печью до температуры 670°С, выдерживали с печью 3,5 ч, охлаждали с печью до 165°С, выдерживали с печью 2,8 ч и далее охлаждали на воздухе до температуры окружающей среды. Затем осуществляли первичное волочение на волочильном стане со степенью обжатия 19%. Нагрев проката производили при температуре 880°С в течение 4,0 мин (240 с). Изотермическую обработку проката осуществляли патентированием в ванне со свинцом, нагретым до температуры 370°С, в течение 5,0 мин (300 с), затем охлаждали на воздухе. После изотермической обработки патентированием проводили вторичное волочение на волочильном стане со степенью обжатия 6%.

В других примерах меняли температуру отжига горячекатаного проката (760,770, 790 и 800ºС) при средних значениях степеней обжатия, выдержки с печью, времени нагрева в печи перед изотермической обработкой и режима изотермической обработки патентированием. Оптимальной была принята температура отжига в печи 770-790ºС.

При уменьшении температуры отжига (760ºС) структура «перлит+феррит» переходит в структуру: 80% «зернистый перлит» и 20% «пластинчатый перлит». При увеличении температуры отжига (800ºС) увеличивается размер зёрен, а это способствует снижению прочностных и увеличению пластических характеристик.

Охлаждение с печью до температуры 660-680ºС выбрано с учетом того, что при медленном охлаждении при температуре менее 660ºС окончательно формируется микроструктура «зернистый перлит», а при температуре более 690°С её положение неустойчиво.

Выдержка при отжиге проката 3-4 ч достаточна, т.к. при выдержке менее 3 часов садка металла в печи прогревается неравномерно и структурные превращения не успевают произойти равномерно по всему объему садки металла, в результате чего в прокате получаются неравномерные механические свойства. Выдержка в печи более 4 ч энергозатратна, затягивает технологический процесс и приводит к обезуглероживанию поверхности горячекатаного проката.

Охлаждение с печью до 160-170°С, выдержка с печью 2-3 ч и далее охлаждение на воздухе до температуры окружающей среды гарантирует образование равномерной по поперечному сечению и длине проката структуры «зернистый перлит», позволяет избежать упрочнений на поверхности проката и ускорить технологический процесс отжига.

Меняли степень обжатия проката при первичном волочении (15, 16, 17, 18, 19, 20, 21%) при средних значениях температуры отжига, выдержки, охлаждения с печью, время нагрева в печи, изотермического режима патентирования, степени обжатия при окончательном волочении. Оптимальной была выявлена степень обжатия проката от 17 до 19%.

При уменьшении степени обжатия выявляется занижение механических характеристик по поперечному сечению и длине проката, что может снизить механические характеристики готовых изделий класса прочности 12.9.

При увеличении степени обжатия повышаются прочностные и снижаются пластические характеристики, это приведет к увеличению нагрузки на инструмент волочильного стана.

Меняли время нагрева проката в печи с при температуре аустенизации 880°С (2,0 мин (120 с); 4,8 мин (288 с); 6,0 мин (360 с) при средних значениях степеней обжатия, выдержки с печью, охлаждения с печью и изотермического режима патентирования. Оптимальным временем нагрева в печи было принято время нагрева 4,8 мин (288 с).

При уменьшении времени нагрева 2,0 мин (120 с) в структуре калиброванного проката не обеспечивалась гомогенизация аустенита.

При увеличении времени нагрева 6,0 мин (360 с) снижались прочностные и повышались пластические характеристики, а на поверхности проката появлялся частично обезуглероженный слой.

Меняли температуру при изотермической обработке патентированием (300°С и 470°С) при средних значениях температуры отжига, выдержки и охлаждения с печью, степени обжатия при первичном волочении, времени нагрева в печи, степени обжатия при вторичном волочении. Оптимальной температурой была принята температура изотермической обработки патентированием 370°С.

При уменьшении температуры изотермической обработки патентированием (300°С) в течение 5,0 мин (300 с) в прокате образуется микроструктура «сорбита патентирования» включением мартенсита, которая имеет высокие прочностные характеристики.

При увеличении температуры изотермической обработки патентированием (470°С) получили структуру «сорбит патентирования». Данная структура проката может быть использована для холодной объемной штамповки метизных для изделий класса прочности 9.8 и ниже.

Меняли степень обжатия проката при вторичном волочении (3, 4, 5, 6, 7, 8%) при средних значениях температуры отжига, выдержки и охлаждения с печью, времени нагрева в печи, режима изотермической обработки патентированием, степени обжатия при первичном волочении. Оптимальной была принята степень обжатия проката от 5 до 6%.

При уменьшении степени обжатия (3, 4%) получили прочностные характеристики на нижнем требуемом пределе. Кроме того, в процессе волочения наблюдается повышенный интенсивный износ волочильного инструмента (волока). При увеличении степени обжатия (8, 9%) увеличиваются прочностные характеристики, пластические характеристики проката при этом снижаются.

Повторяли эксперименты на горячекатаном прокате стали марки 40Х с химическим составом по ГОСТ 10702-78. Получили аналогичные результаты.

Травление образцов проводили в 4% растворе азотной кислоты в этиловом спирте. Твердость образцов проката определяли на приборе Роквелла по шкале С на параллельно шлифованных лысках; механические характеристики - на разрывной машине ЦДМ-100, шкала 20 кг; микроструктуру – на поперечных микрошлифах с использованием микроскопа «Неофот-21» при увеличении х500. Результаты приведены в таблице 1.

Проведенный анализ аналогов показал, что предлагаемое решение соответствует критерию «новизна», полученный технический результат, достигаемый и совокупность существенных признаков, свидетельствует о соответствии критерию «изобретательский уровень», а проведенные испытания в производственных условиях подтверждают промышленную применимость.

Таблица 1

Механические характеристики проката по предложенной технологии и прототипу


Способ

σв, МПа

σт, МПа

Ψ, %

δ,%

НRC
Примечание
Предлагаемый

Калиброванный прокат Ǿ11,65
1098 960 53 11,3 33
Прочностные характеристики (σв., σт) у исследованного проката выше. Методом холодной объемной штамповки получили высокопрочные болты с низкой обрезной головой класса прочности 12.9 без последующей их объемной закалки и отпуска

Калиброванный прокат Ǿ9,7
1097 957 53,1 11,6 33
Прототип

Калиброванный прокат Ǿ11,65
905 810 58 15,2 24
Получили методом холодной объемной штамповки высокопрочный крепеж класса прочности 8.8 без последующей объемной закалки и отпуска


Калиброванный прокат Ǿ9,7
890 780 57,5 14,8 24


    Способ обработки горячекатаного проката для изготовления метизных крепежных изделий, включающий отжиг проката 3-4 ч при температуре 770-790°˚С, охлаждение с печью до 660-680°˚С, выдержку 3-4 ч, охлаждение на воздухе до температуры охлаждающей среды, первичное волочение, нагрев в печи, патентирование, охлаждение и вторичное волочение, отличающийся тем, что после выдержки в печи 3-4 ч перед охлаждением на воздухе проводят дальнейшее охлаждение с печью до температуры 160-170°С с выдержкой от более 2 до 3 ч, первичное волочение осуществляют со степенью обжатия 17-19%, вторичное – со степенью обжатия от более 5 до 6%, при этом патентирование ведут при температуре 360-370°С.



 

Похожие патенты:

Изобретение относится к области металлургии. Для повышения механических свойств проволоки и обеспечения однородной микроструктуры способ изготовления стальной проволоки включает получение стальной проволоки, нагрев до температуры аустенизации стальной проволоки, патентирование стальной проволоки, волочение стальной проволоки.
Изобретение относится к металлургии стали и может быть использовано при производстве сортового проката круглого сечения для изготовления высокопрочного крепежа холодной осадкой.

Изобретение относится к области термомеханической обработки сортового горячекатаного калиброванного проката. Для достижения высоких прочностных и пластических характеристик по всему сечению и длине проката осуществляют отжиг калиброванного проката при 770-790°С в течение 3-4 часов, охлаждение с печью до 660-680°С, выдержку 3-4 часа, охлаждение с печью до температуры 140-150°С с выдержкой 1-2 часа, дальнейшее охлаждение на воздухе, первичное волочение со степенью обжатия 17-19%, нагрев в печи с контролируемой атмосферой, патентирование при 440-460°С, вторичное волочение со степенью обжатия 4-5%.

Изобретение относится к области металлургии. Для повышения качества проволоки, ее прочностных характеристик осуществляют разматывание бунтовой проволоки и ее правку, нагрев, обжатие, закалку, повторный нагрев, охлаждение и смотку в бунт.

Изобретение относится к области деформационно-термической обработки среднеуглеродистых низколегированных сталей. Для повышения ударной вязкости сталей, работающих при низких температурах, осуществляют закалку и пластическую деформацию путем ротационной ковки со степенью относительной деформации за проход 5-25% в интервале температур 600-500°C.

Изобретение относится к получению стальной проволоки, имеющей повышенные магнитные характеристики, для применения в трансформаторах, транспортных средствах, электрических или электронных изделиях.

Изобретение относится к производству профилированной проволоки из низколегированной углеродистой стали, предназначенной для использования в качестве компонента в гибких трубах для морской нефтедобычи.

Изобретение относится к области металлургии, а именно к поверхностно-упрочняемой стали. Сталь содержит в мас.%: 0,05-0,20 С, 0,01-0,1 Si, 0,3-0,6 Mn, 0,03 или менее Р (за исключением 0), 0,001-0,02 S, 1,2-2,0 Cr, 0,01-0,1 Al, 0,010-0,10 Ti, 0,010 или менее N (за исключением 0), 0,0005-0,005 В, железо и неизбежные примеси остальное.

Изобретение относится к области металлургии, а именно к поверхностно-упрочненной стали. Сталь содержит, в мас.%: С от 0,05 до 0,3, Si от 0,01 до 0,6, Mn от 0,20 до 1,0, S от 0,001 до 0,025, Cr от 1 до 2,5, Al от 0,01 до 0,10, Ti от 0,01 до 0,10, Nb от 0,01 до 0,10, В от 0,0005 до 0,005, N от 0,002 до 0,02, железо и неизбежные примеси остальное.

Изобретение относится к металлургии, в частности к способам для получения высокопрочных и высоковязких крепежных изделий любых конструктивных параметров без резьбы и с резьбой.

Изобретение относится к обработке давлением и может быть использовано в заготовительном производстве при подготовке металла к последующим операциям обработки давлением или к механической обработке.

Изобретение относится к обработке материалов давлением и может быть использовано для упрочнения металлов в процессе обработки. Осуществляют выдавливание и кручение заготовки через суженную и расширенную среднюю винтовую часть канала.

Изобретение относится к заготовительному производству машиностроительных предприятий и может быть использовано для получения ультрамелкозернистых материалов, заготовок с измельченной однородной равноплотной структурой для дальнейшего изготовления высоконагруженных деталей.

Изобретение относится к области термомеханической обработки сортового горячекатаного калиброванного проката. Для достижения высоких прочностных и пластических характеристик по всему сечению и длине проката осуществляют отжиг калиброванного проката при 770-790°С в течение 3-4 часов, охлаждение с печью до 660-680°С, выдержку 3-4 часа, охлаждение с печью до температуры 140-150°С с выдержкой 1-2 часа, дальнейшее охлаждение на воздухе, первичное волочение со степенью обжатия 17-19%, нагрев в печи с контролируемой атмосферой, патентирование при 440-460°С, вторичное волочение со степенью обжатия 4-5%.

Изобретение относится к области обработки металлов давлением и может быть использовано в авиа-, судо- и машиностроении. Сущность изобретения заключается в пластическом закручивании работающей на сжатие стойки кольцевого сечения до необходимой накопленной деформации, обеспечивающей увеличение условного предела текучести на сжатие.

Изобретение относится к обработке металлов давлением, в частности к пластическому структурообразованию металла методом объемной штамповки путем воздействия на заготовку сверхвысокими давлениями с получением интенсивных сдвиговых деформаций, и может быть использовано для получения материалов с принципиально новым уровнем свойств.
Изобретение относится к области термомеханической обработки деталей из стали перлитного класса и может быть использовано при изготовлении, например, болтовых соединений.

Изобретение относится к упрочнению боковых рам тележек грузовых вагонов. .

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении штампового инструмента. .

Изобретение относится к области упрочнения, в частности, арматурных стержней, используемых для изготовления железобетонных элементов в виде панелей, блоков, тротуарной плитки, фибробетона.

Изобретение относится к области металлургии. Для уменьшения шероховатости поверхности текстурированного листа из электротехнической стали и уменьшения магнитных потерь лист имеет область замыкающего домена, линейно распространяющуюся на поверхности стального листа в направлении под углом от 60° до 120° относительно направления прокатки, при этом область замыкающего домена сформирована периодически с интервалами s (мм) в направлении прокатки, так что h≥74,9t+39,1 (0,26≥t); h≥897t-174,7 (t>0,26); (w×h)/(s×1000)≤-12,6t+7,9 (t>0,22) и (w×h)/(s×1000)≤-40,6t+14,1 (t≤0,22), где h (мкм) – глубина, а w (мкм) - ширина области замыкающего домена.
Наверх