Способ получения антитурбулентной присадки для углеводородных ракетных топлив

Изобретение относится к способам получения антитурбулентных присадок на основе (со)полимеров высших альфа-олефинов и может быть использовано в топливных магистралях жидкостных ракетных двигателей (ЖРД). Способ осуществляют (со)полимеризацией высших α-олефинов в присутствии микросферического трихлорида титана и алюминийорганического сокатализатора. В качестве добавки используют метилциклогексилдиметоксисилан в эквимолярном количестве к ТiС13. Полученный (со)полимер высшего альфа-олефина подвергают очистке от каталитической системы путем переосаждения из раствора до остаточного содержания элементов Ti, Al, Si и Cl не более 0,001 % мас. К очищенному (со)полимеру добавляют жидкое ракетное топливо до достижения вязкости антитурбулентной присадки 27-35 сСт. Технический результат – получение высокоэффективной антитурбулентной присадки, пригодной для применения в топливных магистралях ЖРД, и снижение итогового содержания (со)полимера в жидком ракетном топливе. 2 пр.

 

Изобретение относится к химии высокомолекулярных соединений, а именно к способам получения антитурбулентных присадок на основе (со)полимеров высших альфа-олефинов, и может быть использовано в топливных магистралях жидкостных ракетных двигателей (ЖРД).

Уровень техники

Известна улучшающая эксплуатационные энергетические характеристики машин жидкая присадка, углеводородная жидкость на основе нефтепродуктов, используемая в машинах, и жидкое углеводородное горючее (RU 2343187). Жидкая присадка представляет собой раствор высокомолекулярного полиизобутилена (ПИБ), имеющего молекулярную массу от 3,7·106 до 4,9·106, в используемом жидком ракетном топливе. Жидкое ракетное топливо для машин с гидравлическим трактами (топливными магистралями) с тепло- и/или энергонапряженными условиями эксплуатации содержит жидкую присадку в количестве, обеспечивающем энергетические характеристики этих машин (концентрация высокомолекулярного ПИБ в жидком ракетном топливе от 0,015 до 0,095 мас.%). Технический результат - улучшение эксплуатационных энергетических характеристик машин: коэффициента полезного действия ЖРД, напора насосов и т.д. Недостатком указанного аналога является большое содержание полимера (полиизобутилена в жидком ракетном топливе), что обуславливает большой расход присадки.

Известен способ работы кислородно-керосиновых (ЖРД) и ракетная двигательная установка (RU 2542623). Способ работы кислородно-керосиновых ЖРД и ракетная двигательная установка, основанный на введении в ЖРТ полимерной противотурбулентной (антитурбулентной) присадки, используемой в качестве агента, снижающего гидродинамические потери в топливной магистрали. В качестве антитурбулентной присадки используют раствор полиизобутилена (ПИБ) или раствор полимеров высших альфа-олефинов в жидком ракетном топливе с концентрацией 0,6…0,8% мас. Изобретение обеспечивает повышение массы полезной нагрузки, выводимой на околоземную орбиту.

В приведенных аналогах описаны способы введения антитурбулентных присадок в топливные магистрали ЖРД, в том числе на основе полимеров высших альфа-олефинов, но не описан способ получения подобных присадок.

Наиболее близким по технической сути является способ получения агента снижения гидродинамического сопротивления (антитурбулентной присадки) углеводородных жидкостей (RU 2 238 282) (со)полимеризацией высших альфа-олефинов в присутствии титаносодержащего катализатора и алюминийорганического сокатализатора. Способ включает в себя (со)полимеризацию высших альфа-олефинов на микросферическом трихлориде титана, предварительно обработанном высшим альфа-олефином С616 в количестве 0,13…0,52 М олефина на 1,0 М TiCl3 в присутствии алюминийорганического соединения в качестве сокатализатора. Предварительная (со)полимеризация вызывает измельчение частиц TiCl3 до коллоидной степени дисперсности, а также некоторое увеличение вязкости среды. Применение обработанного таким образом катализатора освобождает от необходимости перемешивать реакционную массу, исключая фактор механодеструкции образующегося (со)полимера.

Недостатком указанного способа является невозможность получения партий (со)полимера с воспроизводимыми характеристиками, а также наличие примесей, образующихся из остатков каталитического комплекса, что недопустимо при использовании антитурбулентных присадок в топливных магистралях ЖРД.

Задачей настоящего изобретения является разработать способ получения высокоэффективной антитурбулентной присадки, пригодной для применения в топливных магистралях ЖРД, и снизить итоговое содержание (со)полимера в жидком ракетном топливе.

Поставленная задача решается тем, что способ получения антитурбулентной присадки для использования в топливных магистралях ЖРД включает, так же как в прототипе, (со)полимеризацию высших альфа-олефинов в присутствии титаносодержащего катализатора и алюминийорганического сокатализатора, где в качестве катализатора используют микросферический трихлорид титана, предварительно обработанный высшим альфа-олефином С6-C16 в количестве 0,13-0,52 М олефина на 1,0 М ТiС13. Новизна способа заключается в том, что в качестве добавки используют метилциклогексилдиметоксисилан в эквимолярном количестве к ТiС13, а полученный (со)полимер высшего альфа-олефина подвергают очистке от каталитической системы путем переосаждения из раствора до остаточного содержания элементов Ti, Al, Si и Cl не более 0,001 % мас., после чего к очищенному (со)полимеру добавляют жидкое ракетное топливо до достижения вязкости антитурбулентной присадки 27-35 сСт.

Способ обеспечивает получение высокой среднемассовой молекулярной массы (со)полимера 9,2⋅106-9,8⋅106, узкого молекулярно-массового распределения – 2.8-3.1. Полученный (со)полимер переосаждают, что обеспечивает допустимое остаточное содержание элементов Ti, Al, Si и Cl в количестве не более 0,001 % мас. К очищенному (со)полимеру добавляют жидкое ракетное топливо до достижения вязкости присадки 27-35 сСт, что обеспечивает содержание (со)полимера высшего альфа-олефина в присадке в интервале 0,6-0,8 % мас.

Пример 1

В одногорлую стеклянную колбу емкостью 250 см3 вносят 115 г смеси высших альфа-олефинов С610, барботируют сухим аргоном в течение 15 мин, добавляют 1 см3 1 M раствора диэтилалюминийхлорида в гептане, 0,00016 M трихлорида титана в виде обработанной альфа-олефином С616 суспензии, после чего плотно закрывают реактор и устанавливают его на лабораторный шейкер. Через 2 часа шейкер останавливают и оставляют колбу в покое на 72 часа. Затем из колбы извлекают (со)полимер и растворяют в гептане до концентрации 4 % мас. и осаждают из раствора этиловым (изопропиловым) спиртом. После чего определяют молекулярную массу и молекулярно-массовое распределение с помощью гельпроникающей хроматографии, анализируют остаточное содержание элементов Ti, Al, Si и Сl на электронном сканирующем микроскопе Hitachi TM 1100 с рентгеноспектральным анализатором Swift ED-TM EDX, если их содержание превышает 0,001 % мас., то процедуру растворения и осаждения повторяют. Затем полимер высушивают и получают жидкую присадку концентрацией 0,6 % мас. и вязкостью 27 сСт посредством растворения измельченного (со)полимера в жидком ракетном топливе с собственной вязкостью 2,3-2,5 сСт на лабораторном шейкере без подогрева. После приготовления концентрацию полимера уточняют – отбирают 3 пробы и высушивают до постоянной массы, если ошибка не превышает 0,1 % то считают определенную концентрацию как среднюю по результатам трех измерений.

Среднемассовая молекулярная масса полученного (со)полимера высших альфа-олефинов составила 9,2⋅106, молекулярно-массовое распределение – 2,8. Снижение гидродинамических потерь при течении жидкого ракетного топлива с вязкостью 2,3 сСт, содержащего полученный (со)полимер в количестве 2,5⋅10-4 % мас., составило 34 %, снижение гидродинамических потерь при течении жидкого ракетного топлива, содержащего (со)полимер в количестве 1⋅10-3 % мас., составило 36%. Вязкость присадки при концентрации полимера высших альфа-олефинов 0,6% составила 27 сСт при 20°С.

Пример 2

Синтез и очистку (со)полимера ведут аналогично примеру 1, затем растворяют полимер до концентрации 0,8% мас. После приготовления концентрацию полимера уточняют – отбирают три пробы и высушивают до постоянной массы, если ошибка не превышает 0,1% то считают определенную концентрацию как среднюю по результатам 3 измерений.

Среднемассовая молекулярная масса полученного полимера высших альфа-олефинов составила 9,8⋅106, молекулярно-массовое распределение – 3,1. Снижение гидродинамических потерь при течении жидкого ракетного топлива с вязкостью 2,5 сСт, содержащего полученный (со)полимер в количестве 2,5⋅10-4 % мас., составило 38 %, снижение гидродинамических потерь при течении жидкого ракетного топлива, содержащего (со)полимер в количестве 1⋅10-3 % мас., составило 35%. Вязкость присадки при концентрации (со)полимера высшего альфа-олефина 0,8% составила 35 сСт при 20°С.

Использование заявленной присадки позволяет снизить итоговое содержание (со)полимера в жидком ракетном топливе с 0,015% мас. - 0,095 % мас до 2,5⋅10-4 % мас. - 1⋅10-3 % мас.

Источники информации

1. RU 2343187.

2. RU 2542623.

3. RU 2238282 (прототип).

Способ получения антитурбулентной присадки для углеводородных ракетных топлив (со)полимеризацией высших α-олефинов в присутствии микросферического трихлорида титана и алюминийорганического сокатализатора, отличающийся тем, что в качестве добавки используют метилциклогексилдиметоксисилан в эквимолярном количестве к ТiС13, а полученный (со)полимер высшего альфа-олефина подвергают очистке от каталитической системы путем переосаждения из раствора до остаточного содержания элементов Ti, Al, Si и Cl не более 0,001 % мас., после чего к очищенному (со)полимеру добавляют жидкое ракетное топливо до достижения вязкости антитурбулентной присадки 27-35 сСт.



 

Похожие патенты:

Изобретение относится к производству противотурбулентных присадок, снижающих гидродинамическое сопротивление в трубопроводах для транспортировки нефти и нефтепродуктов.

Изобретение раскрывает многофункциональную добавку к авиационным бензинам, которая включает тетраэтилсвинец, 1,2-дибромэтан и 2,6-ди-трет-бутил-4-метилфенол, добавка имеет температуру начала кристаллизации не выше минус 40°C и содержит углеводородную фракцию, имеющую температуру конца кипения не выше 201°C, давление насыщенных паров при 38,7°C не более 51 кПа, содержащую не менее 10% масс.

Изобретение описывает противоизносную присадку к углеводородному топливу на основе сложных эфиров органических кислот, которая представляет собой продукт, полученный в результате смешения щавелевой кислоты с кубовым остатком производства бутиловых спиртов (КОБС) при следующем соотношении компонентов, % мас: Кубовый остаток   производства бутиловых спиртов 77,0-91,0 Щавелевая кислота остальное до 100 и последующего отделения из реакционной массы смеси паров легких углеводородных фракций и воды.

Изобретение описывает депрессорную присадку к дизельным топливам, которая содержит сополимер низкомолекулярного полиэтилена и стирола, при этом в качестве растворителя она включает органический растворитель и фракцию дизельного топлива с диапазоном температур кипения 200-360ºС, мас.%: сополимер - 10-30 мас.%; органический растворитель - 70-90 мас.%; соотношение раствор сополимера:дизельное топливо - 1:3 или 1:5.

Изобретение направлено на создание способа получения высокоэффективной устойчивой концентрированной суспензии высокомолекулярного(ых) полиальфаолефина(ов), с молекулярной массой ≥5·106 а.е.м.
Изобретение описывает топливо для гиперзвукового прямоточного воздушно-реактивного двигателя на основе смеси углеводородного горючего Т-10 и 1,7-диметилдикарба-клозо-октокарборана, при этом в смесь дополнительно введен промотор горения изопропилнитрат, при следующем соотношении (% масс.): 1,7-диметилдикарба-клозо-октокарборан - 70; горючее Т-10 - 29-29,5; изопропилнитрат - 0,5-1.

Изобретение относится к химии высокомолекулярных полимеров в составе добавок, используемых в сфере трубопроводного транспорта нефти и нефтепродуктов. Способ получения противотурбулентной присадки суспензионного типа в одну стадию на основе сверхвысокомолекулярных полиальфа-олефинов.

Изобретение относится к химии высокомолекулярных полимеров в составе добавок, используемых в сфере трубопроводного транспорта нефти и нефтепродуктов. Способ получения противотурбулентной присадки суспензионного типа в одну стадию на основе сверхвысокомолекулярных полиальфа-олефинов.
Изобретение описывает жидкий концентрат для защиты жидких топлив от загрязнения водой, по существу состоящий из: (A) от 0,5 до 5% масс. одного или нескольких жирно-(C8-C24)-амидо-(C1-С6)-алкилбетаиновых эмульгирующих агентов; (B) от 45 до 75% масс.

Изобретение описывает добавку к бензину на основе этилового спирта, которая дополнительно содержит смесь фуллеренов фракции С50-С92, метилбензол при следующем соотношении компонентов, мас.%: смесь фуллеренов от 0,001 до 0,1; метилбензол от 0,1 до 10; этиловый спирт - остальное.

Изобретение относится к производству противотурбулентных присадок, снижающих гидродинамическое сопротивление в трубопроводах для транспортировки нефти и нефтепродуктов.

Изобретение раскрывает многофункциональную добавку к авиационным бензинам, которая включает тетраэтилсвинец, 1,2-дибромэтан и 2,6-ди-трет-бутил-4-метилфенол, добавка имеет температуру начала кристаллизации не выше минус 40°C и содержит углеводородную фракцию, имеющую температуру конца кипения не выше 201°C, давление насыщенных паров при 38,7°C не более 51 кПа, содержащую не менее 10% масс.

Изобретение описывает депрессорную присадку к дизельным топливам, которая содержит сополимер низкомолекулярного полиэтилена и стирола, при этом в качестве растворителя она включает органический растворитель и фракцию дизельного топлива с диапазоном температур кипения 200-360ºС, мас.%: сополимер - 10-30 мас.%; органический растворитель - 70-90 мас.%; соотношение раствор сополимера:дизельное топливо - 1:3 или 1:5.

Изобретение относится к области трубопроводного транспорта нефти и нефтепродуктов. Описан способ получения реагента для снижения гидродинамического сопротивления потока жидких углеводородов в трубопроводах полимеризацией альфа-олефинов C6-C14 в присутствии катализатора и активатора катализатора.

Изобретение описывает многофункциональную эфирную присадку к углеводородсодержащему топливу, которая включает смесь высокооктановых N-замещенных эфиров анилина - N-метил-пара-анизидина и/или N-метил-пара-фенетидина и высокооктановых эфиров анилина - пара-фенетидина и/или пара-анизидина.

Изобретение раскрывает антидетонационную добавку к топливу для двигателей внутреннего сгорания на основе бензина, которая содержит следующие компоненты: (I) 2,4-ксилидин, 2,5-ксилидин, 2,6-ксилидин или их смесь; (II) пара-анизидин или N-метил-пара-анизидин; (III) анилин, (IV) агидол-1 или агидол-12, при следующем содержании компонентов (масс.

Изобретение относится к нефтеперерабатывающей промышленности, к способам получения дизельных топлив из продуктов прямой перегонки нефти. Способ получения арктического дизельного топлива включает первичную перегонку нефти с выделением керосиновой фракции и легкого атмосферного газойля с их последующим компаундированием и введением депрессорной присадки, способ отличается тем, что в качестве керосиновой фракции выделяют керосиновый дистиллят - фракцию 180-220°С, 96% которой перегоняется от 180°С, в качестве легкого атмосферного газойля выделяют фракцию, 96% которой перегоняется до 280°С, полученную керосиновую фракцию компаундируют с легким атмосферным газойлем в соотношении 2:3 и вводят депрессорную присадку Difron 315 в концентрации 0,55 г в органическом растворителе.

Изобретение описывает охлаждающую среду, которая в основном состоит из синтетического дизельного топлива, включающего нециклические алканы в количестве, по меньшей мере, 50%, возможно, алкилированные моноциклические алканы в количестве до 50%, не более 1% ароматических углеводородов и не более 1% ди-полициклических алканов.

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложено устройство 8 для подачи жидкой присадки в контур 1 циркуляции топлива двигателя внутреннего сгорания, содержащее головку 10 и сменную кассету 11, образующую камеру 22 для присадки, в которой расположен резервуар 12 с жидкой присадкой.

Изобретение описывает топливо для котельной, состоящее из углеродсодержащих соединений органического и минерального происхождения, при этом в его состав в качестве углеродсодержащего соединения органического происхождения входит смесь нефтешлама и карбоксилата натрия в соотношении 1:(1-3), а в качестве углеродсодержащего соединения минерального происхождения - угольная пыль, при следующем соотношении компонентов, % масс.: Смесь нефтешлама и карбоксилата натрия 40-50 Угольная пыль остальное Топливо для котельной обладает высокой стабильностью, низкой коррозионной активностью, зольностью и вязкостью, а также высокой теплотворной способностью.

Настоящее изобретение относится к противотурбулентной присадке суспензионного типа на основе высших α-олефинов, отличающееся тем, что она представляет собой коллоидный раствор, который дополнительно содержит технический углерод, пальмитат калия и октанол при следующем соотношении компонентов, % масс.: поли-α-олефин 30-35; технический углерод 1-2; пальмитат калия 1-2; октанол остальное.

Изобретение относится к способам получения антитурбулентных присадок на основе полимеров высших альфа-олефинов и может быть использовано в топливных магистралях жидкостных ракетных двигателей. Способ осуществляют полимеризацией высших α-олефинов в присутствии микросферического трихлорида титана и алюминийорганического сокатализатора. В качестве добавки используют метилциклогексилдиметоксисилан в эквимолярном количестве к ТiС13. Полученный полимер высшего альфа-олефина подвергают очистке от каталитической системы путем переосаждения из раствора до остаточного содержания элементов Ti, Al, Si и Cl не более 0,001  мас. К очищенному полимеру добавляют жидкое ракетное топливо до достижения вязкости антитурбулентной присадки 27-35 сСт. Технический результат – получение высокоэффективной антитурбулентной присадки, пригодной для применения в топливных магистралях ЖРД, и снижение итогового содержания полимера в жидком ракетном топливе. 2 пр.

Наверх